首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The use of lactobacilli as probiotics in swine has been gaining attention due to their ability to improve growth performance and carcass quality, prevent gastrointestinal infection and most importantly, their ‘generally recognized as safe’ status. Previous studies support the potential of lactobacilli to regulate host immune systems, enhance gut metabolic capacities and maintain balance in the gut microbiota. Research on swine gut microbiota has revealed complex gut microbial community structure and showed the importance of Lactobacillus to the host's health. However, the species‐ and strain‐specific characteristics of lactobacilli that confer probiotic benefits are still not well understood. The diversity of probiotic traits in a complex gut ecosystem makes it challenging to infer the relationships between specific functions of Lactobacillus sp. and host health. In this review, we provide an overview of how lactobacilli play a pivotal role in the swine gut ecosystem and identify key characteristics that influence gut microbial community structure and the health of pigs. In addition, based on recent and ongoing meta‐omics and omics research on the gut microbiota of pigs, we suggest a workflow combining culture‐dependent and culture‐independent approaches for more effective selection of probiotic lactobacilli.  相似文献   

2.
Nine lactobacilli previously selected for high antagonism against food borne bacterial pathogens were identified via 16S rRNA gene sequencing and screened for probiotic potential for use in poultry production. The lactobacilli were subjected to a subtractive in vitro analysis system using a certified probiotic as reference. This allowed for selection of a milk-derived Lactobacillus plantarum strain, termed TN627. This organic acid-producing bacterium was free of harmful enzymatic activity and sensitive to several antibiotics. It also showed good growth at pH 4 and in the presence of bile. L. plantarum TN627 also exhibited high efficacy of adhesion to chicken enterocytes, which correlated with detecting genes encoding the mucusbinding, adhesion-promoting proteins (Mub and MapA) and the adhesion-like factor EF-Tu, commonly involved in adherence of lactobacilli to mucosal surfaces. Taken together, our findings suggest that TN627 is a promising probiotic candidate with high potential for application as a supplement in the animal feed industry.  相似文献   

3.
Worldwide interest in prebiotics have been increasing extensively both as food ingredients and pharmacological supplements, since they have beneficial properties for human health. Prebiotics not only stimulate the growth of healthy bacteria such as bifidobacteria and lactobacilli in the gut but also increase the resistance towards pathogens. In addition to this, they also act as dietary fiber, an energy source for intestinal cells after converting to short-chain fatty acids, a stimulator of immune systems, sugar replacer etc. Moreover, due to heat resistant properties, they are able to maintain their intact form during the baking process and allow them to be incorporated into every day food products. Thus, they can be interesting and useful ingredients in the development of novel functional foods. This review provides comprehensive information about the different biotechnological techniques employed in the production of prebiotics and their potential applications in different areas.  相似文献   

4.
Metabolic and functional properties of probiotic lactic acid bacteria (LAB) in the human gastro-intestinal ecosystem may be related to certain beneficial health effects. In this study, lactobacilli of either intestinal or fermented food origin were compared in their capability to survive low pH and bile, in their metabolic activity in the presence of bile salts and mucins, as well as in their potential to attach to enterocyte-like CaCO-2 cells. Food fermenting bacteria especially strains of the species Lactobacillus plantarum showed high tolerance to the consecutive exposure to hydrochloric acid (pH 1.5-2.5) and cholic acid (10 mM). Growth in and deconjugation of glycocholic (5 mM) and taurocholic acids (5 mM), as demonstrated for all lactobacilli of intestinal origin, was detected for food fermenting strains of the species L. plantarum, but not L. paracasei and L. sakei. Degradation of mucins was not observed for lactobacilli. Adhesion to the intestinal epithelial cell line CaCO-2 was demonstrated for several food fermenting bacterial strains in vitro. Soluble factors in the spent culture supernatants from intestinal and fermented food lactobacilli but not staphylococci cross reacted and synergized with cell wall components to promote adhesion to CaCO-2 cells. A competitive role of fecal bacteria on the adhesion of lactobacilli to CaCO-2 cells was demonstrated. In conclusion we have shown that metabolic and functional properties of intestinal lactobacilli are also found in certain bacteria of fermented food origin.  相似文献   

