首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromoblastomycosis is a chronic and progressive deep mycosis that is usually found in tropical and subtropical areas. Fonsecaea pedrosoi is considered its most frequent etiologic agent and causes a typical granulomatous inflammatory response, whose degree reflects the immune status of the host. Since macrophages play a fundamental role in the control of the infection, this study aimed at investigating the production of oxygen reactive specimens, the phagocytic capacity and the production of nitric oxide (NO) by macrophages employing in vitro assays and an in vivo model of chromoblastomycosis. Our results demonstrated that, during the infection, peritoneal macrophages show an increased phagocytic capacity and H2O2 production, but also a reduced ability to produce NO. Moreover, F. pedrosoi stimulated H2O2 production in vitro but not the synthesis of NO. The incubation of IFNγ and LPS-stimulated macrophages with melanin, obtained from the fungus, inhibited NO production. Examination of the liver and spleen of infected animals, at day 30 or 60 following inoculation, showed a progressive increase in the number and size of granulomas, indicating that macrophages are properly mobilized and activated. Our data suggest that the inability of the host to clear F. pedrosoi, leading to a chronic disease, is due, at least in part, to the inhibition of NO synthesis by macrophages by fungus-produced melanin.  相似文献   

2.
In an attempt to elucidate the effects of Sporothrix schenckii infection on the immune response, our laboratory has developed a murine model of disseminated sporotrichosis. Helper T cells can be further subdivided into Th1 and Th2 phenotypes. The differentiation of two subsets of T lymphocytes is driven by IL-12 and IL-4 cytokines, respectively. Th1 cells produce IFN-γ that activate macrophages and promote cell-mediated immunity. In addition, we found low levels of iNOS and NO production in the initial (1st and 2nd weeks) and final (9th and 10th weeks) periods of the infection, in contrast with the period of week 4 to 7 of elevated values. The determination of IFN-γ and IL-12 are in agreement with NO/iNOS detection, showing the presence of cellular immune response throughout the infectious process. However, the production of IL-4 shows an increase in levels after the 5th and 6th weeks suggesting a participation of Th2 response in this period as well. Regarding these results, the study demonstrated that in experimental sporotrichosis infection the cellular immune response participated throughout the period analyzed as a nitric oxide dependent mechanism. In contrast, the presence of Th2 response began in the 5th week, suggesting the participation of humoral immune response in advanced stages of sporotrichosis.  相似文献   

3.
Chromoblastomycosis is a chronic, suppurative and granulomatous mycosis whose main etiologic agent is the fungus Fonsecaea pedrosoi. The severity of chromoblastomycosis clinical manifestations correlates with the Th1 or Th2 immune response, and an efficient cellular immune response depends on the interaction between immune cells and the cell wall of the fungi, which is able to promote this activation. The objective of this study was to analyze the influence of cell wall fractions of Fonsecaea pedrosoi on the activation of peritoneal phagocytes obtained from mice. Our results revealed that after 4 h of inoculation with fungal cell wall components, there was a cell migration predominantly comprised of neutrophils followed, after 72 h, by migration of the macrophages. After 4 h, the F2 fraction caused increased production of nitric oxide in phagocytes, but this effect was not observed in the phagocytes after 72 h. The F1 fraction stimulated production of IL-12 in cells that migrated after 72 h, while the inactivated fungus and the F2 fraction led to production of IL-10. The F2 fraction decreased the rate of phagocytosis and increased the production of IL-10. Our results suggest that the F2 fraction and its components caused an important disruption of microbicidal mechanisms negatively modulating the immune response and favoring the persistence of the fungus.  相似文献   

