首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We constructed recombinant plasmids carrying the genes coding for the L-threonine biosynthetic enzymes, the hom gene, the hom-thrC genes, and the thrB genes, of a gram-negative obligate methylotroph, Methylobacillus glycogenes, and examined the effects of them on the production of L-threonine from methanol. The hom gene, which encodes the homoserine dehydrogenase, and the hom-thrC genes, containing the gene coding for threonine synthase together with the hom gene, were cloned from a wild-type strain, and the thrB gene encoding the desensitized homoserine kinase was cloned from an L-threonine-producing mutant, ATR80. The recombinant plasmids were transferred into ATR80 and its L-isoleucine auxotroph, A513, by conjugation. Amplification of the genes coding for the L-threonine biosynthetic enzymes elevated the activities of the L-threonine biosynthetic enzymes of the transconjugants 10- to 30-fold over those of the strains containing only vectors. The L-threonine production from methanol in test-tube cultivation was increased about 30% and 40% by the amplification of the hom gene and the hom-thrC gene respectively, and it was slightly increased by that of the thrB gene. The effects of gene amplification were confirmed by the cultivation in 5-1 jar fermentors. The best producer, an A513 transconjugant containing the plasmid carrying the hom-thrC genes, produced 16.3 g/l L-threonine for 72 h.  相似文献   

2.
3.
A 6.5 kb DNA fragment containing the gene (thrC) encoding threonine synthase, the last enzyme of the threonine biosynthetic pathway, has been cloned from the DNA ofBacillus sp. ULM1 by complementation ofEscherichia coli andBrevibacterium lactofermentum thrC auxotrophs. Complementation studies showed that thethrB gene (encoding homoserine kinase) is found downstream from thethrC gene, and analysis of nucleotide sequences indicated that thehom gene (encoding homoserine dehydrogenase) is located upstream of thethrC gene. The organization of this cluster of genes is similar to theBacillus subtilis threonine operon (hom—thrC—thrB). An 1.9 kbBclI, fragment from theBacillus sp. ULM1 DNA insert that complementedthrC mutations both inE. coli and in corynebacteria was sequenced, and an ORF encoding a protein of 351 amino acids was found corresponding to a protein of 37462 Da. ThethrC gene showed a low G+C content (39.4%) and the encoded threonine synthase is very similar to theB. subtilis enzyme. Expression of the 1.9 kbBclI DNA fragment inE. coli minicells resulted in the formation of a 37 kDa protein. The upstream region of this gene shows promoter activity inE. coli but not in corynebacteria. A peptide sequence, including a lysine that is known to bind the pyridoxal phosphate cofactor, is conserved in all threonine synthase sequences and also in the threonine and serine dehydratase genes. Amino acid comparison of nine threonine synthases revealed evolutionary relationships between different groups of bacteria. Dedicated to Dr. J. Spížek on the occasion of his 60th birthday  相似文献   

4.
5.
Summary The hom-thrB operon (homoserine dehydrogenase/homoserine kinase) and the thrC gene (threonine synthase) of Corynebacterium glutamicum ATCC 13 032 and the hom FBR (homoserine dehydrogenase resistant to feedback inhibition by threonine) alone as well as hom FBR-thrB operon of C. glutamicum DM 368-3 were cloned separately and in combination in the Escherichia coli/C. glutamicum shuttle vector pEK0 and introduced into different corynebacterial strains. All recombinant strains showed 8- to 20-fold higher specific activities of homoserine dehydrogenase, homoserine kinase, and/or threonine synthase compared to the respective host. In wild-type C. glutamicum, amplification of the threonine genes did not result in secretion of threonine. In the lysine producer C. glutamicum DG 52-5 and in the lysine-plus-threonine producer C. glutamicum DM 368-3 overexpression of hom-thrB resulted in a notable shift of carbon flux from lysine to threonine whereas cloning of hom FBR-thrB as well as of hom FBR in C. glutamicum DM 368-3 led to a complete shift towards threonine or towards threonine and its precursor homoserine, respectively. Overexpression of thrC alone or in combination with that of hom FBR and thrB had no effect on threonine or lysine formation in all recombinant strains tested. Offprint requests to: B. J. Eikmanns  相似文献   

