首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this study was to compare the potential of mono-rhamnolipids (mono-RML) and di-rhamnolipids (di-RML) against biofilm formation on carbon steel coupons submitted to oil produced water for 14 days. The antibiofilm effect of the RML on the coupons was analyzed by scanning electron microscopy (SEM) and by epifluorescence microscopy, and the contact angle was measured using a goniometer. SEM analysis results showed that all RML congeners had effective antibiofilm action, as well as preliminary anticorrosion evaluation confirmed that all RML congeners prevented the metal deterioration. In more detail, epifluorescence microscopy showed that mono-RML were the most efficient congeners in preventing microorganism's adherence on the carbon steel metal. Image analyses indicate the presence of 15.9%, 3.4%, and <0.1% of viable particles in di-RML, mono/di-RML and mono-RML pretreatments, respectively, in comparison to control samples. Contact angle results showed that the crude carbon steel coupon presented hydrophobic character favoring hydrophobic molecules adhesion. We calculated the theoretical polarity of the RML congeners and verified that mono-RML (log P = 3.63) presented the most hydrophobic character. This had perfect correspondence to contact angle results, since mono-RML conditioning (58.2°) more significantly changed the contact angle compared with the conditioning with one of the most common surfactants used on oil industry (29.4°). Based on the results, it was concluded that rhamnolipids are efficient molecules to be used to avoid biofilm on carbon steel metal when submitted to oil produced water and that a higher proportion of mono-rhamnolipids is more indicated for this application.  相似文献   

2.
Thermophilic bacterial cultures were isolated from a hot spring environment on hydrocarbon containing mineral salts media. One strain identified as Pseudomonas aeruginosa AP02-1 was tested for the ability to utilize a range of hydrocarbons both n-alkanes and polycyclic aromatic hydrocarbons as sole carbon source. Strain AP02-1 had an optimum growth temperature of 45°C and degraded 99% of crude oil 1% (v/v) and diesel oil 2% (v/v) when added to a basal mineral medium within 7 days of incubation. Surface activity measurements indicated that biosurfactants, mainly glycolipid in nature, were produced during the microbial growth on hydrocarbons as well as on both water-soluble and insoluble substrates. Mass spectrometry analysis showed different types of rhamnolipid production depending on the carbon substrate and culture conditions. Grown on glycerol, P. aeruginosa AP02-1 produced a mixture of ten rhamnolipid homologues, of which Rha-Rha-C10-C10 and Rha-C10-C10 were predominant. Rhamnolipid-containing culture broths reduced the surface tension to ≈28 mN and gave stable emulsions with a number of hydrocarbons and remained effective after sterilization. Microscopic observations of the emulsions suggested that hydrophobic cells acted as emulsion-stabilizing agents.  相似文献   

3.
《Process Biochemistry》2010,45(9):1511-1516
The properties and applications of rhamnolipid surfactants produced by Pseudomonas aeruginosa L2-1 from cassava wastewater added with waste cooking oil (CWO) as low-cost substrate, were investigated and compared with the commercial rhamnolipid mixture JBR599 (Jeneil Biosurfactant Co., Saukville, USA). The rhamnolipids produced by strain L2-1 were characterized by high performance liquid chromatography–mass spectrometry. Sixteen different rhamnolipid congeners were detected, with Rha-C10-C10 and Rha-Rha-C10-C10 being the most abundant. The L2-1 rhamnolipids from CWO showed similar or better tensioactive properties than those from JBR599, with a minimal surface tension of 30 mN/m and a critical micelle concentration (CMC) of 30 mg/l. The L2-1 biosurfactants formed stable emulsions with several hydrocarbons and showed excellent emulsification of soybean oil (100%). These rhamnolipids removed 69% of crude oil present in contaminated sand samples at the CMC and presented antimicrobial activity against Bacillus cereus (32 μg/ml), Micrococcus luteus (32 μg/ml) and Staphylococcus aureus (128 μg/ml). These results demonstrate that the rhamnolipids produced in CWO can be useful for industrial applications, such as the bioremediation of oil spills.  相似文献   

