首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alzheimer’s disease (AD) belongs to the category of neurodegenerative tauopathies, which are characterized by intracellular and extracellular accumulation of misfolded tau. Structurally, tau belongs to the family of the intrinsically disordered proteins that are characterized by the absence of well-defined three-dimensional structure of the free protein. In the course of neurodegeneration, intrinsically disordered tau protein gains highly ordered misfolded structure. Currently it is widely accepted that misfolded tau proteins represent viable drug target for prospective therapeutic development. Until now several therapeutic approaches targeting misfolded tau were developed. Monoclonal antibodies with chaperone-like activities that would be able to neutralize the toxic gain of function of misfolded tau represent novel promising immunological concept in the treatment of AD. We suggest that antibodies as specific chaperones targeting misfolded proteins may serve as potent therapeutic drugs of AD as well as others conformational diseases.  相似文献   

2.
After protein phosphorylation on certain serine or threonine residues preceding a proline (pSer/Thr-Pro), the function of certain phosphorylated protein is further regulated by cis-trans conformational change. Due to the lack of any tool to detect such two conformations in cells, however, it is not even known whether any cis or trans conformation exists in vivo, not to mention their conformation-specific functions or regulation. We developed a novel peptide chemistry technology to generate the first pair of antibodies that can distinguish cis from trans pThr231-Pro tau. Cis, but not trans, pThr231-tau appears early in mild cognitive impairment (MCI) neurons and further accumulates in only degenerating neurons as Alzheimer disease (AD) progresses, localizing to dystrophic neurites, which are known to correlate well with memory loss. Unlike trans p-tau, the cis cannot promote microtubule assembly, and is more resistant to dephosphorylation and degradation and more prone to aggregation. Pin1 accelerates cis to trans isomerization to prevent tau pathology in AD. Thus, during MCI and AD development, cis pThr231-Pro tau is the earliest detectable pathogenic tau conformation and antibodies and vaccines against the pathogenic cis p-tau may be used for the early diagnosis and treatment of AD. These findings offer in vivo approach to study conformational regulation of Pro-directed phosphorylation signaling.  相似文献   

3.
Mutations in the presenilin 1 (PS1) gene are responsible for the early onset of familial Alzheimer disease (FAD). Accumulating evidence shows that PS1 is involved in gamma-secretase activity and that FAD-associated mutations of PS1 commonly accelerate Abeta(1-42) production, which causes Alzheimer disease (AD). Recent studies suggest, however, that PS1 is involved not only in Abeta production but also in other processes that lead to neurodegeneration. To better understand the causes of neurodegeneration linked to the PS1 mutation, we analyzed the development of tau pathology, another key feature of AD, in PS1 knock-in mice. Hippocampal samples taken from FAD mutant (I213T) PS1 knock-in mice contained hyperphosphorylated tau that reacted with various phosphodependent tau antibodies and with Alz50, which recognizes the conformational change of PHF tau. Some neurons exhibited Congo red birefringence and Thioflavin T reactivity, both of which are histological criteria for neurofibrillary tangles (NFTs). Biochemical analysis of the samples revealed SDS-insoluble tau, which under electron microscopy examination, resembled tau fibrils. These results indicate that our mutant PS1 knock-in mice exhibited NFT-like tau pathology in the absence of Abeta deposition, suggesting that PS1 mutations contribute to the onset of AD not only by enhancing Abeta(1-42) production but by also accelerating the formation and accumulation of filamentous tau.  相似文献   

4.
Recent demonstrations that the secretion, uptake, and interneuronal transfer of tau can be modulated by disease-associated tau modifications suggest that secretion may be an important element in tau-induced neurodegeneration. Here, we show that much of the tau secreted by M1C cells occurs via exosomal release, a widely characterized mechanism that mediates unconventional secretion of other aggregation-prone proteins (α-synuclein, prion protein, and β-amyloid) in neurodegenerative disease. Exosome-associated tau is also present in human CSF samples and is phosphorylated at Thr-181 (AT270), an established phosphotau biomarker for Alzheimer disease (AD), in both M1C cells and in CSF samples from patients with mild (Braak stage 3) AD. A preliminary analysis of proteins co-purified with tau in secreted exosomes identified several that are known to be involved in disease-associated tau misprocessing. Our results suggest that exosome-mediated secretion of phosphorylated tau may play a significant role in the abnormal processing of tau and in the genesis of elevated CSF tau in early AD.  相似文献   