6.
7.
Matthews  Benjamin F.  Widholm  Jack M. 《Planta》1978,141(3):315-321
Aspartokinase (EC 2.7.2.4), homoserine-dehydrogenase (EC 1.1.1.3) and dihydrodipicolinic-acid-synthase (EC 4.2.1.52) activities were examined in extracts from 1-year-old and 11-year-old cell suspension cultures and whole roots of garden carrot (Daucus carota L.). Aspartokinase activity from suspension cultures was inhibited 85% by 10 mM L-lysine and 15% by 10mM L-threonine. In contrast, aspartokinase activity from whole roots was inhibited 45% by 10 mM lysine and 55% by 10 mM threonine. This difference may be based upon alterations in the ratios of the two forms (lysine-and threonine-sensitive) of aspartokinase, since the activity is consistently inhibited 100% by lysine+threonine. Only one form each of homoserine dehydrogenase and of dihydrodipicolinic acid synthase was found in extracts from cell suspension cultures and whole roots. The regulatory properties of either enzyme were identical from the two sources. In both the direction of homoserine formation and aspartic--semialdehyde formation, homoserine dehydrogenase activities were inhibited by 10mM threonine and 10 mM L-cysteine in the presence of NADH or NADPH. KCl increased homoserine dehydrogenase activity to 185% of control values and increased the inhibitory effect of threonine. Dihydrodipicolinic acid synthase activities from both sources were inhibited over 80% by 0.5 mM lysine. Aspartokinase was less sensitive to inhibition by low concentrations of lysine and threonine than were dihydrodipicolinic acid synthase and homoserine dehydrogenase to inhibition by the respective inhibitors.  相似文献   

8.
The hom-1-thrB operon encodes homoserine dehydrogenase resistant to feedback inhibition by L-threonine and homoserine kinase. Stable expression of this operon has not yet been attained in different Corynebacterium glutamicum strains. We studied the use of chromosomal integration and of a low-copy-number vector for moderate expression of the hom-1-thrB operon to enable an analysis of the physiological consequences of its expression in C. glutamicum. Strains carrying one, two, or three copies of hom-1-thrB were obtained. They showed proportionally increased enzyme activity of feedback-resistant homoserine dehydrogenase and of homoserine kinase. This phenotype was stably maintained in all recombinants for more than 70 generations. In a lysine-producing C. glutamicum strain which does not produce any threonine, expression of one copy of hom-1-thrB resulted in the secretion of 39 mM threonine. Additional copies resulted in a higher, although not proportional, accumulation of threonine (up to 69 mM). This indicates further limitations of threonine production. As the copy number of hom-1-thrB increased, increasing amounts of homoserine (up to 23 mM) and isoleucine (up to 34 mM) were secreted. Determination of the cytosolic concentration of the respective amino acids revealed an increase of intracellular threonine from 9 to 100 mM and of intracellular homoserine from 4 to 74 mM as the copy number of hom-1-thrB increased. These results suggest that threonine production with C. glutamicum is limited by the efflux system for this amino acid. Furthermore, the results show the successful use of moderate and stable hom-1-thrB expression for directing the carbon flux from aspartate to threonine.  相似文献   

9.
10.
氮源对L-苏氨酸发酵的影响   总被引:3,自引:0,他引:3  
以L-苏氨酸生产菌TRFC为供试菌株,研究了氮源对L-苏氨酸发酵的产量和糖酸转化率的影响。首先通过摇瓶实验确定发酵的最佳无机氮源和有机氮源分别为硫酸铵和酵母粉,进一步利用10L罐补料分批发酵确定硫酸铵和酵母粉的最佳用量,继续优化培养条件,采用发酵中后期流加硫酸铵和糖氨混合补料等措施,L-苏氨酸产量得到进一步的提高。在最优发酵条件下,通过10L罐补料分批发酵36h,产酸可达118.9g/L,糖酸转化率为47.6%。  相似文献   

11.
Kang Z  Wang Y  Gu P  Wang Q  Qi Q 《Metabolic engineering》2011,13(5):492-498
5-Aminolevulinic acid (ALA) recently received much attention due to its potential applications in many fields. In this study, we developed a metabolic strategy to produce ALA directly from glucose in recombinant Escherichia coli via the C5 pathway. The expression of a mutated hemA gene, encoding a glutamyl-tRNA reductase from Salmonella arizona, significantly improved ALA production from 31.1 to 176 mg/L. Glutamate-1-semialdehyde aminotransferase from E. coli was found to have a synergistic effect with HemAM from S. arizona on ALA production (2052 mg/L). In addition, we identified a threonine/homoserine exporter in E. coli, encoded by rhtA gene, which exported ALA due to its broad substrate specificity. The constructed E. coli DALA produced 4.13 g/L ALA in modified minimal medium from glucose without adding any other co-substrate or inhibitor. This strategy offered an attractive potential to metabolic production of ALA in E. coli.  相似文献   

