首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite their small size and lack of obvious intracellular structures, bacteria have a complex and dynamic intracellular organization. Recent work has shown that many proteins, and even regions of the chromosome, are localized to specific subcellular regions that can change over time, sometimes extraordinarily fast. Protein function can depend on cellular position, so the analysis of the intracellular location of a protein can be crucial for understanding its activity. Because regulatory proteins are among those that reside at specific cellular sites, it is now necessary to consider three-dimensional organization when describing the genetic networks that control bacterial cells.  相似文献   

2.
Proteins on the move: insights gained from fluorescent protein technologies   总被引:1,自引:0,他引:1  
Proteins are always on the move, and this may occur through diffusion or active transport. The realization that the regulation of signal transduction is highly dynamic in space and time has stimulated intense interest in the movement of proteins. Over the past decade, numerous new technologies using fluorescent proteins have been developed, allowing us to observe the spatiotemporal dynamics of proteins in living cells. These technologies have greatly advanced our understanding of protein dynamics, including protein movement and protein interactions.  相似文献   

3.
Membrane proteins that bind and transport lipids face special challenges. Since lipids typically have low water solubility, both accessibility of the substrate to the protein and delivery to the desired destination are problematical. The amphipathic nature of membrane lipids, and their relatively large molecular size, also means that these proteins must possess substrate-binding sites of a different nature than those designed to handle small polar molecules. This review considers two integral proteins whose function is to bind and transfer membrane lipids within or across a membrane. The first protein, MsbA, is a putative lipid flippase that is a member of the ATP-binding cassette (ABC) superfamily. The protein is found in the inner (cytoplasmic) membrane (IM) of Gram-negative bacteria such as E. coli, where it is proposed to move lipid A from the inner to the outer membrane (OM) leaflet, an important step in the lipopolysaccharide biosynthetic pathway. Cholesterol is a major component of the plasma membrane in eukaryotic cells, where it regulates bilayer fluidity. The other lipid-binding protein discussed here, mammalian NPC1 (Niemann-Pick disease, Type C1), binds cholesterol inside late endosomes/lysosomes (LE/LY) and is involved in its transfer to the cytosol as part of a key intracellular sterol-trafficking pathway. Mutations in NPC1 lead to a devastating neurodegenerative condition, Niemann-Pick Type C disease, which is characterized by massive cholesterol accumulation in LE/LY. The accelerating pace of membrane protein structure determination over the past decade has allowed us a glimpse of how lipid binding and transfer by membrane proteins such as MsbA and NPC1 might be achieved.  相似文献   

4.
5.
Wine on the move     
《Current biology : CB》2023,33(7):R239-R241
  相似文献   

6.

Media player


7.
8.
9.
Ub on the move   总被引:4,自引:0,他引:4  
  相似文献   

10.
11.
12.
13.
14.
15.
The Fourth International Conference on the Biology of Butterflies and the Fragland Symposium were held at Leeuwenhorst, The Netherlands, from 23–28 March 2002.  相似文献   

16.
17.
Weissmann C  Li J  Mahal SP  Browning S 《EMBO reports》2011,12(11):1109-1117
Prions consist mainly, if not entirely, of PrP(Sc), an aggregated conformer of the host protein PrP(C). Prions come in different strains, all based on the same PrP(C) sequence, but differing in their conformations. The efficiency of prion transmission between species is usually low, but increases after serial transmission in the new host, suggesting a process involving mutation and selection. Even within the same species, the transfer of prions between cell types entails a selection of favoured 'substrains', and propagation of prions in the presence of an inhibitory drug can result in the appearance of drug-resistant prion populations. We propose that prion populations are comprised of a variety of conformers, constituting 'quasi-species', from which the one replicating most efficiently in a particular environment is selected.  相似文献   

18.
19.
20.
Interactions of mitochondria with the cytoskeleton are crucial for normal mitochondrial function and for localization of the organelle at its sites of action within cells. Early studies revealed a role for microtubule motors in mitochondrial motility in neurons and other cell types. Here, we describe advances in our understanding of mitochondrial movement and distribution. Specifically, we review recent studies on proteins that mediate or regulate the interaction between motor molecules and the organelle, motor-independent mechanisms for mitochondrial motility, anchorage of mitochondria at cortical sites within cells and links between mitochondria-cytoskeleton interactions and mitochondrial plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号