5.
Microtubule-associated protein tau contains a consensus motif for protein kinase B/Akt (Akt), which plays an essential role in anti-apoptotic signaling. The motif encompasses the AT100 double phospho-epitope (Thr212/Ser214), a specific marker for Alzheimer's disease (AD) and other neurodegenerations, raising the possibility that it could be generated by Akt. We studied Akt-dependent phosphorylation of tau protein in vitro. We found that Akt phosphorylated both Thr212 and Ser214 in the longest and shortest tau isoforms as determined using phospho site-specific antibodies against tau. Akt did not phosphorylate other tau epitopes, including Tau-1, AT8, AT180, 12E8 and PHF-1. The Akt-phosphorylated tau retained its initial electrophoretic mobility. Immunoprecipitation studies with phospho-specific Thr212 and Ser214 antibodies revealed that only one of the two sites is phosphorylated per single tau molecule, resulting in tau immunonegative for AT100. Mixed kinase studies showed that prior Ser214 phosphorylation by Akt blocked protein kinase A but not GSK3beta activity. On the other hand, GSK3beta selectively blocked Ser214 phosphorylation, which was prevented by lithium. The results suggest that Akt may be involved in AD-specific phosphorylation of tau at the AT100 epitope in conjunction with other kinases. Our data suggest that phosphorylation of tau by Akt may play specific role(s) in Akt-mediated anti-apoptotic signaling, particularly relevant to AD and other neurodegenerations.  相似文献   

6.
The presence of tangles composed of phosphorylated tau is one of the neuropathological hallmarks of Alzheimer''s disease (AD). Tau, a microtubule (MT)-associated protein, accumulates in AD potentially as a result of posttranslational modifications, such as hyperphosphorylation and conformational changes. However, it has not been fully understood how tau accumulation and phosphorylation are deregulated. In the present study, we identified a novel role of death-associated protein kinase 1 (DAPK1) in the regulation of the tau protein. We found that hippocampal DAPK1 expression is markedly increased in the brains of AD patients compared with age-matched normal subjects. DAPK1 overexpression increased tau protein stability and phosphorylation at multiple AD-related sites. In contrast, inhibition of DAPK1 by overexpression of a DAPK1 kinase-deficient mutant or by genetic knockout significantly decreased tau protein stability and abolished its phosphorylation in cell cultures and in mice. Mechanistically, DAPK1-enhanced tau protein stability was mediated by Ser71 phosphorylation of Pin1, a prolyl isomerase known to regulate tau protein stability, phosphorylation, and tau-related pathologies. In addition, inhibition of DAPK1 kinase activity significantly increased the assembly of MTs and accelerated nerve growth factor-mediated neurite outgrowth. Given that DAPK1 has been genetically linked to late onset AD, these results suggest that DAPK1 is a novel regulator of tau protein abundance, and that DAPK1 upregulation might contribute to tau-related pathologies in AD. Therefore, we offer that DAPK1 might be a novel therapeutic target for treating human AD and other tau-related pathologies.  相似文献   

7.
Berry  R. W.  Sweet  A. P.  Clark  F. A.  Lagalwar  S.  Lapin  B. R.  Wang  T.  Topgi  S.  Guillozet-Bongaarts  A. L.  Cochran  E. J.  Bigio  E. H.  Binder  L.I. 《Brain Cell Biology》2004,33(3):287-295
Filamentous aggregates of the protein tau are a prominent feature of Alzheimer's disease (AD), progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). However, the extent to which the molecular structure of the tau in these aggregates is similar or differs between these diseases is unclear. We approached this question by examining these disorders with a panel of antibodies that represent different structural, conformational, and cleavage-specific tau epitopes. Although each of these antibodies reveals AD pathology, they resolved into three classes with respect to PSP and CBD: AD2 and Tau-46.1 stained the most tau pathology in all cases; Tau-1, 2, 5, and 12 exhibited variable reactivity; and Tau-66 and MN423 did not reveal any tau pathology. In addition, hippocampal neurofibrillary tangles in these cases showed a predominantly PSP/CBD-like, rather than AD-like, staining pattern. These results indicate that the patterns of the tau epitopes represented by this panel that reside in the pathological aggregates of PSP and CBD are similar to each other but distinct from that of AD.  相似文献   