4.
Marine microbes are a rich source of bioactive compounds, such as drugs, enzymes, and biosurfactants. To explore the bioactive compounds from our marine natural product library, an oil emulsification assay was applied to discover biosurfactants and bioemulsifiers. A spore-forming bacterial strain from sea mud was found to produce bioemulsifiers with good biosurfactant activity and a broad spectrum of antimicrobial properties. It was identified as Bacillus velezensis H3 using genomic and phenotypic data analysis. This strain was able to produce biosurfactants with an optimum emulsification activity at pH 6.0 and 2% NaCl by using starch as the carbon source and ammonium sulfate as the nitrogen source. The emulsification-guided isolation and purification procedure led to the discovery of the biosurfactant components, which were mainly composed of nC14-surfactin and anteisoC15-surfactin as determined by NMR and MS spectra. These compounds can reduce the surface tension of phosphate-buffered saline (PBS) from 71.8 to 24.8 mN/m. The critical micelle concentrations (CMCs) of C14-surfactin and C15-surfactin in 0.1 M PBS (pH 8.0) were determined to be 3.06?×?10-5 and 2.03?×?10-5?mol/L, respectively. The surface tension values at CMCs for C14-surfactin and C15-surfactin were 25.7 and 27.0 mM/m, respectively. In addition, the H3 biosurfactant exhibited antimicrobial activities against Staphyloccocus aureus, Mycobacterium, Klebsiella peneumoniae, Pseudomonas aeruginosa, and Candida albicans. Thus B. velezensis H3 is an alternative surfactin producer with potential application as an industrial strain for the lipopeptide production.  相似文献   

5.
The aim of present work was to study chemical structures and biological activities of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa MN1 isolated from oil-contaminated soil. The results of liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed that total rhamnolipids (RLs) contained 16 rhamnolipid homologues. Di-lipid RLs containing C10-C10 moieties were by far the most predominant congeners among mono-rhamnose (53.29?%) and di-rhamnose (23.52?%) homologues. Mono-rhamnolipids form 68.35?% of the total congeners in the RLs. Two major fractions were revealed in the thin layer chromatogram of produced RLs which were then purified by column chromatography. The retardation factors (R f) of the two rhamnolipid purple spots were 0.71 for RL1 and 0.46 for RL2. LC-MS/MS analysis proved that RL1 was composed of mono-RLs and RL2 consisted of di-RLs. RL1 was more surface-active with the critical micelle concentration (CMC) value of 15?mg/L and the surface tension of 25 mN/m at CMC. The results of biological assay showed that RL1 is a more potent antibacterial agent than RL2. All methicillin-resistant Staphylococcus aureus (MRSA) strains were inhibited by RLs that were independent of their antibiotic susceptibility patterns. RLs remarkably enhanced the activity of oxacillin against MRSA strains and lowered the minimum inhibitory concentrations of oxacillin to the range of 3.12?C6.25???g/mL.  相似文献   

6.
Bacillus subtilis C9 effectively degrades aliphatic hydrocarbons up to a chain length of C19 and produces a lipopeptide-type biosurfactant, surfactin, yet it has no genetic competency. Therefore, to obtain a transformable surfactin producer, the sfp gene cloned from B. subtilis C9 was integrated into the chromosome of B. subtilis 168, a non-surfactin producer, by homologous recombination. The transformants reduced the surface tension of the culture broth from 70.0 mN/m to 28.0 mN/m, plus the surface-active compound produced by the transformants exhibited the same Rf value as that from B. subtilis C9 and authentic surfactin in a thin-layer chromatographic analysis. The integration of the sfp gene into the chromosome of B. subtilis 168 was confirmed by Southern hybridization. Like B. subtilis C9, the transformants readily degraded n-hexadecane, although the original strain did not. It was also statistically confirmed that the hydrocarbon degradation of the transformants was highly correlated to their surfactin production by the determination of the correlation coefficient (r2=0.997, P<0.01). Therefore, these results indicate that the surfactin produced from B. subtilis enhances the bioavailability of hydrophobic liquids.  相似文献   

