首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Elevated cellular oxidative stress and oxidative DNA damage are key contributors to impaired cardiac function in diabetes. During chronic inflammation, reactive oxygen species (ROS)-induced lipid peroxidation results in the formation of reactive aldehydes, foremost of which is 4-hydroxy-2-nonenal (4HNE). 4HNE forms covalent adducts with proteins, negatively impacting cellular protein function. During conditions of elevated oxidative stress, oxidative DNA damage such as modification by 8-hydroxydeoxyguanosine (8OHdG) is repaired by 8-oxoguanine glycosylase-1 (OGG-1). Based on these facts, we hypothesized that 4HNE forms adducts with OGG-1 inhibiting its activity, and thus, increases the levels of 8OHG in diabetic heart tissues. To test our hypothesis, we evaluated OGG-1 activity, 8OHG and 4HNE in the hearts of leptin receptor deficient db/db mice, a type-2 diabetic model. We also treated the recombinant OGG-1 with 4HNE to measure direct adduction. We found decreased OGG-1 activity (P > .05), increased 8OHG (P > .05) and increased 4HNE adducts (P > .05) along with low aldehyde dehydrogenase-2 activity (P > .05). The increased colocalization of OGG-1 and 4HNE in cardiomyocytes suggest 4HNE adduction on OGG-1. Furthermore, colocalization of 8OHG and OGG-1 with mitochondrial markers TOM 20 and aconitase, respectively, indicated significant levels of oxidatively-induced mtDNA damage and implicated a role for mitochondrial OGG-1 function. In vitro exposure of recombinant OGG-1 (rOGG-1) with increasing concentrations of 4HNE resulted in a concentration-dependent decrease in OGG-1 activity. Mass spectral analysis of trypsin digests of 4HNE-treated rOGG-1 identified 4HNE adducts on C28, C75, C163, H179, H237, C241, K249, H270, and H282. In silico molecular modeling of 4HNE-K249 OGG-1 and 4HNE-H270 OGG-1 mechanistically supported 4HNE-mediated enzymatic inhibition of OGG-1. In conclusion, these data support the hypothesis that inhibition of OGG-1 by direct modification by 4HNE contributes to decreased OGG-1 activity and increased 8OHG-modified DNA that are present in the diabetic heart.  相似文献   

2.
3.
4.

The identification of informative biomarkers that could predict the treatment response is particularly important in the triple-negative (TN) breast cancer, which is characterized by biological diversity. The aim of this study was to investigate the impact of vascular endothelial growth factor receptor (VEGFR2) expression and its gene polymorphisms on pathologic complete response (pCR) to neoadjuvant chemotherapy (NCT) in Russian patients with TN breast cancer. We performed a retrospective analysis of 70 women with operable TN breast cancer, who underwent NCT with 5-fluorouracil, adriamycin, and cyclophosphamide (FAC) or cyclophosphamide, adriamycin, and capecitabine (CAX) between 2007 and 2013. VEGFR2 expression was evaluated before NCT by immunohistochemistry. TaqMan SNP assays were used for genotyping KDR ??604T>C (rs2071559) and KDR 1192G>A (rs2305948) polymorphisms. The pCR was used as an end-point in the treatment efficacy analysis. In the univariate analysis, the pCR rate was strongly associated with young age (P?=?0.004), high Ki67 expression (P?=?0.012), lymph node negativity (P?=?0.023) as well as with positive VEGFR2 expression (P?=?0.019) and the CAX regimen (P?=?0.005). In the multivariate analysis, only patient’s age (P?=?0.005) and pre-NCT VEGFR2 expression (P?=?0.048) remained significant predictors of pCR. The pCR rate was higher in the CAX-treated patients than that in the FAC-treated patients (P?=?0.005). Our results revealed that ??604TT genotype of rs2071559 and age <?50 years were correlated with a pCR in the CAX-treated patients. VEGFR2 expression in pre-NCT tumors and KDR gene polymorphism can be considered as additional predictive molecular markers of pCR in Russian TN breast cancer patients treated with NCT.