12.
Phosphoserine aminotransferase (SerC) from Escherichia coli (E. coli) MG1655 is engineered to catalyze the deamination of homoserine to 4‐hydroxy‐2‐ketobutyrate, a key reaction in producing 1,3‐propanediol (1,3‐PDO) from glucose in a novel glycerol‐independent metabolic pathway. To this end, a computation‐based rational approach is used to change the substrate specificity of SerC from l ‐phosphoserine to l ‐homoserine. In this approach, molecular dynamics simulations and virtual screening are combined to predict mutation sites. The enzyme activity of the best mutant, SerCR42W/R77W, is successfully improved by 4.2‐fold in comparison to the wild type when l ‐homoserine is used as the substrate, while its activity toward the natural substrate l ‐phosphoserine is completely deactivated. To validate the effects of the mutant on 1,3‐PDO production, the “homoserine to 1,3‐PDO” pathway is constructed in E. coli by coexpression of SerCR42W/R77W with pyruvate decarboxylase and alcohol dehydrogenase. The resulting mutant strain achieves the production of 3.03 g L?1 1,3‐PDO in fed‐batch fermentation, which is 13‐fold higher than the wild‐type strain and represents an important step forward to realize the promise of the glycerol‐independent synthetic pathway for 1,3‐PDO production from glucose.  相似文献   

13.
Escherichia coli W was genetically engineered to produce l-alanine as the primary fermentation product from sugars by replacing the native d-lactate dehydrogenase of E. coli SZ194 with alanine dehydrogenase from Geobacillus stearothermophilus. As a result, the heterologous alanine dehydrogenase gene was integrated under the regulation of the native d-lactate dehydrogenase (ldhA) promoter. This homologous promoter is growth-regulated and provides high levels of expression during anaerobic fermentation. Strain XZ111 accumulated alanine as the primary product during glucose fermentation. The methylglyoxal synthase gene (mgsA) was deleted to eliminate low levels of lactate and improve growth, and the catabolic alanine racemase gene (dadX) was deleted to minimize conversion of l-alanine to d-alanine. In these strains, reduced nicotinamide adenine dinucleotide oxidation during alanine biosynthesis is obligately linked to adenosine triphosphate production and cell growth. This linkage provided a basis for metabolic evolution where selection for improvements in growth coselected for increased glycolytic flux and alanine production. The resulting strain, XZ132, produced 1,279 mmol alanine from 120 g l−1 glucose within 48 h during batch fermentation in the mineral salts medium. The alanine yield was 95% on a weight basis (g g−1 glucose) with a chiral purity greater than 99.5% l-alanine. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
The five enzymes responsible for the conversion of L-aspartate to L-threonine in Escherichia coli were purified to homogeneity and subsequently reconstituted in vitro in ratios approximating those found in vivo. 31P NMR was used to conveniently monitor the rates of consumption of the substrates ATP and NADPH, the accumulation of the intermediates beta-aspartyl phosphate and homoserine phosphate, and the formation of the products ADP, NADP+, and Pi in a single experiment. By this method, the flux of aspartic acid through the enzymes of the pathway was monitored in the absence and in the presence of several alternative substrates and inhibitors. Several known antimetabolites were found to be alternative substrates that ultimately became inhibitors of pathway flux. L-threo-3-Hydroxyaspartic acid was converted to 3-hydroxyhomoserine phosphate by the first four enzymes of the pathway. The antimetabolite L-threo-3-hydroxyhomoserine was found to bind to and inhibit aspartokinase-homoserine dehydrogenase I in a cooperative fashion (I 0.5 = 3 mM, nH = 2.5), similar to the action of the allosteric end product inhibitor L-threonine (I 0.5 = 0.36 mM, nH = 2.4). In the presence of the remaining enzymes of the pathway, however, L-threo-3-hydroxyhomoserine was phosphorylated to the apparent ultimate antimetabolite L-threo-3-hydroxyhomoserine phosphate that was a potent inhibitor of threonine synthase and consequently of L-threonine biosynthesis. When aspartic acid alone was examined as a substrate of the enzymes of the pathway, no accumulation of the beta-aspartyl phosphate and homoserine phosphate intermediates was observed. However, in the presence of either 5 mM L-threo-3-hydroxyhomoserine or 5 mM L-threo-3-hydroxyhomoserine phosphate, homoserine phosphate was found to accumulate. In contrast to the homoserine phosphate and 3-hydroxyhomoserine phosphate intermediates, both of which were very stable, the acylphosphate intermediates beta-aspartyl phosphate and beta-3-hydroxyaspartyl phosphate were highly susceptible to hydrolysis, with first-order rate constants of 4.6 X 10(-3) min-1 and 4.5 X 10(-2) min-1 (pH 7.8, 25 degrees C), respectively.  相似文献   