5.
Jara S  Sánchez M  Vera R  Cofré J  Castro E 《Anaerobe》2011,17(6):474-477
Milk acts as a mean for transporting many essential substances from the mother to the child. In human beings, milk includes several predominant bacteria, such as staphylococci, streptococci, micrococci, lactobacilli, enterococci, lactococci and bifidobacteria. Besides, its intake favors the predominance of bifidobacteria and lactobacilli in the child’s intestinal microbiota. The present work explores the isolation and selection of lactobacilli strains with probiotic potential, focusing in their degree of hydrophobicity and antagonism against important gastrointestinal nosocomial pathogens. 98 lactobacilli were isolated from 48 breast milk samples, with most strains belonging to the obligately homofermentative group (36.7%). 63% of the isolated strains showed a high degree of hydrophobicity when tested on three solvents and were selected for detecting antimicrobial activity against gastrointestinal pathogens, including Escherichia coli, Shigella spp, Pseudomonas spp and Salmonella spp strains. When applying the agar diffusion test, many isolated strains presented inhibitory activity against pathogenic strains. We observed that: Salmonella enteriditis was the most inhibited pathogen, and the strains with the most inhibitory power were AR2 and O1 (both highly hydrophobic lactic acid bacteria), which showed an opposing effect against all nosocomial pathogens tested. Although more in vitro, in vivo or clinical data would be needed before any conclusion on the probiotic properties of the strains can be drawn, our results demonstrate that some of the tested strains may have good probiotic potential for their inclusion in products targeting infants.  相似文献   

6.
Aims: This study aims to investigate the effect of different kinds of food products enriched with a combination of two potential probiotic strains, Lactobacillus rhamnosus IMC 501® and Lactobacillus paracasei IMC 502®, on bowel habits of healthy adults. Methods and Results: Fifty healthy volunteers took part in a double‐blind placebo probiotic feeding study (25 fed probiotics, 25 fed placebo) for 12 weeks. Each volunteer ingested daily one or more food products enriched with a combination of the two potential probiotic strains (probiotic group) or the same food products without the probiotics (control group). Faecal samples were collected before, at the end and 2 weeks later the intervention period, and some of the main groups of faecal bacteria were enumerated by plate count and real‐time PCR. Questionnaires on bowel habits were submitted to volunteers. After the intervention, a significant increase in faecal lactobacilli and bifidobacteria were observed in the probiotic group, and stool frequency and stool volume were higher in the probiotic group than in the placebo group. Conclusions: Daily consumption of food products enriched with the two potential probiotic strains, Lact. rhamnosus IMC 501® and Lact. paracasei IMC 502®, contributes to improve intestinal microbiota with beneficial properties and enhances bowel habits of healthy adults. Significance and Impact of the Study: The study revealed that Lact. rhamnosus IMC 501® and Lact. paracasei IMC 502® exert a positive effect, in terms of improved bowel habits, on healthy adults.  相似文献   

7.
A method for isolating potential probiotic lactobacilli directly from traditional milk-based foods was developed. The novel digestion/enrichment protocol was set up taking care to minimize the protective effect of milk proteins and fats and was validated testing three commercial fermented milks containing well-known probiotic Lactobacillus strains. Only probiotic bacteria claimed in the label were isolated from two out of three commercial fermented milks. The application of the new protocol to 15 raw milk samples and 6 traditional fermented milk samples made it feasible to isolate 11 potential probiotic Lactobacillus strains belonging to Lactobacillus brevis, Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus johnsonii, Lactobacillus plantarum, Lactobacillus reuteri, and Lactobacillus vaginalis species. Even though further analyses need to ascertain functional properties of these lactobacilli, the novel protocol set-up makes it feasible to isolate quickly potential probiotic strains from traditional milk-based foods reducing the amount of time required by traditional procedures that, in addition, do not allow to isolate microorganisms occurring as sub-dominant populations.  相似文献   

8.
The bile salt hydrolase (Bsh) activity of probiotic bacterium residing in gastrointestinal tract has often being associated with its cholesterol-lowering effects. Hence, Bsh activity was explored in this study as the criterion for the selection of most potential Bsh-active and cholesterol-lowering indigenous Lactobacillus strains. Forty lactobacilli were adjudged Bsh active after a preliminary screening of 102 lactobacilli and occurrence of Bsh activity correlated well with their natural habitats. Of the 40 shortlisted lactobacilli, fifteen putative Lactobacillus strains were selected and further tested for their comparative Bsh activity. In the end, indigenous Lactobacillus plantarum strains Lp91 and Lp21 were emerged as the promising Bsh-active lactobacilli with their substrate preference inclined more towards glycocholate than other bile acid amino conjugates. In addition, strains Lp91 and Lp21 also exhibited significantly high bile salt deconjugation, cholesterol assimilation and cholesterol co-precipitation ability in vitro. In conclusion, indigenous L. plantarum strains Lp91 and Lp21 may be the promising candidate probiotics to elucidate the ecological significance of probiotic Bsh activity in vivo.  相似文献   

