共查询到20条相似文献,搜索用时 0 毫秒
1.
Krisztina Knapp Marcin Górecki Jadwiga Frelek Roman Luboradzki Miklós Hollósi Zsuzsa Majer Elemér Vass 《Chirality》2014,26(4):228-242
The continuously growing interest in the understanding of peptide folding led to the conformational investigation of methylamides of N‐acetyl‐amino acids as diamide models. Here we report the results of detailed conformational analysis on Ac‐Pro‐NHMe and Ac‐β‐HPro‐NHMe diamides. These compounds were analyzed by experimental and computational methods, the conformational distributions obtained by Density Functional Theory (DFT) calculations for isolated and solvated diamide compounds are discussed. The conformational preference of proline‐containing diamide compounds as a function of the ambience was observed by a number of chiroptical spectroscopic techniques, such as vibrational circular dichroism (VCD), electronic circular dichroism (ECD), Raman optical activity (ROA) spectroscopy, and additionally by single crystal X‐ray diffraction analyses. Based on a comparison between Ac‐Pro‐NHMe and Ac‐β‐HPro‐NHMe, one can conclude that due to the greater conformational freedom of the β‐HPro derivative, Ac‐β‐HPro‐NHMe shows different behavior in solid‐ and solution‐phase, as well. Ac‐β‐HPro‐NHMe tends to form cis Ac‐β‐HPro amide conformation in water, dichloromethane, and acetonitrile in contrast to its α‐Pro analog. On the other hand, the crystal structure of the β‐HPro compound cannot be related to any of the conformers obtained in vacuum and solution while the X‐ray structure of Ac‐Pro‐NHMe was identified as tαL–, which is a trans Ac‐Pro amide containing conformer also predominant in polar solvents. Chirality 26:228–242, 2014. © 2014 Wiley Periodicals, Inc. 相似文献
2.
We reexamined the absolute configuration (AC) of the chiral sulfoxide 1-thiochromanone S-oxide (1) using vibrational circular dichroism (VCD) spectroscopy. The VCD spectrum of 1 was analyzed using density functional theory (DFT). DFT predicts two stable conformations of 1, separated by <1 kcal/mole. Their VCD spectra were calculated using the DFT/GIAO methodology. The VCD spectrum predicted for the equilibrium mixture of the two conformations of (S)-1 is in excellent agreement with the experimental spectrum of (+)-1. The AC of 1 is therefore definitively R(-)/S(+). 相似文献
3.
Sara Gabrieli Giuseppe Mazzeo Giovanna Longhi Sergio Abbate Tiziana Benincori 《Chirality》2016,28(10):686-695
Two diastereoisomeric pairs of bis‐oxazolines, provided with a stereogenic center at carbon 4 and based on the 3,3′‐bithiophene atropisomeric scaffold, were synthesized and structurally characterized. They differ in the substituents at positions 2 and 5 of the thiophene rings, which are functionalized with methyl (1) or phenyl (2) groups, respectively. In vibrational circular dichroism (VCD) spectra, recorded in CCl4 solutions, it is possible to distinctly recognize the characteristic features of axial and central stereogenic elements. In tandem with Density Functional Theory (DFT) calculations, the absolute configuration (AC) of the diastereoisomers was safely established. In this case, VCD was shown to be superior to ECD (electronic circular dichroism) in the assignment of AC. The normal modes, evaluated from DFT calculations, show that the VCD signals in correspondence with the stereogenic axis of the bithiophene unit are different for 1 and 2. The VCD spectra of a molecular analog of 1, the (S)‐2,2′,5,5′‐tetramethyl‐4,4′‐bis‐(diphenylphosphino)‐3,3′‐bithiophene oxide (3), characterized by the same 3,3′‐bithiophene scaffold, but devoid of stereogenic centers, exhibits signals similar to those observed in the case of diastereoisomer (aS,R,R)‐1a, associated with almost identical normal modes. Chirality 28:686–695, 2016. © 2016 Wiley Periodicals, Inc. 相似文献
4.