4.
Renal cell carcinoma (RCC) remains one of the most resistant tumors to systemic chemotherapy, radiotherapy, and immunotherapy. Despite great progress in understanding the basic biology of RCC, the rate of responses in animal models and clinical trials using interferons (IFNs) has not improved significantly. It is likely that the lack of responses can be due to the tumor''s ability to develop tumor escape strategies. Currently, the use of targeted therapies has improved the clinical outcomes of patients with RCC and is associated with an increase of Th1-cytokine responses (IFNγ), indicating the importance of IFNγ in inhibiting tumor proliferation. Thus, the present study was designed to investigate a new mechanism by which IFNγ mediates direct anti-proliferative effects against murine renal cell carcinoma cell lines. When cultured RCC cell lines were exposed to murine recombinant IFNγ, a dose dependent growth inhibition in CL-2 and CL-19 cells was observed; this effect was not observed in Renca cells. Growth inhibition in CL-2 and CL-19 cell lines was associated with the intracellular induction of nitric oxide synthase (iNOS) protein, resulting in a sustained elevation of nitric oxide (NO) and citrulline, and a decrease in arginase activity. The inhibition of cell proliferation appears to be due to an arrest in the cell cycle. The results indicate that in certain RCC cell lines, IFNγ modulates L-arginine metabolism by shifting from arginase to iNOS activity, thereby developing a potent inhibitory mechanism to encumber tumor cell proliferation and survival. Elucidating the cellular events triggered by IFNγ in murine RCC cell lines will permit anti-tumor effects to be exploited in the development of new combination therapies that interfere with L-arginine metabolism to effectively combat RCC in patients.  相似文献   

5.
6.
Monocyte chemoattractant protein 1 (MCP-1) is an important mediator of monocyte/macrophage recruitment and activation at the sites of chronic inflammation and neoplasia. In the current study, the role of nitrogen monoxide (NO) in the activation of murine peritoneal macrophages to the tumoricidal state in response to in vitro MCP-1 treatment and the regulatory mechanisms involved therein were investigated. Murine peritoneal macrophages upon activation with MCP-1 showed a dose- and time-dependent production of NO together with increased tumoricidal activity against P815 mastocytoma cells. N-monomethyl- -arginine (L-NMMA), a specific inhibitor of the -arginine pathway, inhibited the MCP-1-induced NO secretion and generation of macrophage-mediated tumoricidal activity against P815 (NO-sensitive, TNF-resistant) cells but not the L929 (TNF-sensitive, NO-resistant) cells. These results indicated -arginine-dependent production of NO to be one of the effector mechanisms contributing to the tumoricidal activity of MCP-1-treated macrophages. Supporting this fact, expression of iNOS mRNA was also detected in the murine peritoneal macrophages upon treatment with MCP-1. Investigating the signal transduction pathway responsible for the NO production by the MCP-1-activated murine peritoneal macrophages, it was observed that the pharmacological inhibitors wortmannin, H-7 (1-(5-isoquinoline sulfonyl)-2-methyl piperazine dihydrochloride), and PD98059 blocked the MCP-1-induced NO production, suggesting the probable involvement of phosphoinositol-3-kinase, protein kinase C, and p42/44 MAPkinases in the above process. Various modulators of calcium and calmodulin (CaM) such as EGTA, nifedipine, TMB-8 (3,4,5-trimethoxybenzoic acid-8-(diethylamino)octyl ester), A23187, and W-7 (N-(6-aminohexyl)-5-chloro-1-napthalenesulfonamide) were also found to modulate the in vitro macrophage NO release in response to MCP-1. This observation indicated the regulatory role of calcium/CaM in the process of MCP-1-induced macrophage NO production. Similarly, the role of serine/threonine and protein tyrosine phosphatases in the above pathway was suggested using the specific inhibitors of these phosphatases, okadaic acid and sodium orthovanadate.  相似文献   