7.
Biosurfactants are structurally a diverse group of surface‐active molecules widely used for various purposes in industry. In this study, among 120 fungal isolates, M‐06 was selected as a superior biosurfactant producer, based on different standard methods, and was identified as Mucor circinelloides on the basis of its nucleotide sequence of the internal transcribed spacer (ITS) gene. M. circinelloides reduced the surface tension to 26 mN/m and its EI24 index was determined to be 66.6%. The produced biosurfactant exhibited a high degree of stability at a high temperature (121°C), salinity (40 g/L), and acidic pH (2–8). The fermentation broth's ability to recover oil from contaminated sand was 2 and 1.8 times higher than those of water and Tween 80, respectively. The ability of biosurfactant to emulsify crude oil in the sea and fresh water was 64.9 and 48% respectively. This strain could remove 87.6% of crude oil in the Minimal Salt Medium (MSM) crude oil as the sole carbon source. The results from a primary chemical characterization of crude biosurfactant suggest that it is of a glycolipid nature. The strain and its biosurfactant could be used as a potent candidate in bioremediation of oil‐contaminated water, soil, and for oil recovery processes.  相似文献   

8.
There are three mycolic acid homologues with C22-, C24- and C26-α-units in Mycobacterium. In order to reveal the composition and distribution of these homologues in each subclass and molecular species of mycolic acids and to compare them with the composition of constitutive non-polar fatty acids (free and bound forms), we have separated non-polar fatty acids and each subclass of mycolic acids from 21 mycobacterial species by thin-layer chromatography, and analyzed non-polar fatty acid methyl esters by gas chromatography (GC) and the cleavage products of methyl mycolate by pyrolysis GC. We further performed mass chromatographic analysis of trimethylsilyl (TMS) ether derivatives of mycolic acid methyl esters by monitoring [B-29]+ ions (loss of CHO from the α-branched-chain structure of mycolic acids) of m/z 426, 454 and 482 which are attributed to C22-, C24- and C26-α-units of TMS ether derivatives of methyl mycolates, respectively, (Kaneda, K. et al, J. Clin. Microbiol. 24: 1060-1070, 1986). By pyrolysis GC, C22:0, C24:0 and C26:0 fatty acid methyl esters generated by the C2-C3 cleavage of C22-, C24- and C26-α-unit-containing mycolic acid methyl esters, respectively, were detected. Their proportion was almost the same among subclasses of mycolic acids in every Mycobacterium and also similar to the proportion of constitutive non-polar C22:0, C24:0 and C26:0 fatty acids. By mass chromatography, the composition and distribution of C22- and C24-α-unit-containing homologues were revealed to be similar between α- and α'-mycolic acids in every Mycobacterium. We further analyzed in detail M. vaccae and demonstrated that the mass chromatogram of C22-α-unit-containing homologue was analogous in shape to that of the C24-α-unit-containing one, with the latter mass chromatogram being up-shifted from the former by two carbon numbers, in every subclass of α-, α'-, keto and dicarboxy mycolic acids. The present study suggests that the compositions of three homologues of both mycolic acids and constitutive non-polar fatty acids, which are characteristic to each mycobacterial species, may reflect the proportion of the amount of free C22:0, C24:0 and C26:0 fatty acids synthesized in the cell. It is further demonstrated that intermolecular condensation of two fatty acids which become α- and β-units of mycolic acids will occur independently of the carbon chain length or kinds of polar moieties of fatty acids.  相似文献   

9.
In this study, we describe the isolation and identification of a novel long-chain n-alkane degrading strain, Gordonia amicalis LH3. Under aerobic conditions, it utilized approximately 18.0% of paraffin (2% w/v) after 10 day of incubation, and the paraffin compositions of C18∼C24 alkalines were utilized preferentially. Under anaerobic conditions, paraffin utilization was approximately 1/8 that seen under aerobic conditions, and the compositions of C34 and C36 alkalines were utilized preferentially. The effects of salinity, temperature, and biosurfactants on paraffin degradation were also evaluated. The strain was also demonstrated to grow on oil, and decreased oil viscosity by 44.7% and degraded oil by 10.4% under aerobic conditions. Our results indicated that G. amicalis LH3 has potential applications in paraffin control, microbial enhanced oil recovery (MEOR), and the bioremediation of hydrocarbon-polluted environments.  相似文献   

