首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive enantioselective gas chromatographic assay has been developed for amlodipine, 2-[(2-aminoethoxy)-methyl]-4-(2-chlorophenyl)-3-ethoxycarbonyl-5-methoxycarbonyl-6-methyl-1,4-dihydropyridine, a calcium channel blocking therapeutic agent. The assay involves conversion of the (+)-(R)- and (−)-(S)-enantiomers of amlodipine into their acyl derivatives with the chiral reagent (+)-(S)-α-methoxy-α-trifluoromethylphenylacetyl chloride (Mosher's reagent). Peak separation after chromatography of the diastereomers was larger than 85%, and the lower limit of detection in blood plasma was 0.02 ng/ml for each enantiomer. The method has been used for the measurement of amlodipine enantiomers in human, rat and dog plasma, and in various organs of the rat.  相似文献   

2.
Amlodipine, 3-ethyl 5-methyl-2-[(2-aminoethoxymethyl]-4-(2-chlorophenyl)-1,4-dihydro-6-methyl-3,5-pyridinedicarboxylate, is a chiral calcium antagonist, currently on the market and in therapeutic use as a racemate. The pharmacokinetic behaviour of R-(+)- and S-(−)-amlodipine after single enantiomer administration to healthy male human volunteers together with comparative administration of the racemic mixture of both enantiomers were studied. Plasma levels were studied as a function of time and assayed using an enantioselective chromatographic method (coupled chiral and achiral HPLC) with on-line solid-phase extraction and UV absorbance detection. The method was validated separately for the R-(+)- and S-(−)-enantiomer, respectively. Results of the study indicate that the pharmacokinetic behaviour of R-(+)- and S-(−)-amlodipine after single enantiomer administration is comparable to that of each enantiomer after administration of the racemate. No racemization occurs in vivo in human plasma after single enantiomer administration.  相似文献   

3.
Pharmacokinetic studies of optically pure compounds after single enantiomer administration are becoming increasingly important. The process of racemization in vivo can diminish all expected advantages of single enantiomer treatment. Amlodipine, one of the calcium channel blockers, currently used in therapy as a racemate, is one of such drugs under study. In order to administer single enantiomers of amlodipine to healthy volunteers both were chromatographically purified and characterised. The two optical isomers of amlodipine, active S-(−)- and non-active R-(+)-amlodipine, were purified using chromatographic procedure adopted from the analytical separation. Enantiomers were successfully converted to benzenesulphonic salt without any racemization. All semi-preparative purifications were monitored with complementary analytical methods, HPLC and CE, along with the determination of optical activity so that the final product was sufficiently defined for further in vivo studies. The analytical method developed for the determination of plasma concentrations of each enantiomer of amlodipine in these studies is also briefly described.  相似文献   

4.
Plasma concentrations of (R)- and (S)-amlodipine were measured after single oral administrations to 18 healthy volunteers of 20 mg amlodipine racemate. The contribution of the pharmacologically active (S)-enantiomer to the concentrations of total amlodipine (sum of enantiomers) was significantly higher than that of the inactive (R)-enantiomer, with mean values of 47% R to 53% S for the Cmax and 41% R to 59% S for the AUC (range between 24% R:76% S and 50% R:50% S). The oral clearance of the active (S)-form was subject to much less intersubject variation (25% CV) than that of the inactive (R)-form (52% CV). (R)-Amlodipine was more rapidly eliminated from plasma than (S)-amlodipine, with mean terminal half-lives of 34.9 h (R) and 49.6 h (S). The terminal half-lives of total amlodipine (mean 44.2 h) were strongly correlated with—and thus highly predictive for—the half-lives of the (S)-enantiomer. It is proposed that the observed enantioselectivity of oral amlodipine is due to differences in the systemic blood clearance of the enantiomers. © 1994 Wiley-Liss, Inc.  相似文献   