9.
Capability to produce antilisterial bacteriocins by lactic acid bacteria (LAB) can be explored by the food industry as a tool to increase the safety of foods. Furthermore, probiotic activity of bacteriogenic LAB brings extra advantages to these strains, as they can confer health benefits to the consumer. Beneficial effects depend on the ability of the probiotic strains to maintain viability in the food during shelf-life and to survive the natural defenses of the host and multiply in the gastrointestinal tract (GIT). This study evaluated the probiotic potential of a bacteriocinogenic Lactobacillus plantarum strain (Lb. plantarum ST16Pa) isolated from papaya fruit and studied the effect of encapsulation in alginate on survival in conditions simulating the human GIT. Good growth of Lb. plantarum ST16Pa was recorded in MRS broth with initial pH values between 5.0 and 9.0 and good capability to survive in pH 4.0, 11.0 and 13.0. Lb. plantarum ST16Pa grew well in the presence of oxbile at concentrations ranging from 0.2 to 3.0%. The level of auto-aggregation was 37%, and various degrees of co-aggregation were observed with different strains of Lb. plantarum, Enterococcus spp., Lb. sakei and Listeria, which are important features for probiotic activity. Growth was affected negatively by several medicaments used for human therapy, mainly anti-inflammatory drugs and antibiotics. Adhesion to Caco-2 cells was within the range reported for other probiotic strains, and PCR analysis indicated that the strain harbored the adhesion genes mapA, mub and EF-Tu. Encapsulation in 2, 3 and 4% alginate protected the cells from exposure to 1 or 2% oxbile added to MRS broth. Studies in a model simulating the transit through the GIT indicated that encapsulated cells were protected from the acidic conditions in the stomach but were less resistant when in conditions simulating the duodenum, jejunum, ileum and first section of the colon. To our knowledge, this is the first report on a bacteriocinogenic LAB isolated from papaya that presents application in food biopreservation and may be beneficial to the consumer health due to its potential probiotic characteristics.  相似文献   

10.
Zhang Y  Zhang L  Du M  Yi H  Guo C  Tuo Y  Han X  Li J  Zhang L  Yang L 《Microbiological research》2011,167(1):27-31
Four lactobacilli strains (Lactobacillus paracasei subp. paracasei M5-L, Lactobacillus rhamnosus J10-L, Lactobacillus casei Q8-L and L. rhamnosus GG (LGG), were systematically assessed for the production of antimicrobial substances active towards Shigella sonnei, Escherichia coli and Salmonella typhimurium. Agar-well assay showed that the four lactobacilli strains displayed strong antibacterial activity towards S. sonnei. The nature of antimicrobial substances was also investigated and shown to be dependent on the production of organic acids, in particular the lactic acid. Time-kill assay showed that the viability of the S. sonnei was decreased by 2.7-3.6logCFU/ml after contact with CFCS (cell-free culture supernatants) of four lactobacilli for 2h, which confirmed the result of the agar-well assay. Further analysis of the organic acid composition in the CFCS revealed that the content of lactic acid range from 227 to 293mM. In addition, the aggregations properties, adherence properties and tolerance to simulated gastrointestinal conditions were also investigated in vitro tests. The result suggested that the M5-L, J10-L and Q8-L strains possess desirable antimicrobial activity towards S. sonnei and probiotic properties as LGG and could be potentially used as novel probiotic strains in the food industry.  相似文献   

11.
The objective of the present study was to characterize lactobacilli isolates from the feces of male Wistar rats. Various physiological features of the candidate probiotic isolates were preliminarily investigated, including tolerance to simulated gastric juice and bile salts, antimicrobial activity, antibiotic susceptibility and in vitro aggregation. Based on their morphological and biochemical characteristics, four potential probiotic isolates (CS2, CS3, CS4, and CS7) were screened. The isolates showed good tolerance to stimulated gastric juice and bile salts. CS4 and CS7 exhibited strong antibacterial activities against the pathogens tested as assessed in neutral pH culture supernatants. All lactobacilli isolates were susceptible to all the tested antibiotics, except vancomycin. Moreover, the isolate CS4 and CS7 were found to possess stronger cell surface traits such as hydrophobicity, auto‐aggregation and co‐aggregation capacity. In addition, CS4 and CS7 had greater β‐galactosidase activities than the others. Biochemical tests and 16S rRNA gene sequencing confirmed that CS2, CS3, CS4 and CS7 are Lactobacillus intestinalis PJ2, L. sakei PJ3, L. helveticus PJ4, and L. plantarum PJ7, respectively. Based on the obtained results, L. helveticus PJ4 and L. plantarum PJ7 are ideal in vitro probiotic candidates and require further in vivo evaluation.  相似文献   