8.
Abnormal phosphorylation and toxicity of a microtubule-associated protein tau are involved in the pathogenesis of Alzheimer's disease (AD); however, what pathological conditions trigger tau abnormality in AD is not fully understood. A reduction in the number of mitochondria in the axon has been implicated in AD. In this study, we investigated whether and how loss of axonal mitochondria promotes tau phosphorylation and toxicity in vivo. Using transgenic Drosophila expressing human tau, we found that RNAi-mediated knockdown of milton or Miro, an adaptor protein essential for axonal transport of mitochondria, enhanced human tau-induced neurodegeneration. Tau phosphorylation at an AD-related site Ser262 increased with knockdown of milton or Miro; and partitioning defective-1 (PAR-1), the Drosophila homolog of mammalian microtubule affinity-regulating kinase, mediated this increase of tau phosphorylation. Tau phosphorylation at Ser262 has been reported to promote tau detachment from microtubules, and we found that the levels of microtubule-unbound free tau increased by milton knockdown. Blocking tau phosphorylation at Ser262 site by PAR-1 knockdown or by mutating the Ser262 site to unphosphorylatable alanine suppressed the enhancement of tau-induced neurodegeneration caused by milton knockdown. Furthermore, knockdown of milton or Miro increased the levels of active PAR-1. These results suggest that an increase in tau phosphorylation at Ser262 through PAR-1 contributes to tau-mediated neurodegeneration under a pathological condition in which axonal mitochondria is depleted. Intriguingly, we found that knockdown of milton or Miro alone caused late-onset neurodegeneration in the fly brain, and this neurodegeneration could be suppressed by knockdown of Drosophila tau or PAR-1. Our results suggest that loss of axonal mitochondria may play an important role in tau phosphorylation and toxicity in the pathogenesis of AD.  相似文献   

9.
EFhd2 is a conserved calcium‐binding protein, abundant within the central nervous system. Previous studies identified EFhd2 associated with pathological forms of tau proteins in the tauopathy mouse model JNPL3, which expresses the human tauP301L mutant. This association was validated in human tauopathies, such as Alzheimer's disease (AD). However, the role that EFhd2 may play in tauopathies is still unknown. Here, we show that EFhd2 formed amyloid structures in vitro, a capability that is reduced by calcium ions. Electron microscopy (EM) analyses demonstrated that recombinant EFhd2 formed filamentous structures. EM analyses of sarkosyl‐insoluble fractions derived from human AD brains also indicated that EFhd2 co‐localizes with aggregated tau proteins and formed granular structures. Immunohistological analyses of brain slices demonstrated that EFhd2 co‐localizes with pathological tau proteins in AD brains, confirming the co‐aggregation of EFhd2 and pathological tau. Furthermore, EFhd2's coiled‐coil domain mediated its self‐oligomerization in vitro and its association with tau proteins in JNPL3 mouse brain extracts. The results demonstrate that EFhd2 is a novel amyloid protein associated with pathological tau proteins in AD brain and that calcium binding may regulate the formation of EFhd2's amyloid structures. Hence, EFhd2 may play an important role in the pathobiology of tau‐mediated neurodegeneration.  相似文献   

10.
The microtubule-associated protein tau is a family of six isoforms that becomes abnormally hyperphosphorylated and accumulates in neurons undergoing neurodegeneration in the brains of patients with Alzheimer disease (AD). We investigated the isoform-specific interaction of normal tau with AD hyperphosphorylated tau (AD P-tau). We found that the binding of AD P-tau to normal human recombinant tau was tau4L > tau4S > tau4 and tau3L > tau3S > tau3, and that its binding to tau4L was greater than to tau3L. AD P-tau also inhibited the assembly of microtubules promoted by each tau isoform and caused disassembly when added to preassembled microtubules. This inhibition and depolymerization of microtubules by the AD P-tau corresponded directly to the degree of its interaction with the different tau isoforms. In vitro hyperphosphorylation of recombinant tau (P-tau) conferred AD P-tau-like characteristics. Like AD P-tau, P-tau interacted with and sequestered normal tau and inhibited microtubule assembly. These studies suggest that the AD P-tau interacts preferentially with the tau isoforms that have the amino-terminal inserts and four microtubule binding domain repeats and that hyperphosphorylation of tau appears to be sufficient to acquire AD P-tau characteristics. Thus, lack of amino-terminal inserts and extra microtubule binding domain repeat in fetal human brain might be protective from Alzheimer's neurofibrillary degeneration.  相似文献   