5.
Pharmacokinetic studies of optically pure compounds after single enantiomer administration are becoming increasingly important. The process of racemization in vivo can diminish all expected advantages of single enantiomer treatment. Amlodipine, one of the calcium channel blockers, currently used in therapy as a racemate, is one of such drugs under study. In order to administer single enantiomers of amlodipine to healthy volunteers both were chromatographically purified and characterised. The two optical isomers of amlodipine, active S-(−)- and non-active R-(+)-amlodipine, were purified using chromatographic procedure adopted from the analytical separation. Enantiomers were successfully converted to benzenesulphonic salt without any racemization. All semi-preparative purifications were monitored with complementary analytical methods, HPLC and CE, along with the determination of optical activity so that the final product was sufficiently defined for further in vivo studies. The analytical method developed for the determination of plasma concentrations of each enantiomer of amlodipine in these studies is also briefly described.  相似文献   

6.
Chiral considerations are found to be very much relevant in various aspects of forensic toxicology and pharmacology. In forensics, it has become increasingly important to identify the chirality of doping agents to avoid legal arguments and challenges to the analytical findings. The scope of this study was to develop an liquid chromatography–mass spectrometry (LCMS) method for the enantiomeric separation of typical illicit drugs such as ephedrines (ie, 1S,2R(+)‐ephedrine and 1R,2S(?)‐ephedrine) and pseudoephedrine (ie, R,R(?)‐pseudoephedrine and S,S(+)‐pseudoephedrine) by using normal phase chiral liquid chromatography–high‐resolution mass spectrometry technique. Results show that the Lux i‐amylose‐1 stationary phase has very broad and balancing‐enantio‐recognition properties towards ephedrine analogues, and this immobilized chiral stationary phase may offer a powerful tool for enantio‐separation of different types of pharmaceuticals in the normal phase mode. The type of mobile phase and organic modifier used appear to have dramatic influences on separation quality. Since the developed method was able to detect and separate the enantiomers at very low levels (in pico grams), this method opens easy access for the unambiguous identification of these illicit drugs and can be used for the routine screening of the biological samples in the antidoping laboratories.  相似文献   

7.
A novel liquid chromatographic method was developed for enantiomeric separation of lorcaserin hydrochloride on Chiralpak IA column containing chiral stationary phase immobilized with amylose tris (3.5‐dimethylphenylcarbamate) as chiral selector. Baseline separation with resolution greater than 4 was achieved using mobile phase containing mixture of n‐hexane/ethanol/methanol/diethylamine (95:2.5:2.5:0.1, v/v/v/v) at a flow rate of 1.2 mL/min. The limit of detection and limit of quantification of the S‐enantiomer were found to be 0.45 and 1.5 μg/mL, respectively; the developed method was validated as per ICH guideline. The influence of column oven temperatures studied in the range of 20°C to 50°C on separation was studied; from this, retention, separation, and resolution were investigated. The thermodynamic parameters ΔH°, ΔS°, and ΔG° were evaluated from van't Hoff plots,(Ink′ versus 1/T) and used to explain the strength of interaction between enantiomers and immobilized amylose–based chiral stationary phase  相似文献   

8.
The drug chirality is attracting increasing attention because of different biological activities, metabolic pathways, and toxicities of chiral enantiomers. The chiral separation has been a great challenge. Optimized high‐performance liquid chromatography (HPLC) methods based on vancomycin chiral stationary phase (CSP) were developed for the enantioseparation of propranolol, atenolol, metoprolol, venlafaxine, fluoxetine, and amlodipine. The retention and enantioseparation properties of these analytes were investigated in the variety of mobile phase additives, flow rate, and column temperature. As a result, the optimal chromatographic condition was achieved using methanol as a main mobile phase with triethylamine (TEA) and glacial acetic acid (HOAc) added as modifiers in a volume ratio of 0.01% at a flow rate of 0.3 mL/minute and at a column temperature of 5°C. The thermodynamic parameters (eg, ΔH, ΔΔH, and ΔΔS) from linear van 't Hoff plots revealed that the retention of investigated pharmaceuticals on vancomycin CSP was an exothermic process. The nonlinear behavior of lnk′ against 1/T for propranolol, atenolol, and metoprolol suggested the presence of multiple binding mechanisms for these analytes on CSP with variation of temperature. The simulated interaction processes between vancomycin and pharmaceutical enantiomers using molecular docking technique and binding energy calculations indicated that the calculated magnitudes of steady combination energy (ΔG) coincided with experimental elution order for most of these enantiomers.  相似文献   