12.
Most probiotic lactobacilli adhere to intestinal surfaces, a phenomenon influenced by free polyunsaturated fatty acids (PUFA). The present study investigated whether free linoleic acid, γ-linolenic acid, arachidonic acid, α-linolenic acid, or docosahexaenoic acid in the growth medium alters the fatty acid composition of lactobacilli and their physical characteristics. The most abundant bacterial fatty acids identified were oleic, vaccenic, and dihydrosterculic acids. PUFA, especially conjugated linoleic acid (CLA) isomers and γ-linolenic, eicosapentaenoic, docosahexaenoic, and α-linolenic acids, also were identified in lactobacilli. When lactobacilli were cultured in MRS broth supplemented with various free PUFA, the incorporation of a given PUFA into bacterial fatty acids was clearly observed. Moreover, PUFA supplementation also resulted in PUFA-dependent changes in the proportions of other fatty acids; major interconversions were seen in octadecanoic acids (18:1), their methylenated derivatives (19:cyc), and CLA. Intermittent changes in eicosapentaenoic acid proportions also were noted. These results were paralleled by minor changes in the hydrophilic or hydrophobic characteristics of lactobacilli, suggesting that PUFA interfere with microbial adhesion to intestinal surfaces through other mechanisms. In conclusion, we have demonstrated that free PUFA in the growth medium induce changes in bacterial fatty acids in relation to the regulation of the degree of fatty acid unsaturation, cyclization, and proportions of CLA and PUFA containing 20 to 22 carbons. The potential role of lactobacilli as regulators of PUFA absorption may represent another means by which probiotics could redirect the delicate balance of inflammatory mediators derived from PUFA within the inflamed intestine.  相似文献   

13.
Megasphaera elsdenii is a Gram-negative ruminal bacterium. It is being investigated as a probiotic supplement for ruminants as it may provide benefits for energy balance and animal productivity. Furthermore, it is of biotechnological interest due to its capability of producing various volatile fatty acids. Here we report the complete genome sequence of M. elsdenii DSM 20460, the type strain for the species.  相似文献   

14.
The implementation of electron beam radiation coupled with the use of probiotics is one of the newest food processing technologies that may be used to ensure food safety and improve shelf life of food products. The purpose of this study was to evaluate the effect of 50–150-Gy electron beam irradiation on the antimicrobial activity of the putative probiotic strain Lactobacillus rhamnosus Vahe. Low-dose electron beam irradiation of lactobacilli cells was performed using the Advanced Research Electron Accelerator Laboratory’s electron accelerator, and the agar well diffusion method and Verhulst logistic function were used to evaluate the effect of radiation on anti–Klebsiella pneumoniae activity of the cell free supernatant of L. rhamnosus Vahe cells in vitro. Our results suggest that 50–150-Gy electron beam irradiation decreases the viability of the investigated lactobacilli, but does not significantly change the probiotic’s activity against K. pneumoniae. Results indicate that the combined use of irradiation and L. rhamnosus Vahe might be suggested for non-thermal food sterilizing technologies.  相似文献   

15.

Purpose of work  

To apply a fluorescent dye as an alternative technique to evaluate the survival of potentially probiotic lactobacilli to bile acids (BA) as first step in the design of probiotic functional foods.  相似文献   

16.
Aims: To investigate the spatial organization of endogenous and exogenously applied Lactobacillus communities at specific locations in the adult gastrointestinal tract of different hosts. Methods and Results: Samples of the human, murine and avian gastrointestinal tract of subjects that received or not received a Lactobacillus probiotic were analysed by fluorescence in situ hybridization (FISH) with rRNA‐targeted probes. High levels of endogenous lactobacilli were observed on the nonsecretory, stratified squamous epithelia present in the forestomach of mice and crop of chickens, respectively. These epithelial associations showed characteristics of bacterial biofilms, i.e. bacteria attached to a surface and embedded in a matrix of extracellular polymeric substances. In other regions of the analysed intestines, lactobacilli seemed to occur mainly as dispersed bacterial cells or as microcolonies. Exogenous administration of a Lactobacillus probiotic did increase the levels of loosely adherent Lactobacillus cells detected. However, the probiotic strains were unable to establish themselves inside the gastrointestinal biofilms. Conclusions: Gastrointestinal biofilms of lactobacilli occur only in specific niches in certain hosts, such as the murine forestomach and avian crop. Significance and Impact of the Study: Biofilm formation by lactobacilli in specific parts of animal gastrointestinal tracts was documented for the first time by FISH.  相似文献   