The solid-state structure of LL/DD or LD/DL diphenylalanine diluted in KBr pellets is studied by infrared (IR) absorption and vibrational circular dichroism (VCD) spectroscopy. The structure depends on the absolute configuration of the residues. The natural LL diphenylalanine exists as a mixture of neutral and zwitterionic structures, depending on the humidity of the sample, while mostly the zwitterion is observed for LD diphenylalanine whatever the experimental conditions. The system undergoes spontaneous cyclization upon heating at 125°C, resulting to the formation of a diketopiperazine (DKP) dipeptide as the only product. The reaction is faster for LD than for LL diphenylalanine. As expected, LL and DD diphenylalanine react to form the LL and DD enantiomers of cyclo diphenylalanine. Interestingly, the DKP dipeptides formed from the LD or DL diphenylalanine show unexpected optical activity, with opposite VCD spectra for the products formed from the LD and DL reagents. This is explained in terms of chirality synchronization between the monomers within the crystal, which retain the symmetry of the reagent, resulting to the formation of a new chiral phase made from transiently chiral molecules. 相似文献
5.
The two enantiomers of 2,2′‐bioxirane were synthesized, and their chiroptical properties were thoroughly investigated in various solvents by polarimetry, vibrational circular dichroism (VCD), and Raman optical activity (ROA). Density functional theory (DFT) calculations at the B3LYP/aug‐cc‐pVTZ level revealed the presence of three conformers (G+, G?, and cis) with Gibbs populations of 51, 44, and 5% for the isolated molecule, respectively. The population ratios of the two main conformers were modified for solvents exhibiting higher dielectric constants (G? form decreases whereas G+ form increases). The behavior of the specific optical rotation values with the different solvents was correctly reproduced by time‐dependent DFT calculations using the polarizable continuum model (PCM), except for the benzene for which explicit solvent model should be necessary. Finally, VCD and ROA spectra were perfectly reproduced by the DFT/PCM calculations for the Boltzmann‐averaged G+ and G? conformers. 相似文献
6.
Simone Ghidinelli Giovanna Longhi Giuseppe Mazzeo Sergio Abbate Stefan E. Boiadjiev David A. Lightner 《Chirality》2018,30(1):19-28
Vibrational and electronic circular dichroism (VCD and ECD) spectra of 3 optically active bilirubin analogs with propionic acid groups replaced by (1) 1‐(S)‐methylpropyl groups, (2) 3‐acetoxy‐1‐(S)‐methylpropyl groups, and (3) 1‐(S)‐2‐(R)‐dimethyl‐2‐(methoxycarbonyl)ethyl groups have been recorded at different concentrations in chloroform. The aliphatic chains attached to C‐8 and C‐12 of the 3 chosen mesobilirubins were modified so as to possess no OH group. The variation of the VCD spectra with concentration is consistent with the formation of dimers at high concentration. Density functional theory and time‐dependent density functional theory calculations on monomeric and dimeric forms support such a conclusion. Comparing with previous VCD (ECD) and IR (UV) studies of other mesobilirubin molecules, it is concluded that here, the key feature for aggregation is the missing OH groups on the propionic acid chains. The latter, in synergy with the polar groups of lactam moieties, appear to be involved in intramolecular phenomena and thus favor monomeric forms. Investigation of ECD and UV spectra of the same compounds in mixed DMSO/chloroform solutions provide further clues to the proposed picture. 相似文献
7.
Daniela Rossi Rita Nasti Annamaria Marra Silvia Meneghini Giuseppe Mazzeo Giovanna Longhi Maurizio Memo Barbara Cosimelli Giovanni Greco Ettore Novellino Federico Da Settimo Claudia Martini Sabrina Taliani Sergio Abbate Simona Collina 《Chirality》2016,28(5):434-440
The chiral separation of enantiomeric couples of three potential A3 adenosine receptor antagonists: (R/S)‐N‐(6‐(1‐phenylethoxy)‐2‐(propylthio)pyrimidin‐4‐yl)acetamide ( 1 ), (R/S)‐N‐(2‐(1‐phenylethylthio)‐6‐propoxypyrimidin‐4‐yl)acetamide ( 2 ), and (R/S)‐N‐(2‐(benzylthio)‐6‐sec‐butoxypyrimidin‐4‐yl)acetamide ( 3 ) was achieved by high‐performance liquid chromatography (HPLC). Three types of chiroptical spectroscopies, namely, optical rotatory dispersion (ORD), electronic circular dichroism (ECD), and vibrational circular dichroism (VCD), were applied to enantiomeric compounds. Through comparison with Density Functional Theory (DFT) calculations, encompassing extensive conformational analysis, full assignment of the absolute configuration (AC) for the three sets of compounds was obtained. Chirality 28:434–440, 2016. © 2016 Wiley Periodicals, Inc. 相似文献
8.