  相似文献   

5.
Oxidative stress in cells and tissues leads to the formation of an assortment of lipid electrophiles, such as the quantitatively important 4-hydroxy-2-trans-nonenal (HNE). Although this cytotoxic aldehyde is atherogenic the mechanisms involved are unclear. We hypothesize that elevated HNE levels can directly inactivate esterase and lipase activities in macrophages via protein adduction, thus generating a biochemical lesion that accelerates foam cell formation and subsequent atherosclerosis. In the present study we examined the effects of HNE treatment on esterase and lipase activities in human THP1 monocytes/macrophages at various physiological scales (i.e., pure recombinant enzymes, cell lysate, and intact living cells). The hydrolytic activities of bacterial and human carboxylesterase enzymes (pnbCE and CES1, respectively) were inactivated by HNE in vitro in a time- and concentration-dependent manner. In addition, so were the hydrolytic activities of THP1 cell lysates and intact THP1 monocytes and macrophages. A single lysine residue (Lys105) in recombinant CES1 was modified by HNE via a Michael addition reaction, whereas the lone reduced cysteine residue (Cys389) was found unmodified. The lipolytic activity of cell lysates and intact cells was more sensitive to the inhibitory effects of HNE than the esterolytic activity. Moreover, immunoblotting analysis using HNE antibodies confirmed that several cellular proteins were adducted by HNE following treatment of intact THP1 monocytes, albeit at relatively high HNE concentrations (>50 μM). Unexpectedly, in contrast to CES1, the treatment of a recombinant human CES2 with HNE enhanced its enzymatic activity ∼3-fold compared to untreated enzyme. In addition, THP1 monocytes/macrophages can efficiently metabolize HNE, and glutathione conjugation of HNE is responsible for ∼43% of its catabolism. The functional importance of HNE-mediated inactivation of cellular hydrolytic enzymes with respect to atherogenesis remains obscure, although this study has taken a first step toward addressing this important issue by examining the potential of HNE to inhibit this biochemical activity in a human monocyte/macrophage cell line.  相似文献   

6.
Cell signalling governs cellular behaviour and is therefore subject to tight spatiotemporal regulation. Signalling output is modulated by specialized cell membranes and vesicles which contain unique combinations of lipids and proteins. The phosphatidylinositol 4,5‐bisphosphate (PI(4,5)P2), an important component of the plasma membrane as well as other subcellular membranes, is involved in multiple processes, including signalling. However, which enzymes control the turnover of non‐plasma membrane PI(4,5)P2, and their impact on cell signalling and function at the organismal level are unknown. Here, we identify Paladin as a vascular PI(4,5)P2 phosphatase regulating VEGFR2 endosomal signalling and angiogenesis. Paladin is localized to endosomal and Golgi compartments and interacts with vascular endothelial growth factor receptor 2 (VEGFR2) in vitro and in vivo. Loss of Paladin results in increased internalization of VEGFR2, over‐activation of extracellular regulated kinase 1/2, and hypersprouting of endothelial cells in the developing retina of mice. These findings suggest that inhibition of Paladin, or other endosomal PI(4,5)P2 phosphatases, could be exploited to modulate VEGFR2 signalling and angiogenesis, when direct and full inhibition of the receptor is undesirable.  相似文献   