10.
A biosurfactant-producing strain S6 was isolated from oil-containing wastewater and identified as Pseudomonas aeruginosa based on physiological and biochemical tests together with 16S rDNA sequence analysis. Thin layer chromatography (TLC) and high-performance liquid chromatography electrospray ionization mass spectra (HPLC-ESI-MS) worked together to reveal that the strain S6 produced rhamnolipid biosurfactant. Mass spectrometry confirmed the presence of some major components in the rhamnolipid surfactant showing m/z of 675.8, 529.6, 503.3 and 475.4, which corresponded to RhaRhaC10C12:1, RhaC12:1C10, RhaC10C10 and RhaC8C10, respectively. The biosurfactant produced by strain S6 had the ability to decrease the surface tension of water from 72 to 33.9 mN m?1, with the critical micelle concentration (CMC) of 50 mg L?1. Emulsification experiment indicated that this biosurfactant effectively emulsified the crude petroleum and the measurements of surface tension demonstrated that the biosurfactant possessed stable surface activity at variable ranges of pH and salinity. The biosurfactant also exhibited good performance of phenanthrene solubilization with about 23 times higher solubility of phenanthrene in water than the control. Thus, this biosurfactant may have a potential for application in bioremediation of crude oil contamination.  相似文献   

11.
Microbial enhanced oil recovery (MEOR) is an emerging oil extraction technology that utilizes microorganisms to facilitate recovery of crude oil in depleted petroleum reservoirs. In the present study, effects of wheat bran utilization were investigated on stimulation of indigenous MEOR. Biostimulation conditions were optimized with the response surface methodology. The co-application of wheat bran with KNO3 and NH4H2PO4 significantly promoted indigenous MEOR (IMEOR) and exhibited sequential aerobic (O-), facultative (An-) and anaerobic (A0-) metabolic stages. The surface tension of fermented broth decreased by approximately 35%, and the crude oil was highly emulsified. Microbial community structure varied largely among and in different IMEOR metabolic stages. Pseudomonas sp., Citrobacter sp., and uncultured Burkholderia sp. dominated the O-, An- and early A0-stages. Bacillus sp., Achromobacter sp., Rhizobiales sp., Alcaligenes sp. and Clostridium sp. dominated the later A0-stage. This study illustrated occurrences of microbial community succession driven by wheat bran stimulation and its industrial potential.  相似文献   

12.
Microbial enhanced oil recovery (MEOR) refers to the process of using bacterial activities for more oil recovery from oil reservoirs mainly by interfacial tension reduction and wettability alteration mechanisms. Investigating the impact of these two mechanisms on enhanced oil recovery during MEOR process is the main objective of this work. Different analytical methods such as oil spreading and surface activity measurements were utilized to screen the biosurfactant-producing bacteria isolated from the brine of a specific oil reservoir located in the southwest of Iran. The isolates identified by 16S rDNA and biochemical analysis as Enterobacter cloacae (Persian Type Culture Collection (PTCC) 1798) and Enterobacter hormaechei (PTCC 1799) produce 1.53 g/l of biosurfactant. The produced biosurfactant caused substantial surface tension reduction of the growth medium and interfacial tension reduction between oil and brine to 31 and 3.2 mN/m from the original value of 72 and 29 mN/m, respectively. A novel set of core flooding tests, including in situ and ex situ scenarios, was designed to explore the potential of the isolated consortium as an agent for MEOR process. Besides, the individual effects of wettability alteration and IFT reduction on oil recovery efficiency by this process were investigated. The results show that the wettability alteration of the reservoir rock toward neutrally wet condition in the course of the adsorption of bacteria cells and biofilm formation are the dominant mechanisms on the improvement of oil recovery efficiency.  相似文献   

13.
Biosurfactants are surface-active compounds capable of reducing surface tension and interfacial tension. Biosurfactants are produced by various microorganisms. They are promising replacements for chemical surfactants because of biodegradability, nontoxicity, and their ability to be produced from renewable sources. However, a major obstacle in producing biosurfactants at the industrial level is the lack of cost-effectiveness. In the present study, by using corn steep liquor (CSL) as a low-cost agricultural waste, not only is the production cost reduced but a higher production yield is also achieved. Moreover, a response surface methodology (RSM) approach through the Box–Behnken method was applied to optimize the biosurfactant production level. The results found that biosurfactant production was improved around 2.3 times at optimum condition when the CSL was at a concentration of 1.88 mL/L and yeast extract was reduced to 25 times less than what was used in a basic soybean oil medium (SOM). The predicted and experimental values of responses were in reasonable agreement with each other (Pred-R2 = 0.86 and adj-R2 = 0.94). Optimization led to a drop in raw material price per unit of biosurfactant from $47 to $12/kg. Moreover, the biosurfactant product at a concentration of 84 mg/L could lower the surface tension of twice-distilled water from 72 mN/m to less than 28 mN/m and emulsify an equal volume of kerosene by an emulsification index of (E24) 68% in a two-phase mixture. These capabilities made these biosurfactants applicable in microbial enhanced oil recovery (MEOR), hydrocarbon remediation, and all other petroleum industry surfactant applications.  相似文献   