Shi Qiu Kourosch Abbaspour Tehrani Sergey Sergeyev Patrick Bultinck Wouter Herrebout Benoit Mathieu 《Chirality》2016,28(3):215-225
The stereochemistry of all four stereoisomers of brivaracetam was determined using vibrational circular dichroism (VCD) spectroscopy. By comparing experimentally obtained VCD spectra and computationally simulated ones, the absolute configurations can be confidently assigned without prior knowledge of their relative stereochemistry. Neither the corrected mean absolute errors analysis of the nuclear magnetic resonance (NMR) data, nor the matching of experimental and calculated infrared spectra allowed the diastereoisomers to be distinguished. VCD spectroscopy itself suffices to establish the absolute configurations of all diastereoisomers. The relative stereochemistry could also be statistically confirmed by matching experimental and computed NMR spectra using the CP3 algorithm. The combination of VCD and NMR is recommended for molecules bearing more than one chiral center, as the relative configurations obtained from NMR serve as an independent check for those established with VCD. Analysis of the calculated VCD spectra reveals that the localized NH2 scissoring mode at around 1600 cm‐1 is characteristic for intramolecular hydrogen bonding, while the orientation of the ethyl group is reflected by the delocalized modes between 1150 and 1050 cm‐1. Chirality 28:215–225, 2016. © 2016 Wiley Periodicals, Inc. 相似文献
9.
In this work we have studied ligand-induced secondary structure changes in the small calcium regulatory protein calmodulin (CaM) using vibrational circular dichroism (VCD) spectroscopy. We find that, due to its chiral sensitivity, VCD spectroscopy has increased ability over IR spectroscopy to detect changes in the structure and flexibility of secondary structure elements upon ligand binding. Moreover, we demonstrate that the uniform isotope labeling of CaM with (13)C shifts its amide I' VCD band by about approximately 43 cm(-1) to lower wavenumbers, which opens up a spectral window to simultaneously visualize a bound target protein. Therefore this study also provides the first example of how isotope labeling enables protein-protein interactions to be studied by VCD with good separation of the signals for both isotope-labeled and unlabeled proteins. 相似文献
10.
Prasad L. Polavarapu 《Chirality》2016,28(6):445-452
Chiroptical spectroscopy has evolved into a promising tool for chiral molecular structural determination in the last four decades. Determination of the absolute configurations (ACs) of bromochlorofluoromethane and [2H1,2H2,2H3]‐neopentane demonstrated the enviable advantages of chiroptical spectroscopy. Furthermore, uncovering the errors in the ACs reported in the literature established a glimpse of what can be accomplished with the modern chiroptical spectroscopic methods. Despite these triumphs, it is important to exercise caution in the practice of chiroptical spectroscopic methods, because certain widely practiced approaches can lead to erroneous conclusions. Selected major accomplishments and special precautions needed for future applications are emphasized. Chirality 28:445–452, 2016. © 2016 Wiley Periodicals, Inc. 相似文献
11.
Using dihydrogendisulphide (H2S2), dimethyl‐ ((CH3)2S2), and diethyldisulphide ((CH3CH2)2S2)as model molecules, theoretical ECD, VCD, and ROA spectra of nonplanar disulphides were calculated by DFT methods. Most of the calculated electronic and vibrational chiroptical features suffer an equivocal relation between calculatedsigns of ECD, VCD, or ROA and the sense of disulphide nonplanarity as noted earlier for low‐lying ECD bands. This is a consequence of local C2 symmetry of a disulphide group causing most electronic and vibrational transitions to occur as pairs falling to alternative A, B symmetry species, which become degenerate and switch their succession (and consequently the observed chiroptical sign pattern) at the energetically most favorable perpendicular conformation. According to present calculations, the key to resolving this ambiguity may involve the S? S stretching vibrational mode at ~500 cm?1. The relation of signs of the relevant VCD and ROA features to sense of disulphide chirality seems simpler and less ambiguous. The right‐handed arrangement of the S? S group (0 < χS? S < 180°) results in mostly negative VCD signals. Although relation to ROA still suffers some ambiguity, it gets clearer along the series H2S2–(CH3)2S2–(CH3CH2)2S2. ROA is also attractive for the analysis of disulphide‐containing peptides and proteins, because applying it to aqueous solutions is not problematic. Chirality, 2010. © 2009 Wiley‐Liss, Inc. 相似文献
12.