7.
Ethanol exerts numerous pharmacological effects through its interaction with various neurotransmitters. The dopaminergic pathway is associated with cognitive, endocrine, and motor functions, and reinforcement of addictive substances or behaviours. Aldehyde dehydrogenase (ALDH) is a vital enzyme involved with alcohol metabolism and detoxification. In the present study, we investigated the role of cerebral cortex and brain stem dopamine D2 receptors in the functional regulation on ALDH enzyme activity, in ethanol administrated rats. Two groups of rats were selected viz. control and alcoholic. Cerebral cortex, brain stem and the liver dopamine content was decreased significantly (P < 0.05, 0.05, 0.001, respectively) and homovanillic acid/dopamine (HVA/DA) ratio has significantly increased (P < 0.05, 0.001 and 0.001), respectively in ethanol treated rats when compared to control. Scatchard analysis of [3H]YM-09151-2 binding to synaptic membrane preparations of cerebral cortex and brain stem showed a significant decrease (P < 0.001, 0.05, respectively) in B max in ethanol treated rats compared to control and the K d also decreased significantly (P < 0.05). The ALDH analysis showed a significant increase (P < 0.05) in V max in cerebral cortex, plasma and liver of experimental rats when compared with control without having significant change in brain stem but with decreased K m (P < 0.001). Our results suggest that decreased function of dopamine mediated through DA D2 receptor in the cerebral cortex and brain stem enhanced the brain, plasma and liver ALDH activity in ethanol treated rats. This ALDH regulation has significance to correct alcoholics from addiction due to allergic reaction observed in aldehyde accumulation.  相似文献   

8.
Postinfarction left ventricular remodeling leads to the functional decline of the left ventricle (LV). Since dihydropyridine receptor (DHPR), ryanodine receptor (RyR2), and sarco-endoplasmic reticulum (SR) Ca2+-ATPase2 (SERCA2a) play a major role in the contractility of the heart, the aim of our study was to evaluate the time course of changes in the expression of these proteins 1 day, 2 weeks and 4 weeks after myocardial infarction (MI). Myocardial infarction was produced by ligation of left anterior descending coronary artery of the rat. Transthoracic echocardiography was performed to characterize structural and functional changes after MI. To evaluate protein mRNA levels and the relative amount of proteins, real-time quantitative RT-PCR and Western blotting were used. LV ejection fraction and fractional shortening decreased significantly during the 4-week follow-up period (P < 0.001). Typical features of LV remodeling after MI were seen, with a decrease in anterior wall thickness (P < 0.001) and dilatation of the LV (P < 0.001). Expression of DHPR and RyR2 mRNAs decreased and Serca2a mRNA tended to decrease 1 day after MI (P < 0.001, P < 0.01 and P = 0.06, respectively), followed by recovery of the expression during the next 4 weeks. In the infarcted hearts the quantities of SERCA2 proteins in the LV were significantly decreased at the time of 4 weeks. In conclusion, MI was associated with transient decrease in the expression of the DHPR and RyR2 mRNAs and a reduced quantity of SERCA2 proteins in the LV. Since they have a key role in the contraction of the heart, changes in the expression of these proteins may be important regulators of LV systolic function after MI.  相似文献   

9.
Elevated levels of 4-hydroxy-trans-2-nonenal (HNE) are implicated in the pathogenesis of numerous neurodegenerative disorders. Although well-characterized in the periphery, the mechanisms of detoxification of HNE in the CNS are unclear. HNE is oxidized to a non-toxic metabolite in the rat cerebral cortex by mitochondrial aldehyde dehydrogenases (ALDHs). Two possible ALDH enzymes which might oxidize HNE in CNS mitochondria are ALDH2 and succinic semialdehyde dehydrogenase (SSADH/ALDH5A). It was previously established that hepatic ALDH2 can oxidize HNE. In this work, we tested the hypothesis that SSADH oxidizes HNE. SSADH is critical in the detoxification of the GABA metabolite, succinic semialdehyde (SSA). Recombinant rat SSADH oxidized HNE and other alpha,beta-unsaturated aldehydes. Inhibition and competition studies in rat brain mitochondria showed that SSADH was the predominant oxidizing enzyme for HNE but only contributed a portion of the total oxidizing activity in liver mitochondria. In vivo administration of diethyldithiocarbamate (DEDC) effectively inhibited (86%) ALDH2 activity but not HNE oxidation in liver mitochondria. The data suggest that a relationship between the detoxification of SSA and the neurotoxic aldehyde HNE exists in the CNS. Furthermore, these studies show that multiple hepatic aldehyde dehydrogenases are able to oxidize HNE.  相似文献   