9.
A column-switching chiral HPLC assay was developed that allows the separation and quantitation of the diastereomers of leucovorin (LV, 5-formyltetrahydrofolic acid) and its metabolite 5-methyltetrahydrofolate (METHF) in serum and urine by means of fluorescence detection. The analysis procedure consists of an on-line concentration of the folates in the HPLC system which is followed by the elution and separation of folates on an achiral 3-μm Microbore C18 column in (6R,S)-LV and (6R,S)-LV and (6R,S)-METHF are subsequently transferred on-line onto a chiral 7-μm bovine serum albumin column through a Rheodyne valve system and are separated into their distereometers. Time of analysis is 70 min. Detection limit is 5 ng/ml for each diastereometer. The within-day variation ranges between 3.2 and 15.8% in relation to the measured concentration. Between-day variation is 4.4–12.1% for a concentration of 100 ng/ml for each diastereometer. (6R,S)-LV and (6S)-LV pharmacokinetics were assessed by analyzing serum and urine samples of four-healthy volunteers.  相似文献   

10.
Ionic liquids have recognized as a solvent for Geotrichum candidum-catalyzed optical resolution and/or deracemization of racemic secondary alcohols, giving optically active alcohols. The immobilized Geotrichum candidum proceeded the enantioselective oxidation of alcohols, producing chiral alcohols in an ionic liquid. Further, deracemization of racemic alcohols was proceeded to give the corresponding chiral alcohols in high yield with excellent stereoselectivity by the Geotrichum candidum–NaBH4 system in the mixture of MES buffer solution and ionic liquid.  相似文献   

11.
Assignment of absolute configuration to a recently developed chiral selector useful in the separation of the underivatized enantiomers of naproxen and other nonsteroidal anti-inflammatory drugs (NSAIDs) is described. Circular dichroism, 1H NMR, and X-ray diffraction have been used to confirm the original assignment which was based solely upon elution orders from HPLC chiral stationary phases. All of these techniques agree in the assignment of the (S,S) absolute configuration to the enantiomer of the chiral selector which associates preferentially with (S)-naproxen. © 1994 Wiley-Liss, Inc.  相似文献   

12.
Quartz crystal microbalance (QCM) biosensor was used for the chiral recognition of five pairs of enantiomers by using goat serum albumin (GSA) and rabbit serum albumin (RbSA) as chiral selectors. Serum albumin (SA) was immobilized on the QCM through the self‐assembled monolayer technique, and the surface concentration of GSA and RbSA were 8.8 × 10?12 mol cm?2 and 1.2 × 10?11 mol cm?2, respectively. The QCM biosensors showed excellent sensitivity and selectivity. Meanwhile, the chiral recognition of SA sensors was quite species dependent. There were differences between GSA and RbSA sensors in the ability and the preference of chiral recognition. To R,S‐1,2,3,4‐tetrahydro‐1‐naphthylamine (R,S‐1‐TNA), R,S‐1‐(4‐methoxyphenyl)ethylamine (R,S‐4‐MPEA), and R,S‐1‐(3‐methoxyphenyl)ethylamine (R,S‐3‐MPEA), the preference of the stereoselective SA‐drug binding of the two kinds of SA sensors were consistent. However, to R,S‐2‐octanol (R, S‐2‐OT) and R,S‐methyl lactate (R,S‐MEL), the two kinds of SA sensors had opposite chiral recognition preference. Moreover, the interactions of SA and the five pairs of enantiomers have been further investigated through ultraviolet (UV) and fluorescent (FL) spectra. The UV/FL results were in accordance with the consequence of QCM. Chirality 24:804–809, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

13.