14.
A biosurfactant producing strain, Bacillus subtilis 20B, was isolated from fermented food in India. The strain also showed inhibition of various fungi in in-vitro experiments on Potato Dextrose Agar medium. It was capable of growth at temperature 55 degrees C and salts up to 7%. It utilized different sugars, alcohols, hydrocarbons and oil as a carbon source, with preference for sugars. In glucose based minimal medium it produced biosurfactant which reduced surface tension to 29.5 mN/m, interfacial tension to 4.5 mN/m and gave stable emulsion with crude oil and n-hexadecane. The biosurfactant activity was stable at high temperature, a wide range of pH and salt concentrations for five days. Oil displacement experiments using biosurfactant containing broth in sand pack columns with crude oil showed 30.22% recovery. The possible application of organism as biocontrol agent and use of biosurfactant in microbial enhanced oil recovery (MEOR) is discussed.  相似文献   

15.
Indole 3-acetic acid (IAA) was analyzed in apple, orange, and prune tissue by GC-MS by monitoring the protonated molecular ion of its methyl ester at mass to charge ratio (m/z) 190 together with the major fragment ion at m/z 130 and the corresponding ions from the methyl esters of either [2H4]IAA (m/z 194, 134) or [2H5]IAA (m/z 195, 135). Abscisic acid (ABA) was analyzed by monitoring the major fragment ions of its methyl ester at m/z 261 and m/z 247 and the corresponding ions from the methyl ester of [2H3]ABA (m/z 264, 250). Detection limits for IAA and ABA were 1 and 10 picograms, respectively using standards and 1 nanogram per gram dry weight for both phytohormones in plant tissue.  相似文献   

16.
An efficient biosurfactant-producing strain was isolated and cultured from Dagang oil field (China) using crude oil as sole source of carbon. Based on partial sequenced 16S rDNA analysis, the isolated strain was identified as Pseudomonas aeruginosa SNP0614. The bacterium P. aeruginosa SNP0614 produced a type of biosurfactant with excessive foam-forming properties. After microbial cultivation at 37°C and 150 rpm for 12 h, the produced biosurfactant was found to reduce the surface tension to 25.4 mN/m with critical micelle concentration (CMC) of 45.0 mg/L. After 20 days of incubation, the biosurfactant exhibited 90% emulsification activity (E24) on crude oil. FTIR spectroscopy of extracted biosurfactant indicated the biosurfactant as lipopeptide. The significant synergistic effect between P. aeruginosa SNP0614 and the mixed oildegrading bacteria resulted in increasing n-alkanes degradation rate by 30%. The strain P. aeruginosa SNP0614 represented as a promising biosurfactant producer and could be applied in a variety of biotechnological and industrial processes, particularly in microbial enhanced oil recovery and the bioremediation of oil pollution.  相似文献   

17.
We studied formation and structural features of biosurfactants produced by five oil-degrading Pseudomonas and Rhodococcus strains. These bacteria were found to be capable of intense formation of extracellular glycolipid biosurfactants when grown on mineral salts medium with 2% hexadecane. Under these conditions, the surface tension of the cultures decreased from 77 mN/m to 31–34 mN/m. The strain Rhodococcus sp. S26 forming up to 780 mg glycolipids/l of culture medium proved the most efficient biosurfactant producer. Extracellular glycolipids were purified from the crude extracts by column chromatography. Their structural features were determined by thin layer chromatography and electrospray ionization mass spectrometry. Strains Pseudomonas putida BS3701 and Pseudomonas fluorescens 142NF synthesized a number of glycolipids identified as rhamnolipid B and its homologues. Glycolipids produced by Rhodococcus sp. X5 and Rhodococcus sp. S26 were assigned to trehalose tetraesters.  相似文献   