10.
Angiogenesis is essential to tumour progression and a precise evaluation of angiogenesis is important for tumour early diagnosis and treatment. The quantitative and dynamic in vivo assessment of tumour angiogenesis can be achieved by molecular magnetic resonance imaging (mMRI). Vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) are the main regulatory systems in angiogenesis and have been used as hot targets for radionuclide‐based molecular imaging. However, little research has been accomplished in targeting VEGF/VEGFRs by mMRI. In our study, we aimed to assess the expression of VEGFR2 in C6 gliomas by using a specific molecular probe with mMRI. The differential uptake of the probe conjugated to anti‐VEGFR2 monoclonal antibody, shown by varied increases in T1 signal intensity during a 2 hr period, demonstrated the heterogeneous expression of VEGFR2 in different tumour regions. Microscopic fluorescence imaging, obtained for the biotin group in the probe with streptavidin‐Cy3, along with staining for cellular VEGFR2 levels, laminin and CD45, confirmed the differential distribution of the probe which targeted VEGFR2 on endothelial cells. The angiogenesis process was also assessed using magnetic resonance angiography, which quantified tumour blood volume and provided a macroscopic view and a dynamic change of the correlation between tumour vasculature and VEGFR2 expression. Together these results suggest mMRI can be very useful in assessing and characterizing the expression of specific angiogenic markers in vivo and help evaluate angiogenesis associated with tumour progression.  相似文献   

11.
Blood vessel expansion and reduction in the corpus luteum (CL) is regulated by the vascular endothelial growth factor (VEGF) system and linked to the maintenance of the CL. The VEGF system has both angiogenic and antiangiogenic ligands and receptors. Our objective was to evaluate the relationship between the mRNA expression of angiogenic and antiangiogenic members of the VEGF system in the CL, throughout the luteal phase of the oestrous cycle in cows. The CL of 18 cows were collected by transvaginal surgery on days 4, 6, 9, 12, 15 and 18 of the oestrous cycle and the mRNA expression of VEGF system components was evaluated by quantitative real-time PCR. The mRNA expression of VEGF ligands and receptors increased (P<0.05) from the early- and mid-luteal phase (days 4 to 12) reaching its maximum expression on day 15 of the cycle. We found no expression of VEGF164b throughout the cycle. Expression of sVEGFR1 did not change during the oestrous cycle and exceeded that of the VEGFR1 by 100 times. Nonetheless, as VEGFR1 increased, the relationship between the soluble and membrane receptor decreased (P<0.01). In contrast, the expression of VEGFR2 was higher than that of its soluble isoform for all days studied, however, the ratio between the membrane-bound and its soluble counterpart decreased continuously throughout the cycle (P<0.01). Our results show that the expression levels for VEGF ligands, receptors and their antagonistic counterparts are adjusted during CL development and regression, to upregulate angiogenesis early in the oestrous cycle and restrict it at the time of luteolysis.  相似文献   

12.

Aim

Accumulating evidence suggests that extracellular galectin-1 and galectin-3 promote angiogenesis. Increased expression of galectin-1 and/or galectin-3 has been reported to be associated with tumour progression. Thus, it is critical to identify their influence on angiogenesis.

Methods

We examined the individual and combined effects of galectin-1 and galectin-3 on endothelial cell (EC) growth and tube formation using two EC lines, EA.hy926 and HUVEC. The activation of vascular endothelial growth factor receptors (VEGFR1 and VEGFR2) was determined by ELISA and Western blots. We evaluated the VEGFR1 and VEGFR2 levels in endosomes by proximity ligation assay.