In the present work, we have investigated biochemical thermo-kinetic stability of lipases immobilized on a biocompatible polymeric material. Immobilization of lipase Candida rugosa (CRL) was carried out on biocompatible blend of poly vinyl alcohol (PVA) and chitosan (CHY) support via entrapment and glutardehyde (Glu) cross-linking method to produce PVA:CHY:CRL and PVA:CHY:Glu:CRL as robust biocatalyst. These immobilized lipases were characterized by various physico-biochemical characterization techniques. Later on, thermal and solvent stability of polymer immobilized lipase was determined in term of half-life time (t 0.5), D values, enthalpy (ΔH°), entropy (ΔS°), and free energy (ΔG°) of deactivation at different temperatures and in various solvents. The thermodynamic deactivation stability trend was found as: cross-linked lipase CRL > entrapped lipase CRL > free lipase CRL. Moreover, kinetic parameters, such as K m, V max, and catalytic efficiency, were also determined to understand the kinetic features. The polymer immobilized enzyme was reused to investigate the economic viability of the developed biocatalyst.

  相似文献   

14.
Much attention has been paid to chiral ionic liquids (ILs) in analytical chemistry, especially its application in capillary electrophoresis (CE) enantioseparation. However, the investigation of chiral ionic liquids synergistic systems based on antibiotic chiral selectors has been reported in only one article. In this work, a novel chiral ionic liquid, tetramethylammonium‐L‐hydroxyproline (TMA‐L‐Hyp), was applied for the first time in CE chiral separation to evaluate its potential synergistic effect with clindamycin phosphate (CP) as the chiral selector. As observed, significantly improved separation was obtained in this TMA‐L‐Hyp/CP synergistic system compared to TMA‐L‐Hyp or a CP single system. Several primary factors that might influence the separation were investigated, including CP concentration, TMA‐L‐Hyp concentration, buffer pH, types and concentrations of organic modifier, applied voltage, and capillary temperature. The best results were obtained with a 40 mM borax buffer (pH 7.6) containing 30 mM TMA‐L‐Hyp, 80 mM CP, and 20% (v/v) methanol, while the applied voltage and temperature were set at 20 kV and 20°C, respectively. Chirality 27:598–604, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
The enantiomeric separation of metoprolol and its metabolites in human urine was undertaken using capillary electrophoresis (CE). Resolution of the enantiomers was achieved using carboxymethyl-β-cyclodextrin (CM-β-CD) as the chiral selector. A 100-mM acetate buffer (pH 4.0) containing 5% 2-propanol and 10 mM CM-β-CD resulted in the optimum separation of the metoprolol enantiomers and its acidic metabolite in human urine. Following a single metoprolol oral administration of 100 mg racemic metoprolol tartrate, stereoselective pharmacokinetic analysis showed that urinary acidic metabolite 3 of metoprolol accounted for 62.3% of the dose with an R/S ratio of 1.23 and urinary unchanged metoprolol 1 accounted for 6.3% of the dose with an R/S ratio of 0.72.  相似文献   

16.
(S)-3-Chloro-1-phenylpropanol is an important chiral precursor for numerous antidepressants such as tomoxetine. A high enantiomeric excess (e.e.) of (S)-3-chloro-1-phenylpropanol can be achieved by asymmetric reduction of 3-chloropropiophenone using Saccharomyces cerevisiae CGMCC 2266 cells immobilized in calcium alginate. Thermal pretreatment of the immobilized cells at 50 °C for 30 min resulted in high enantioselectivity (99% e.e.) and good percent conversion (80%). The effects of various conditions on the reduction reaction were investigated. The optimal conditions were found to be as follows: sodium alginate concentration, 2%; bead diameter, 2 mm; temperature, 30 °C; re-culture time, 24 h; and batch addition of the substrate. After reusing these three times, the immobilized cells retained approximately 60% of their original catalytic activity with their enantioselectivity intact.  相似文献   