11.
Neuronal activity can enhance tau release and thus accelerate tauopathies. This activity-dependent tau release can be used to study the progression of tau pathology in Alzheimer''s disease (AD), as hyperphosphorylated tau is implicated in AD pathogenesis and related tauopathies. However, our understanding of the mechanisms that regulate activity-dependent tau release from neurons and the role that tau phosphorylation plays in modulating activity-dependent tau release is still rudimentary. In this study, Drosophila neurons in primary culture expressing human tau (hTau) were used to study activity-dependent tau release. We found that hTau release was markedly increased by 50 mM KCl treatment for 1 h. A similar level of release was observed using optogenetic techniques, where genetically targeted neurons were stimulated for 30 min using blue light (470 nm). Our results showed that activity-dependent release of phosphoresistant hTauS11A was reduced when compared with wildtype hTau. In contrast, release of phosphomimetic hTauE14 was increased upon activation. We found that released hTau was phosphorylated in its proline-rich and C-terminal domains using phosphorylation site-specific tau antibodies (e.g., AT8). Fold changes in detectable levels of total or phosphorylated hTau in cell lysates or following immunopurification from conditioned media were consistent with preferential release of phosphorylated hTau after light stimulation. This study establishes an excellent model to investigate the mechanism of activity-dependent hTau release and to better understand the role of phosphorylated tau release in the pathogenesis of AD since it relates to alterations in the early stage of neurodegeneration associated with increased neuronal activity.  相似文献   

12.
Aggregated and highly phosphorylated tau protein is a pathological hallmark of Alzheimer's disease (AD) and other tauopathies. We identified motifs of alternating polar and apolar amino acids within the microtubule-binding repeats of tau which were interrupted by small breaking stretches. Minimal mutation of these breaking sequences yielded a unique instantly aggregating tau mutant containing longer stretches of polar/apolar amino acids without losing its microtubule-binding capacity. These modifications produced rapid aggregation and cytotoxicity with accompanying occurrence of pathologic tau phosphoepitopes (AT8, AT180, AT270, AT100, Ser(422), and PHF-1) and conformational epitopes (MC-1 and Alz50) in cells. Similar to pathological tau in the pretangle state, toxicity appeared to occur early without the requirement for extensive fibril formation. Thus, our mutant protein provides a novel platform for the investigation of the molecular mechanisms for toxicity and cellular behavior of pathologically aggregated tau proteins and the identification of its interaction partners.  相似文献   

13.
Characteristic tau isoform composition of the insoluble fibrillar tau inclusions define tauopathies, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP) and frontotemporal dementia with parkinsonism linked to chromosome 17/frontotemporal lobar degeneration‐tau (FTDP‐17/FTLD‐tau). Exon 10 splicing mutations in the tau gene, MAPT, in familial FTDP‐17 cause elevation of tau isoforms with four microtubule‐binding repeat domains (4R‐tau) compared to those with three repeats (3R‐tau). On the basis of two well‐characterised monoclonal antibodies against 3R‐ and 4R‐tau, we developed novel, sensitive immuno‐PCR assays for measuring the trace amounts of these isoforms in CSF. This was with the aim of assessing if CSF tau isoform changes reflect the pathological changes in tau isoform homeostasis in the degenerative brain and if these would be relevant for differential clinical diagnosis. Initial analysis of clinical CSF samples of PSP (= 46), corticobasal syndrome (CBS;= 22), AD (= 11), Parkinson's disease with dementia (PDD;= 16) and 35 controls revealed selective decreases of immunoreactive 4R‐tau in CSF of PSP and AD patients compared with controls, and lower 4R‐tau levels in AD compared with PDD. These decreases could be related to the disease‐specific conformational masking of the RD4‐binding epitope because of abnormal folding and/or aggregation of the 4R‐tau isoforms in tauopathies or increased sequestration of the 4R‐tau isoforms in brain tau pathology.  相似文献   