15.
A mutant of Escherichia coli (designated E. coli SBD-76) that utilizes L-threonine as the sole carbon source was isolated. In contrast with levels in extracts of wild-type cells, the levels of threonine dehydrogenase in extracts of this mutant were 100-fold higher than levels of threonine aldolase or degradative threonine dehydratase. Catabolite repression of threonine dehydrogenase was manifested in wild-type, but not SBD-76, cells. For purposes of isolating enzymes, large quantities of SBD-76 cells with the elevated threonine dehydrogenase level could be grown in a fermentor in modified Fraser medium containing 1% glycerol, rather than in the 0.2% L-threonine minimal medium used to isolate the mutant. SBD-76 cells grown on L-threonine excreted glycine and aminoacetone into the medium, and extracts of the mutant strain catalyzed a quantitative conversion of L-threonine to glycine and aminoacetone.  相似文献   

16.
A novel type of threonine-producing strains, dihydrodipicolinate synthase (DPS)-defective mutants of Brevibacterium flavum, was isolated as alpha-amino-beta-hydroxyvaleric acid (AHV)-resistant producers. The third selection markers used were a strong lysine inhibition of threonine production and a lower production of lysine than that of threonine in those derived from strains with feedback-sensitive and-resistant aspartokinase (AK), respectively. The maximum threonine production by these DPS-defective mutants was 13.7 g/l at the optimum concentration of DL-diaminopimelic acid (DAP) in a medium containing 100 g/l of glucose, comparable to that by the previously reported conventional producers with feedback-resistant homoserine dehydrogenase (HD(R)). The DPS-defective mutants with feedback-sensitive AK showed a slow but substantial growth in the absence of DAP and their growth was markedly stimulated by DAP, while those with feedback-resistant AK grew well in the absence of DAP and their growth was not promoted by DAP more than that of the parent strain. DPS-defective mutants with HD(R) were derived from an HD(R) mutant producing 10 g/l of L-threonine and selected as AHV-resistant mutants with a higher productivity. The maximum production was 16 g/l.  相似文献   

17.
The enzymes aspartokinase and homoserine dehydrogenase catalyze the reaction at key branching points in the aspartate pathway of amino acid biosynthesis. Enterococcus faecium has been found to contain two distinct aspartokinases and a single homoserine dehydrogenase. Aspartokinase isozymes eluted on gel filtration chromatography at molecular weights greater than 250,000 and about 125,000. The molecular weight of homoserine dehydrogenase was determined to be 220,000. One aspartokinase isozyme was slightly inhibited by meso-diaminopimelic acid. Another aspartokinase was repressed and inhibited by lysine. Although the level of diaminopimelate-sensitive (DAPs) enzyme was not much affected by growth conditions, the activity of lysine-sensitive (Lyss) aspartokinase disappeared rapidly during the stationary phase and was depressed in rich media. The synthesis of homoserine dehydrogenase was controlled by threonine and methionine. Threonine also inhibited the specific activity of this enzyme. The regulatory properties of aspartokinase isozymes and homoserine dehydrogenase from E. faecium are discussed and compared with those from Bacillus subtilis.  相似文献   

18.
L -Threonine, a kind of essential amino acid, has numerous applications in food, pharmaceutical, and aquaculture industries. Fermentative l -threonine production from glucose has been achieved in Escherichia coli. However, there are still several limiting factors hindering further improvement of l -threonine productivity, such as the conflict between cell growth and production, byproduct accumulation, and insufficient availability of cofactors (adenosine triphosphate, NADH, and NADPH). Here, a metabolic modification strategy of two-stage carbon distribution and cofactor generation was proposed to address the above challenges in E. coli THRD, an l -threonine producing strain. The glycolytic fluxes towards tricarboxylic acid cycle were increased in growth stage through heterologous expression of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and citrate synthase, leading to improved glucose utilization and growth performance. In the production stage, the carbon flux was redirected into l -threonine synthetic pathway via a synthetic genetic circuit. Meanwhile, to sustain the transaminase reaction for l -threonine production, we developed an l -glutamate and NADPH generation system through overexpression of glutamate dehydrogenase, formate dehydrogenase, and pyridine nucleotide transhydrogenase. This strategy not only exhibited 2.02- and 1.21-fold increase in l -threonine production in shake flask and bioreactor fermentation, respectively, but had potential to be applied in the production of many other desired oxaloacetate derivatives, especially those involving cofactor reactions.  相似文献   