Results

We observed different responses to exogenous galectins depending on the EC line. An enhanced effect on EA.hy926 cell growth and tube formation was observed when both galectins were added together. Focusing on this enhanced effect, we observed that together galectins induced the phosphorylation of both VEGFR1 and VEGFR2, whereas galectin-1 and −3 alone induced VEGFR2 phosphorylation only. In the same way, the addition of a blocking VEGFR1 antibody completely abolished the increase in tube formation induced by the combined addition of both galectins. In contrast, the addition of a blocking VEGFR2 antibody only partially inhibited this effect. Finally, the addition of both galectins induced a decrease in the VEGFR1 and VEGFR2 endocytic pools, with a significantly enhanced effect on the VEGFR1 endocytic pool. These results suggest that the combined action of galectin-1 and galectin-3 has an enhanced effect on angiogenesis via VEGFR1 activation, which could be related to a decrease in receptor endocytosis.  相似文献   

13.
Dopamine D2 receptors are involved in ethanol self- administration behavior and also suggested to mediate the onset and offset of ethanol drinking. In the present study, we investigated dopamine (DA) content and Dopamine D2 (DA D2) receptors in the hypothalamus and corpus striatum of ethanol treated rats and aldehyde dehydrogenase (ALDH) activity in the liver and plasma of ethanol treated rats and in vitro hepatocyte cultures. Hypothalamic and corpus striatal DA content decreased significantly (P < 0.05, P < 0.001 respectively) and homovanillic acid/dopamine (HVA/DA) ratio increased significantly (P < 0.001) in ethanol treated rats when compared to control. Scatchard analysis of [3H] YM-09151-2 binding to DA D2 receptors in hypothalamus showed a significant increase (P < 0.001) in Bmax without any change in Kd in ethanol treated rats compared to control. The Kd of DA D2 receptors significantly decreased (P < 0.05) in the corpus striatum of ethanol treated rats when compared to control. DA D2 receptor affinity in the hypothalamus and corpus striatum of control and ethanol treated rats fitted to a single site model with unity as Hill slope value. The in vitro studies on hepatocyte cultures showed that 10−5 M and 10−7 M DA can reverse the increased ALDH activity in 10% ethanol treated cells to near control level. Sulpiride, an antagonist of DA D2, reversed the effect of dopamine on 10% ethanol induced ALDH activity in hepatocytes. Our results showed a decreased dopamine concentration with enhanced DA D2 receptors in the hypothalamus and corpus striatum of ethanol treated rats. Also, increased ALDH was observed in the plasma and liver of ethanol treated rats and in vitro hepatocyte cultures with 10% ethanol as a compensatory mechanism for increased aldehyde production due to increased dopamine metabolism. A decrease in dopamine concentration in major brain regions is coupled with an increase in ALDH activity in liver and plasma, which contributes to the tendency for alcoholism. Since the administration of 10−5 M and 10−7 M DA can reverse the increased ALDH activity in ethanol treated cells to near control level, this has therapeutic application to correct ethanol addicts from addiction due to allergic reaction observed in aldehyde accumulation.  相似文献   