17.
A chiral stationary phase based on immobilized human serum albumin (HSA) was used to study the stereoselective binding of ketoprofen enantiomers by means of high-performance liquid affinity chromatography. The technique of zonal elution was applied together with a novel mathematical approach describing attachment to more than one type of binding site. Phenylbutazon (PBZ) and diazepam (DAZ) were used as markers for the major believed binding regions on HSA. Both R- and S-ketoprofen (KTR and KTS) display high affinity to the primary PBZ- and DAZ-binding sites and low-affinity to the secondary DAZ sites. The binding to high-affinity regions is accepted to be a stepwise process initiated by the binding to the primary DAZ sites and followed by the attachment to the primary PBZ sites. The chiral recognition is attributed to the high-affinity PBZ-binding sites and to the low-affinity DAZ-binding sites.  相似文献   

18.
L ‐Dibenzoyl tartaric acid was mono‐esterified with benzyl alcohol, and then chlorinated with SOCl2 to give (2S,3S)‐1‐(benzyloxy)‐4‐chloro‐1,4‐dioxobutane‐2,3‐diyl dibenzoate (Selector 1 ). (1R,2R)‐1,2‐Diphenylethylenediamine was mono‐functionalized with phenyl isocyanate and phenylene diisocyanate in sequence to give (1R,2R)‐1,2‐diphenyl‐2‐(3‐phenylureido)ethyl 4‐ isocyanatophenylurea (Selector 2 ). Two brush‐type chiral stationary phases (CSPs) of single selector were prepared by separately immobilizing selectors 1 and 2 on aminated silica gel. Selectors 1 and 2 were simultaneously immobilized on aminated silica gel to give a mixed selector CSP. The enantioseparation ability of these CSPs was studied. The CSP of selector 1 has strongest separation ability, while the enantioseparation ability of the mixed selector CSP is relatively lower. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Synthesis of (?)-bevantolol hydrochloride from 3,4-dimethoxyphenethylamine and (S)-(+)-m-tolyl glycidyl ether derived from (R)-(?)-epichlorohydrin established the absolute configuration of the (+) and (?) enantiomer as R and S, respectively. The purity of the enantiomers was determines using a chiral cellulose column (CHIRALCEL OD®) which allowed direct separation of the enantiomers. A separation factor (α) of 4.20 and a resolution factor (Rs) of 9.21 were obtained. © 1995 Wiley-Liss, Inc.  相似文献   

20.
The resolution of seven enantiomeric pairs of chiral derivatives of xanthones (CDXs) on (S,S)‐Whelk‐O1 and l ‐phenylglycine chiral stationary phases (CSPs) was systematically investigated using multimodal elution conditions (normal‐phase, polar‐organic, and reversed‐phase). The (S,S)‐Whelk‐O1 CSP, under polar‐organic conditions, demonstrated a very good power of resolution for the CDXs possessing an aromatic moiety linked to the stereogenic center with separation factor and resolution factor ranging from 1.91 to 7.55 and from 6.71 to 24.16, respectively. The chiral recognition mechanisms were also investigated for (S,S)‐Whelk‐O1 CSP by molecular docking technique. Data regarding the CSP–CDX molecular conformations and interactions were retrieved. These results were in accordance with the experimental chromatographic parameters regarding enantioselectivity and enantiomer elution order. The results of the present study fulfilled the initial objectives of enantioselective studies of CDXs and elucidation of intermolecular CSP–CDX interactions. Chirality 25:89–100, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号