19.
Aspartokinase (EC 2.7.2.4) and homoserine dehydrogenase (EC 1.1.1.3) catalyze steps in the pathway for the synthesis of lysine, threonine, and methionine from aspartate. Homoserine dehydrogenase was purified from carrot (Daucus carota L.) cell cultures and portions of it were subjected to amino acid sequencing. Oligonucleotides deduced from the amino acid sequences were used as primers in a polymerase chain reaction to amplify a DNA fragment using DNA derived from carrot cell culture mRNA as template. The amplification product was radiolabelled and used as a probe to identify cDNA clones from libraries derived from carrot cell culture and root RNA. Two overlapping clones were isolated. Together the cDNA clones delineate a 3089 bp long sequence encompassing an open reading frame encoding 921 amino acids, including the mature protein and a long chloroplast transit peptide. The deduced amino acid sequence has high homology with the Escherichia coli proteins aspartokinase I-homoserine dehydrogenase I and aspartokinase II-homoserine dehydrogenase II. Like the E. coli genes the isolated carrot cDNA appears to encode a bifunctional aspartokinase-homoserine dehydrogenase enzyme.Abbreviations AK aspartokinase - HSDH homoserine dehydrogenase - PCR polymerase chain reaction - SDS sodium dodecyl sulfate The mention of vendor or product does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over vendors of similar products not mentioned.  相似文献   

20.
Resume Le travail décrit dans cet article s'appuie sur la théorie du contrôle du métabolisme et a pour but la mesure des coefficients de contrôle des différentes étapes sur le flux de production de thréonine. Le coefficient de contrôle d'une étape sur un flux mesure quantitativement la réponse du flux aux variations de l'étape. Cette notion est donc particulièrement importante aussi bien dans les situations pathologiques (diminution de l'activité d'une étape) qu'en biotechnologies où au contraire les étapes sont amplifiées.La mesure des coefficients de contrôle des étapes d'une chaîne métabolique permet donc de connaître celle(s) dont l'amplification doit entraîner une augmentation concomitante du flux.Nous avons appliqué ces concepts à l'étude de la voie de biosynthèse de la thréonine à partir de l'aspartate.La voie de la biosynthèse de la thréonine à partir de l'aspartate est constituée de cinq étapes catalysées par cinq activités enzymatiques: l'aspartokinase (AK), l'aspartate semi-aldéhyde déshydrogénase (ASA-DH), l'homosérine déshydrogénase (HDH), l'homosérine kinase (HK) et la thréonine synthase (TS).La mesure du coefficient de contrôle de la première étape (AK, insensible à la rétro-inhibition par la thréonine dans la souche étudiée) a montré qu'elle était faiblement contrôlante. L'étude a révélé la présence d'une inhibition jusqu'alors inconnue de l'homosérine kinase par la lysine.Un début de modélisation de cette chaîne de biosynthèse permet d'expliquer les résultats expérimentaux.
This paper deals with the application of the metabolic control theory, especially the measurement of control coefficients, to the threonine pathway inE. coli. The control coefficient of a step on a metabolic flux quantitatively assesses the flux response to the step variations. This concept is particularly relevant both in pathological situations (decrease in the activity of an enzymatic step in the metabolism) and in biotechnologies, where, on the contrary steps are amplified.Measurement of the control coefficients of the steps of a metabolic network makes it possible to know those whose amplification should lead to a simultaneous increase in the fluxes.We have applied these concepts to threonine biosynthesis from aspartate inE. coli. The threonine pathway starting from aspartate involves five steps catalyzed by five enzyme activities: aspartokinase (AK), aspartate-semialdehyde-dehydrogenase (ASA-DH), homoserine dehydrogenase (HDH), homoserine kinase (HK) and hreonine synthetase activity (TS).Measurement of the control coefficient of the first step (AK, insensitive to threonine inhibition in the studied strain) has shown that it controls threonine production weakly. Our study has revealed a hitherto unknown inhibition of homoserine kinase activity by lysine.Mathematical modeling of this metabolic pathway has been undertaken to better understand our experimental results.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号