《Chirality》2017,29(12):854-864
The absolute configurations of the separated enantiomers of fluralaner, a racemic animal health product used to prevent fleas and ticks, have been assigned using vibrational circular dichroism (VCD). The crystallographic structure of the active enantiomer (+)‐fluralaner has previously been shown to have the (S ) configuration using small molecule crystallography. We sought a faster analytical method to determine the absolute configuration of the separated enantiomers. When comparing the measured IR (infrared) and VCD spectra, it is apparent that the amide carbonyl groups appear in the IR but are nearly absent in the VCD. Computational work to calculate the VCD and IR using in vacuo models, implicit solvation, and explicitly solvated complexes has implicated conformational averaging of the carbonyl VCD intensities. 相似文献
13.
Pazderková M Bednárová L Dlouhá H Flegel M Lebl M Hlaváček J Setnička V Urbanová M Hynie S Klenerová V Baumruk V Maloň P 《Biopolymers》2012,97(11):923-932
Electronic and vibrational optical activity of the set of neurohypophyseal hormones and their analogs was investigated to clarify the S-S bond solution conformation. The selected compounds include oxytocin (I), lysine vasopressin (II), arginine vasopressin (III), and their analogs (IV-IX), differing widely in their pharmacological properties. We have extended the already known electronic circular dichroism data by new information provided by vibrational circular dichroism (VCD) and Raman optical activity (ROA). The use of VCD brought additional details on three-dimensional structure of the chain reversal in the ring moiety and on its left handedness. Furthermore, Raman scattering and ROA allowed us to deduce the sense of the disulfide bond torsion. 相似文献
14.
Vibrational circular dichroism (VCD) and IR absorption spectra are obtained in a chloroform solution for poly[gamma-((R)-alpha-phenethyl)-L-glutamate] (PRPLG) and poly[gamma-((S)-alpha-phenethyl)-L-glutamate] (PSPLG), whose only structural difference is an opposite chiral center in the side chain. Their characteristic amide A, I, and II bands show VCD patterns quite similar to those of poly[gamma-benzyl-L-glutamate] (PBLG), indicating that the secondary structure of these polypeptides is a right-handed alpha-helix. The VCD spectra in the CH stretching region exhibit different patterns for PRPLG and PSPLG, reflecting the chirality difference in the side chains. This difference is interpreted on the basis of the additivity of optical activity contributions from the main chain conformation and the chirality difference in the side chains. The results indicate that a VCD difference spectrum of the CH stretching region is a useful diagnostic tool for elucidating local chirality differences. 相似文献
15.
The molecules‐in‐molecules (MIM) fragment‐based method has recently been adapted to evaluate the chiroptical (vibrational circular dichroism [VCD] and Raman optical activity [ROA]) spectra of large molecules such as peptides. In the MIM‐VCD and MIM‐ROA methods, the relevant higher energy derivatives of the parent molecule are assembled from the corresponding derivatives of smaller fragment subsystems. In addition, the missing long‐range interfragment interactions are accounted at a computationally less expensive level of theory (MIM2). In this work we employed the MIM‐VCD and MIM‐ROA fragment‐based methods to explore the evolution of the chiroptical spectroscopic characteristics of 310‐helix, α‐helix, β‐hairpin, γ‐turn, and β‐extended conformers of gas phase polyalanine (chain length n = 6–14). The different conformers of polyalanine show distinctive features in the MIM chiroptical spectra and the associated spectral intensities increase with evolution of system size. For a better understanding the site‐specific effects on the vibrational spectra, isotopic substitutions were also performed employing the MIM method. An increasing redshift with the number of isotopically labeled 13C=O functional groups in the peptide molecule was seen. For larger polypeptides, we implemented the two‐step‐MIM model to circumvent the high computational expense associated with the evaluation of chiroptical spectra at a high level of theory using large basis sets. The chiroptical spectra of α‐(alanine)20 polypeptide obtained using the two‐step‐MIM model, including continuum solvation effects, show good agreement with the full calculations and experiment. This benchmark study suggests that the MIM‐fragment approach can assist in predicting and interpreting chiroptical spectra of large polypeptides. 相似文献
16.