14.
Pinning down phosphorylated tau and tauopathies   总被引:4,自引:0,他引:4  
Neurofibrillary tangles (NFTs) are prominent neuronal lesions in a large subset of neurodegenerative diseases, including Alzheimer's disease (AD). NFTs are mainly composed of insoluble Tau that is hyperphosphorylated on many serine or threonine residues preceding proline (pSer/Thr-Pro). Tau hyperphosphorylation abolishes its biological function to bind microtubules and promotes microtubule assembly and precedes neurodegeneration. Not much is known about how tau is further regulated following phosphorylation. Notably, we have recently shown that phosphorylated Ser/Thr-Pro motifs exist in two distinct conformations. The conversion between two conformations in some proteins is catalyzed by the prolyl isomerase Pin1. Pin1 binds to tau phosphorylated specifically on the Thr231-Pro site and probably catalyzes cis/trans isomerization of pSer/Thr-Pro motif(s), thereby inducing conformational changes in tau. Such conformational changes can directly restore the ability of phosphorylated Tau to bind microtubules and promote microtubule assembly and/or facilitate tau dephosphorylation by its phosphatase PP2A, as PP2A activity is conformation-specific. Furthermore, Pin1 expression inversely correlates with the predicted neuronal vulnerability in normally aged brain and also with actual neurofibrillary degeneration in AD brain. Moreover, deletion of the gene encoding Pin1 in mice causes progressive age-dependent neuropathy characterized by motor and behavioral deficits, tau hyperphosphorylation, tau filament formation and neuronal degeneration. Distinct from all other mouse models where transgenic overexpression of specific proteins elicits tau-related pathologies, Pin1 is the first protein whose depletion causes age-dependent neurodegeneration and tau pathologies. Thus, Pin1 is pivotal in maintaining normal neuronal function and preventing age-dependent neurodegeneration. This could represent a promising interventive target to prevent neurodegenerative diseases.  相似文献   

15.
Alzheimer’s disease (AD) is the leading cause of dementia, a condition that gradually destroys brain cells and leads to progressive decline in mental functions. The disease is characterized by accumulation of misfolded neuronal proteins, amyloid and tau, into insoluble aggregates known as extracellular senile plaques and intracellular neurofibrillary tangles, respectively. However, only tau pathology appears to correlate with the progression of the disease and it is believed to play a central role in the progression of neurodegeneration. In AD, tau protein undergoes various types of posttranslational modifications, most notably hyperphosphorylation and truncation. Using four proteomics approaches we aimed to uncover the key steps leading to neurofibrillary degeneration and thus to identify therapeutic targets for AD. Functional neuroproteomics was employed to generate the first transgenic rat model of AD by expressing a truncated misordered form of tau, “Alzheimer’s tau”. The rat model showed that Alzheimer’s tau toxic gain of function is responsible for the induction of abnormal tau cascade and is the driving force in the development of neurofibrillary degeneration. Structural neuroproteomics allowed us to determine partial 3D structure of the Alzheimer’s filament core at a resolution of 1.6 Å. Signaling neuroproteomics data lead to the identification and characterization of relevant phosphosites (the tau phosphosignalome) contributing to neurodegeneration. Interaction neuroproteomics revealed links to a new group of proteins interacting with Alzheimer’s tau (tau interactome) under normal and pathological conditions, which would provide novel drug targets and novel biomarkers for treatment of AD and other tauopathies.  相似文献   

16.
Tau protein misfolding is a pathological mechanism, which plays a critical role in the etiopathogenesis of neurodegeneration. However, it is not entirely known what kind of stimuli can induce the misfolding. It is believed that physical and emotional stresses belong to such risk factors. Although the influence of stress on the onset and progression of Alzheimer's disease (AD) has already been proposed, the molecular links between stresses and AD are still unknown. We have therefore focused our attention on determination of the influence of acute immobilization stress (IMO) in normal mice and mice deficient in corticotropin-releasing hormone (CRH). Specifically, we have analyzed levels of hyperphosphorylated tau proteins, bearing the AD-specific phospho-epitopes (AT-8, pT181, and PHF-1), which are implicated in the pathogenesis of AD. We found that IMO induces transient hyperphosphorylation of tau proteins regardless of continuation of the stimulus. Concerning tau modifications, detailed analysis of the mouse brain revealed that neurons in different brain regions including frontal cortex, temporal cortex, hippocampal C1 and CA3 regions, dentate gyrus as well as nucleus basalis Meynert, and several brainstem nuclei such as locus coeruleus but also raphe nucleus and substantia nigra respond similarly to IMO. The strongest tau protein phosphorylation was observed after 30?min of IMO stress. Stress lasting for 120?min led either to the disappearance of tau hyperphosphorylation or to the induction of a second wave of hyperphosphorylation. Noteworthy is the magnitude of pathological phosphorylation of tau protein in CRH and glucocorticoids deficient mice, being much lower in comparison to that observed in wild-type animals, which suggests a critical role of CRH in the pathogenesis of AD. Thus, our results indicate that hyperphosphorylation of tau protein induced by stress may represent the pathogenic event upstream of tau protein misfolding, which leads to progression or eventually initiation of neurodegeneration. The data show that CRH plays an important role in stress induced hyperphosphorylation of tau protein, which might be either a direct effect of CRH innervations in the brain or an effect mediated via the hypothalamo-pituitary-adrenal axis.  相似文献   