7.
目的探讨黑色素是否为Fonsecaea monophora的一个重要毒力因子。方法从Fonsecaea monophora的分生孢子突变株(CBS122845)传代接种产生白色突变株(CBS 125149)。透射电子显微镜(TEM)下观察到黑色素是位于分生孢子细胞壁表面上的电子致密颗粒。通过碱-酸法提取来自两个不同菌株的细胞壁色素颗粒。建立不同菌株或色素颗粒与活化巨噬细胞(RAW264.7)共培养体系,通过实时荧光相对定量PCR检测i-NOS基因的表达,格里斯法检测一氧化氮(NO)的表达结果,ELISA检测IL-12、TNF-α、IL-10的表达结果。结果色素型分生孢子和其色素颗粒能够降低巨噬细胞诱导型一氧化氮合酶(I-NOS)基因的表达和抑制一氧化氮的合成(P<0.05)。提高Th2细胞因子表达,同时抑制Th1细胞因子表达(P<0.05)。结论黑色素可能是Fonsecaea monophora逃避巨噬细胞对其氧化应激的重要机制。同时黑色素下调Th1免疫应答,可能利于真菌的持续感染。  相似文献   

8.
TC Moore  KL Bush  L Cody  DM Brown  TM Petro 《Journal of virology》2012,86(19):10841-10851
During Theiler's murine encephalomyelitis virus (TMEV) infection of macrophages, it is thought that high interleukin-6 (IL-6) levels contribute to the demyelinating disease found in chronically infected SJL/J mice but absent in B10.S mice capable of clearing the infection. Therefore, IL-6 expression was measured in TMEV-susceptible SJL/J and TMEV-resistant B10.S macrophages during their infection with TMEV DA strain or responses to lipopolysaccharide (LPS) or poly(I · C). Unexpectedly, IL-6 production was greater in B10.S macrophages than SJL/J macrophages during the first 24 h after stimulation with TMEV, LPS, or poly(I · C). Further experiments showed that in B10.S, SJL/J, and RAW264.7 macrophage cells, IL-6 expression was dependent on extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) and enhanced by exogenous IL-12. In SJL/J and RAW264.7 macrophages, exogenous IL-6 resulted in decreased TMEV replication, earlier activation of STAT1 and STAT3, production of nitric oxide, and earlier upregulation of several antiviral genes downstream of STAT1. However, neither inhibition of IL-6-induced nitric oxide nor knockdown of STAT1 diminished the early antiviral effect of exogenous IL-6. In addition, neutralization of endogenous IL-6 from SJL/J macrophages with Fab antibodies did not exacerbate early TMEV infection. Therefore, endogenous IL-6 expression after TMEV infection is dependent on ERK MAPK, enhanced by IL-12, but too slow to decrease viral replication during early infection. In contrast, exogenous IL-6 enhances macrophage control of TMEV infection through preemptive antiviral nitric oxide production and antiviral STAT1 activation. These results indicate that immediate-early production of IL-6 could protect macrophages from TMEV infection.  相似文献   