14.
15.
16.
Reactive oxygen species (ROS), in particular, H2O2, is essential for full activation of VEGF receptor2 (VEGFR2) signaling involved in endothelial cell (EC) proliferation and migration. Extracellular superoxide dismutase (ecSOD) is a major secreted extracellular enzyme that catalyzes the dismutation of superoxide to H2O2, and anchors to EC surface through heparin-binding domain (HBD). Mice lacking ecSOD show impaired postnatal angiogenesis. However, it is unknown whether ecSOD-derived H2O2 regulates VEGF signaling. Here we show that gene transfer of ecSOD, but not ecSOD lacking HBD (ecSOD-ΔHBD), increases H2O2 levels in adductor muscle of mice, and promotes angiogenesis after hindlimb ischemia. Mice lacking ecSOD show reduction of H2O2 in non-ischemic and ischemic limbs. In vitro, overexpression of ecSOD, but not ecSOD-ΔHBD, in cultured medium in ECs enhances VEGF-induced tyrosine phosphorylation of VEGFR2 (VEGFR2-pY), which is prevented by short-term pretreatment with catalase that scavenges extracellular H2O2. Either exogenous H2O2 (<500 µM), which is diffusible, or nitric oxide donor has no effect on VEGF-induced VEGFR2-pY. These suggest that ecSOD binding to ECs via HBD is required for localized generation of extracellular H2O2 to regulate VEGFR2-pY. Mechanistically, VEGF-induced VEGFR2-pY in caveolae/lipid rafts, but non-lipid rafts, is enhanced by ecSOD, which localizes at lipid rafts via HBD. One of the targets of ROS is protein tyrosine phosphatases (PTPs). ecSOD induces oxidation and inactivation of both PTP1B and DEP1, which negatively regulates VEGFR2-pY, in caveolae/lipid rafts, but not non-lipid rafts. Disruption of caveolae/lipid rafts, or PTPs inhibitor orthovanadate, or siRNAs for PTP1B and DEP1 enhances VEGF-induced VEGFR2-pY, which prevents ecSOD-induced effect. Functionally, ecSOD promotes VEGF-stimulated EC migration and proliferation. In summary, extracellular H2O2 generated by ecSOD localized at caveolae/lipid rafts via HBD promotes VEGFR2 signaling via oxidative inactivation of PTPs in these microdomains. Thus, ecSOD is a potential therapeutic target for angiogenesis-dependent cardiovascular diseases.  相似文献   

17.
4-Hydroxynonenal (HNE) has been widely implicated in the mechanisms of oxidant-induced toxicity, but the detrimental effects of HNE associated with DNA damage or cell cycle arrest have not been thoroughly studied. Here we demonstrate for the first time that HNE caused G2/M cell cycle arrest of hepatocellular carcinoma HepG2 (p53 wild type) and Hep3B (p53 null) cells that was accompanied with decreased expression of CDK1 and cyclin B1 and activation of p21 in a p53-independent manner. HNE treatment suppressed the Cdc25C level, which led to inactivation of CDK1. HNE-induced phosphorylation of Cdc25C at Ser-216 resulted in its translocation from nucleus to cytoplasm, thereby facilitating its degradation via the ubiquitin-mediated proteasomal pathway. This phosphorylation of Cdc25C was regulated by activation of the ataxia telangiectasia and Rad3-related protein (ATR)/checkpoint kinase 1 (Chk1) pathway. The role of HNE in the DNA double strand break was strongly suggested by a remarkable increase in comet tail formation and H2A.X phosphorylation in HNE-treated cells in vitro. This was supported by increased in vivo phosphorylation of H2A.X in mGsta4 null mice that have impaired HNE metabolism and increased HNE levels in tissues. HNE-mediated ATR/Chk1 signaling was inhibited by ATR kinase inhibitor (caffeine). Additionally, most of the signaling effects of HNE on cell cycle arrest were attenuated in hGSTA4 transfected cells, thereby indicating the involvement of HNE in these events. A novel role of GSTA4-4 in the maintenance of genomic integrity is also suggested.  相似文献   