18.
Sequential fill-and-draw fermentation strategy provides an approach to increase the productivity by replenishing nutrients and minimizing the toxic effects of by-products. In the present work, the same strategy was adopted using lignocellulosic industrial rice-straw C6 hydrolysate stream to produce rhamnolipids from Achromobacter sp. (PS1) in a 6 L bioreactor with a working-volume of 2 L. The production results showed overall rhamnolipid production of 22.03 g/L in 15 days observed at par with 19.35 g/L obtained under shake flask conditions in 18 days. At each sequential feed (2 % sugars), a rise in dissolved oxygen (D.O) concentration was observed in the range between 60–53 % which declined to 47–39 % with consecutive depletion in sugar concentration under no D.O control. For maximum extraction of rhamnolipids from culture broth, the synergistic effect of sweep floc-coagulation using FeCl3 at 0.4 % (w/v) followed by its acidification and solvent extraction was adopted which resulted in maximum recovery of 97.5 % compared to 89.05 % recovery obtained in simply acidification followed by solvent extraction. The characterization of partially purified biosurfactant using tandem-MS revealed six-congeners, Rha-C10-C10 and Rha-Rha-C10-C10 being the most abundant. Oil recovery of 92.21 % from motor-oil impregnated sand using crude rhamnolipid further added the value to the biosurfactant.  相似文献   

19.

Background

Mechlorethamine [ClCH2CH2N(CH3)CH2CH2Cl], a nitrogen mustard alkylating agent, has been proven to form a DNA interstrand crosslink at a cytosine-cytosine (C-C) mismatch pair using gel electrophoresis. However, the atomic connectivity of this unusual crosslink is unknown.

Methodology/Principal Findings

HPLC-UV, MALDI-TOF-MS, and ESI-MS/MS were used to determine the atomic connectivity of the DNA C-C crosslink formed by mechlorethamine, MALDI-TOF-MS of the HPLC-purified reaction product of mechlorethamine with the DNA duplex d[CTCACACCGTGGTTC]•d[GAACCACCGTGTGAG] (underlined bases are a C-C mismatch pair) indicated formation of an interstrand crosslink at m/z 9222.088 [M−2H+Na]+. Following enzymatic digestion of the crosslinked duplex by snake venom phosphodiesterase and calf intestinal phosphatase, ESI-MS/MS indicated the presence of dC-mech-dC [mech = CH2CH2N(CH3)CH2CH2] at m/z 269.2 [M]2+ (expected m/z 269.6, exact mass 539.27) and its hydrolytic product dC-mech-OH at m/z 329.6 [M]+ (expected m/z 329.2). Fragmentation of dC-mech-dC gave product ions at m/z 294.3 and 236.9 [M]+, which are both due to loss of the 4-amino group of cytosine (as ammonia), in addition to dC and dC+HN(CH3)CH = CH2, respectively. The presence of m/z 269.2 [M]2+ and loss of ammonia exclude crosslink formation at cytosine N4 or O2 and indicate crosslinking through cytosine N3 with formation of two quaternary ammonium ions.

Conclusions

Our results provide an important addition to the literature, as the first example of the use of HPLC and MS for analysis of a DNA adduct at the N3 position of cytosine.  相似文献   

20.
In the present study, we studied the activity of human placental alkaline phosphatase (PLAP) constraint in a planar surface in controlled molecular packing conditions. For the first time, Langmuir films (LFs) were prepared by the spreading of purified placental membranes (PPM) on the air–water interface and their stability and rheological properties were studied. LFs exhibited a collapse pressure πC = 48 mN/m, hysteresis during the compression–decompression cycle (C–D), indicating a plastic deformation, and a compressibility modulus (K) compatible with liquid-expanded phases. A phase transition point appeared at πT = 28 mN/m and, following successive C–D, it moved toward lower surface areas and higher K, suggesting the lost of some non-PLAP proteins as components of vesicles that might protrude from the monolayer (confirmed by combining lipid/protein molar ratio analysis, PAGE-SDS and V max). LFs were transferred at 35 mN/m to alkylated glasses to obtain Langmuir-Blodgett films (LB35) the stability of which was confirmed by AFM. The kinetics of p-nitrophenyl phosphate (pNPP) hydrolysis at 37°C catalyzed by PPM was Michaelian and exhibited the thermostability at 60°C typical of PLAP. In LB35, PLAP exhibited a sigmoidal kinetics which resembled the behavior of the partially metalated enzyme but might become from a cross-talk between protein and membrane structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号