We establish the general behavior of absorption and vibrational circular dichroism spectra (VCD) of a chiral HCCH fragment lacking all symmetry elements; the study is limited to CH-stretching modes, and the Hamiltonian employed is written in terms of normal-mode coordinates and momenta and approximates two different Morse oscillators interacting through a harmonic coupling term; rotational strengths are evaluated within a hypothesis of coupled electric dipoles. Van Vleck contact transformations written in terms of raising and lowering operators are used to calculate spectra up to the manifold Deltav = 4. Three transformations are necessary to obtain fourth-order terms in the relevant operators, namely, the electric and magnetic dipole moments. The dynamics of the system exhibits 1:1 resonance terms in addition to the Darling-Dennison coupling term. We discuss the importance of coupling between CH stretches with respect to differences in their local mechanical characteristics in determining the aspect of the absorption and VCD fundamental and overtone spectra of increasing quantum number. 相似文献
17.
A direct enzymatic method for the preparation of cyclic beta-lactams and beta-amino acids was recently developed, involving the Lipolase-catalyzed enantioselective hydrolysis of racemic beta-lactams in an organic solvent. Vibrational circular dichroism (VCD) spectroscopy combined with quantum chemical calculations at ab initio (DFT) level of theory has now been applied to determine the absolute configuration and conformation of a series of cyclic beta-lactams (1-10). The absolute configuration of 8 was derived from X-ray crystallography. Only indirect evidence was available for 1, 2, 5, 6, and 7. The absolute configuration of the new lactams 3, 4, 9, and 10 was not known previously. The VCD analysis indicated the homochirality of the studied lactams. The conformation of the flexible beta-lactams was also predicted from the VCD data. Even in the cases where multiple conformers are allowed, the predominance of one conformer was found, with the exception of 2, being present as a mixture of four conformers. Beta-lactams tend to form H-bonded dimers. The fine structure of the amide I VCD band suggested that only a small population of H-bonded dimers is formed in deuterated chloroform. 相似文献
18.
19.
《Chirality》2017,29(2):89-96
The diastereomer diketopiperazine (DKP) peptides built on phenylalanine, namely, cyclo diphenylalanine LPhe‐LPhe and LPhe‐DPhe, were studied in the solid phase by vibrational circular dichroism (VCD) coupled to quantum chemical calculations. The unit structure of cyclo LPhe‐LPhe in KBr pellets is a dimer bridged by two strong NH…O hydrogen bonds. The intense bisignate signature in the CO stretch region is interpreted in terms of two contributions arising from the free COs of the dimer and the antisymmetrical combination of the bound COs. In contrast, cyclo LPhe‐DPhe shows no VCD signal in relation to its symmetric nature. 相似文献
20.
The impressive advances of computational spectroscopy in most recent years are providing robust and user‐friendly multifrequency virtual spectrometers, which can also be used by nonspecialists to complement experimental studies. At the heart of these developments there are latest‐generation models based on Density Functional Theory for the proper treatment of stereo‐electronic effects, coupled to the polarizable continuum model to deal with bulk solvent effects, and low‐order perturbative treatments of anharmonic effects. Continuing our efforts to increase the range of application of virtual spectrometers, we report here about chiroptical spectroscopies with special reference to optical rotation and vibrational circular dichroism. The capabilities and possible limitations of our latest tool will be analyzed for the specific case of (S)‐nicotine in vacuo and in different solvents. Chirality 25:701–708, 2013. © 2013 Wiley Periodicals, Inc. 相似文献