18.
Increase in 4‐hydroxy‐2‐nonenal (4HNE) due to oxidative stress has been observed in a variety of cardiac diseases such as diabetic cardiomyopathy. 4HNE exerts a damaging effect in the myocardium by interfering with subcellular organelles like mitochondria by forming adducts. Therefore, we hypothesized that increased 4HNE adduct formation in the heart results in proteasome inactivation in isoproterenol (ISO)‐infused type 1 diabetes mellitus (DM) rats. Eight‐week‐old male Sprague Dawley rats were injected with streptozotocin (STZ, 65 mg kg?1). The rats were infused with ISO (5 mg kg?1) for 2 weeks by mini pumps, after 8 weeks of STZ injection. We studied normal control (n = 8) and DM + ISO (n = 10) groups. Cardiac performance was assessed by echocardiography and Millar catheter at the end of the protocol at 20 weeks. Initially, we found an increase in 4HNE adducts in the hearts of the DM + ISO group. There was also a decrease in myocardial proteasomal peptidase (chymotrypsin and trypsin‐like) activity. Increases in cardiomyocyte area (446 ± 32·7 vs 221 ± 10·83) (µm2), per cent area of cardiac fibrosis (7·4 ± 0·7 vs 2·7 ± 0·5) and cardiac dysfunction were also found in DM + ISO (P < 0·05) relative to controls. We also found increased 4HNE adduct formation on proteasomal subunits. Furthermore, reduced aldehyde dehydrogenase 2 activity was observed in the myocardium of the DM + ISO group. Treatment with 4HNE (100 μM) for 4 h on cultured H9c2 cardiomyocytes attenuated proteasome activity. Therefore, we conclude that the 4HNE‐induced decrease in proteasome activity may be involved in the cardiac pathology in STZ‐injected rats infused with ISO. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The sirtuin SIRT1 is an important regulator of energy metabolism through its impact on glucose and lipid metabolism and therefore we tested the hypothesis that genetic variation in SIRT1 may have an effect on adiposity in a Belgian case/control association study. This study included 1,068 obese patients (BMI ≥ 30 kg/m2) from the outpatient obesity clinic and 313 lean controls (BMI between 18.5 and 25 kg/m2). Anthropometrics were assessed by classical methods and visceral (VFA), subcutaneous (SFA) and total abdominal (TFA) fat areas were determined by a CT scan. The extent of linkage disequilibrium in SIRT1 allowed us to reduce the number of SNPs to two, sufficient to cover the entire gene. The two tagSNPs (rs7069102 and rs3818292) were analyzed by LightSNiP assays in all subjects. Rs3818292 genotypes were similarly distributed in cases and controls, whereas rs7069102 was different for the additive (P = 0.007) and dominant (P = 0.01) model. The variant C-allele of rs7069102 reduced obesity risk with an OR of 0.74 (P = 0.025; 95% CI 0.57–0.96) under a dominant model. In obese male subjects, this variant allele was associated with increased waist circumference (P = 0.04), WHR (P = 0.02), TFA (P = 0.03) and VFA (P = 0.005) (dominant model; adjusted for age and BMI). Rs3818292 was related to VFA (P = 0.005; adjusted for age and BMI) in obese males while in obese women, no significant associations were detected. Our data suggest that genetic variation in SIRT1 increases the risk for obesity, and that SIRT1 genotype correlates with visceral obesity parameters in obese men. A. V. Peeters and S. Beckers have contributed equally to this work.  相似文献   

20.
Vascular endothelial growth factor receptor‐2 (VEGFR‐2) plays an important role in both vasculogenesis and angiogenesis. Inhibition of VEGFR‐2 has been demonstrated as a key method against tumor‐associated angiogenesis. Thiazolopyrimidine is an important analog of the purine ring, and we choose the thiazolopyrimidine scaffold as the mother nucleus. Two series of thiazolo[5,4‐d]pyrimidine derivatives were synthesized and evaluated for their antiproliferative activity. In HUVEC inhibition assay, compounds 3l (=1‐(5‐{[2‐(4‐chlorophenyl)‐5‐methyl[1,3]thiazolo[5,4‐d]pyrimidin‐7‐yl]amino}pyridin‐2‐yl)‐3‐(3,4‐dimethylphenyl)urea) and 3m (=1‐(5‐{[2‐(4‐chlorophenyl)‐5‐methyl[1,3]thiazolo[5,4‐d]pyrimidin‐7‐yl]amino}pyridin‐2‐yl)‐3‐(4‐methoxyphenyl)urea) exhibited the most potent inhibitory effect (IC50=1.65 and 3.52 μm , respectively). Compound 3l also showed the best potency against VEGFR‐2 at 50 μm (98.5 %). These results suggest that further investigation of compound 3l might provide potential angiogenesis inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号