17.
Zhang YJ  Xu YF  Chen XQ  Wang XC  Wang JZ 《FEBS letters》2005,579(11):2421-2427
Abnormally nitrated tau has been found recently in the neurofibrillary tangles of Alzheimer's disease (AD). However, whether and how nitration of tau is involved in AD pathology is not known. Herein, we found that in vitro incubation of peroxynitrite with recombinant tau resulted in nitration and oligomerization of tau in a dosage-dependent manner. Moreover, the nitrated tau showed a significantly decreased binding activity to taxol-stabilized microtubulesin in vitro. Further study demonstrated that peroxynitrite also induced tau nitration in neuroblastoma N2a cell line, and the nitrated tau was accumulated in the cells. We conclude that abnormal nitration of tau contributes to the impaired biological activity of tau in binding to the microtubules and the aggregation of tau, implying a novel mechanism responsible for the neurodegeneration seen in AD brain.  相似文献   

18.
The accumulation and aggregation of phosphorylated tau proteins in the brain are the hallmarks for the onset of Alzheimer's disease (AD). In addition, disruptions in circadian rhythms (CRs) with altered sleep-wake cycles, dysregulation of locomotion, and increased memory defects have been reported in patients with AD. Drosophila flies that have an overexpression of human tau protein in neurons exhibit most of the symptoms of human patients with AD, including locomotion defects and neurodegeneration. Using the fly model for tauopathy/AD, we investigated the effects of an exposure to dim light at night on AD symptoms. We used a light intensity of 10 lux, which is considered the lower limit of light pollution in many countries. After the tauopathy flies were exposed to the dim light at night for 3 days, the flies showed disrupted CRs, altered sleep-wake cycles due to increased pTau proteins and neurodegeneration, in the brains of the AD flies. The results indicate that the nighttime exposure of tauopathy/AD model Drosophila flies to dim light disrupted CR and sleep-wake behavior and promoted neurodegeneration.  相似文献   

19.
Differential distribution and phosphorylation of tau proteins were studied in developing kitten brain by using several antibodies, and was compared to phosphorylation in Alzheimer's disease. Several antibodies demonstrated the presence of phosphorylated tau proteins during kitten brain development and identified pathological structures in human brain tissue. Antibody AD2, recognized tau in kittens and adult cats, but reacted in Alzheimer's tissue only with a pathological tau form. Antibody AT8 was prominent in developing kitten neurons and was found in axons and dendrites. After the first postnatal month this phosphorylation type disappeared from axons. Furthermore, dephosphorylation of kitten tau with alkaline phosphatase abolished immunoreactivity of AT8, but not that of AD2, pointing to a protection of the AD2 epitope in cats. Tau proteins during early cat brain development are phosphorylated at several sites that are also phosphorylated in paired helical filaments during Alzheimer's disease. In either event, phosphorylation of tau may play a crucial role to modulate microtubule dynamics, contributing to increased microtubule instability and promoting growth of processes during neuronal development or changing dynamic properties of the cytoskeleton and contributing to the formation of pathological structures in neurodegenerative diseases.  相似文献   

20.
Self‐association of proteins can be triggered by a change in the distribution of the conformational ensemble. Posttranslational modification, such as phosphorylation, can induce a shift in the ensemble of conformations. In the brain of Alzheimer's disease patients, the formation of intra‐cellular neurofibrillary tangles deposition is a result of self‐aggregation of hyper‐phosphorylated tau protein. Biochemical and NMR studies suggest that the cis peptidyl prolyl conformation of a phosphorylated threonine‐proline motif in the tau protein renders tau more prone to aggregation than the trans isomer. However, little is known about the role of peptidyl prolyl cis/trans isomerization in tau aggregation. Here, we show that intra‐molecular electrostatic interactions are better formed in the trans isomer. We explore the conformational landscape of the tau segment containing the phosphorylated‐Thr231‐Pro232 motif using accelerated molecular dynamics and show that intra‐molecular electrostatic interactions are coupled to the isomeric state of the peptidyl prolyl bond. Our results suggest that the loss of intra‐molecular interactions and the more restricted conformational ensemble of the cis isomer could favor self‐aggregation. The results are consistent with experiments, providing valuable complementary atomistic insights and a hypothetical model for isomer specific aggregation of the tau protein. Proteins 2015; 83:436–444. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号