17.
The wide spread of antimicrobial resistance has urged the need of alternative therapeutic approach. In this context, probiotic lactobacilli have been reported for the prevention and treatment of many gastrointestinal and urogenital infections. However, very little is known about their antagonistic activity against skin pathogens. Accordingly, the present study aimed to investigate the potential of lactobacilli to interfere with pathogenesis features of two antibiotic-resistant skin pathogens, namely methicillin-resistant Staphylococcus aureus and multiple-resistant Pseudomonas aeruginosa. A total of 49 lactobacilli were recovered, identified and tested for their antagonistic activities against the aforementioned pathogens. Of these, eight isolates were capable of blocking the adherence of pathogens to mammalian cells independent of the skin pathogen tested or model adopted. Moreover, three Lactobacillus isolates (LRA4, LC2 and LR5) effectively prevented the pathogen internalization into epithelial cells in addition to potentiating phagocyte-mediated pathogen killing. Interestingly, the lactobacilli LC2, LF9 and LRA4 markedly inhibited the growth of P. aeruginosa and S. aureus isolates in coculture experiments. Besides, the lactobacilli LRA4, LC2, LR5 and LF9 have counteracted pathogen cytotoxicity. Taken together, the present study revealed some inhibitory activities of lactobacilli against two antibiotic-resistant skin pathogens. Moreover, it revealed two lactobacilli, namely LC2 and LRA4, with antagonistic capacity against different virulence determinants of skin pathogens. These lactobacilli are considered promising probiotic candidates that may represent an alternative therapeutic approach for skin infections.  相似文献   

18.
The mechanism by which probiotic lactobacilli affect the immune system is strain specific. As the immune system is a multicompartmental system, each strain has its way to interact with it and induce a visible and quantifiable effect. This review summarizes the interplay existing between the host immune system and probiotic lactobacilli, that is, with emphasis on lactobacilli as a prototype probiotic genus. Several aspects including the bacterial‐host cross‐talk with the mucosal and systemic immune system are presented, as well as short sections on the competing effect towards pathogenic bacteria and their uses as delivery vehicle for antigens.  相似文献   

19.
Aims: Recent evidence suggests that the human gastric microbiota is much more diverse than previously thought. The aim of this study was to assess the potential for isolating lactobacilli from the human stomach. Methods and Results: Lactobacilli were selectively cultured from gastric biopsies from 12 patients undergoing routine endoscopy. Lactobacilli were present in four of 12 biopsies. We isolated, in total 10 different strains representing five species (Lactobacillus gasseri, L. fermentum, L. vaginalis, L. reuteri and L. salivarius). The 10 isolates varied greatly in their ability to inhibit the growth of two Gram‐positive bacteria and two Gram‐negative bacteria. Furthermore, the acid and bile resistance profiles of the 10 isolates spanned a wide range. Conclusions: Five different Lactobacillus species were cultured from human gastric biopsies for the first time. Significance and Impact of the Study: Diverse Lactobacillus species are more prevalent in the human stomach than previously recognized, representing an untapped source of bacteria with beneficial probiotic and/or biotechnological properties.  相似文献   

20.
Utilization of different types of dietary fibres by potential probiotics   总被引:1,自引:0,他引:1  
A better understanding of the functionality of probiotics and dietary fibres with prebiotic activity is required for the development of improved synbiotic preparations. In this study, utilization of β(2-1) fructans, galactooligosaccharides, and plant polysaccharides as prebiotics by lactobacilli, bifidobacteria, and pediococci was investigated. Our results demonstrate that prebiotics with linear chains consisting of galactose units are better utilized by probiotics than are those consisting of glucose and fructose units, and the ability of probiotic bacteria to utilize prebiotics is strain-specific. In addition, rye fructooligosaccharides represent a prebiotic fibre that supports the growth of a wide range of probiotic cultures and as such has a potential to improve the successfulness of probiotic treatments. This study also demonstrates dietary fibre utilization by pediococci and provides data supporting the possible use of pediococci as a probiotic in synbiotic combinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号