9.
Endothelin-1 inhibits sodium reabsorption in the thick ascending limb (THAL) via stimulation of nitric oxide (NO) production. The mechanism whereby endothelin-1 stimulates THAL NO is unknown. We hypothesized that endothelin-1 stimulates THAL NO production by activating phosphatidylinositol 3-kinase (PI3K), stimulating Akt activity, and phosphorylating NOS3 at Ser1177. This enhances NO production and inhibits sodium transport. We measured 1) NO production by fluorescence microscopy using DAF2-DA, 2) Akt activity using a fluorescence resonance energy transfer-based Akt reporter, 3) phosphorylated NOS3 and Akt by Western blotting, and 4) NKCC2 activity by fluorescence microscopy. In isolated THAL, endothelin-1 (1 nmol/liter) increased NO production from 0.23 ± 0.24 to 2.81 ± 0.32 fluorescence units/min (p < 0.001; n = 5) but failed to stimulate NO production in THALs isolated from NOS3–/– mice. Wortmannin (150 nmol/liter), a PI3K inhibitor, reduced endothelin-1-stimulated NO by 83% (0.49 ± 0.13 versus 3.31 ± 0.49 fluorescence units/min for endothelin-1 alone; p < 0.006; n = 5). Endothelin-1 stimulated Akt activity by 0.16 ± 0.02 arbitrary units as measured by fluorescence resonance energy transfer (p < 0.001; n = 5) and increased phosphorylation of Akt at Ser473 by 56 ± 11% (p < 0.002; n = 7). Dominant-negative Akt blocked endothelin-1-induced NO by 60 ± 8% (p < 0.001 versus control; n = 6), and an Akt inhibitor had a similar effect. Endothelin-1 increased phosphorylation of NOS3 at Ser1177 by 89 ± 24% (p < 0.01; n = 7) but had no effect on Ser633. Endothelin-1 inhibited NKCC2 activity, an effect that was blocked by dominant-negative Akt and NOS inhibition. We conclude that endothelin-1 stimulates THAL NO production by activating PI3K, stimulating Akt activity, and phosphorylating NOS3 at Ser1177. This enhances NO production and inhibits sodium transport.Nitric oxide (NO) augments salt and water excretion by the kidney (16). NO produced by both NOS1 and NOS3 (neuronal and endothelial NOS2) contributes to this effect (79). Endothelin-1 appears to be one factor that stimulates NO production by both enzymes in the kidney (710). Inhibition of endothelin-induced NOS activation can cause salt-sensitive hypertension (6). The thick ascending limb reabsorbs ∼30% of the filtered NaCl, and improper regulation of sodium reabsorption by this segment has been implicated in salt-sensitive hypertension (11, 12). Thus, studying the effects of endothelin-1 on the thick ascending limb is physiologically significant.Endothelin-1 inhibits thick ascending limb NaCl reabsorption via stimulation of NO (9). NO has been shown to inhibit apical Na+-K+-2Cl co-transport (NKCC2) (13), the main route for sodium entry in this segment and the first step in NaCl absorption (14, 15). The thick ascending limb expresses all three NOS isoforms. The actions of endothelin-1 are likely due to NOS3 activation because 1) this isoform is responsible for regulating thick ascending limb NaCl reabsorption (8), and 2) endothelin-1 stimulates NOS3 expression in the thick ascending limb (16). However, whether endothelin-1 acutely stimulates NO production via NOS3 activation in the thick ascending limb is uncertain.NOS3 can be activated by several signaling pathways, including those that involve Ca2+/calmodulin and phosphatidylinositol 3-kinase (PI3K). In endothelial cells, both pathways are important. However, in the thick ascending limb, only the latter has been shown to activate NOS3 (17, 18). Thus, the signaling cascades that activate NOS3 in the thick ascending limb and endothelial cells likely differ (19). The mechanisms by which endothelin-1 stimulates NOS3 and inhibits sodium transport in this segment are unknown. We hypothesized that endothelin-1 stimulates thick ascending limb NO production by activating PI3K, stimulating Akt activity, and phosphorylating NOS3 at Ser1177. This enhances NO production and inhibits sodium transport.  相似文献   

10.
The results of clinical and experimental studies suggest that endotoxin/toll-like receptor 4 (TLR4)-mediated proinflammatory and profibrotic signaling activation is critical in the development of hepatic fibrosis. However, studies examining the role of specific TLR4 inhibitor are still lacking. The present study was aimed to prepare a human anti-TLR4 Fab fragment, named hTLR4-Fab01, and to explore its immune activity. We screened the positive clone of anti-human TLR4 phagemid from a human phage-display antibody library using recombinant TLR4 protein, which was used as template cDNA for the amplification of variable regions of the heavy (VH) chain and light chain (VL), then coupled with highly conserved regions of the heavy chain domain 1 (CH1) and the light chain (CL), respectively. Thus, the prokaryotic expression vector pETDuet-1 of hTLR4-Fab01 was constructed and transformed into Escherichia coli (E. coli) BL21. The characteristic of hTLR4-Fab01 was examined by SDS-PAGE, Western blotting, ELISA, affinity and kinetics assay. Further, our data demonstrate that hTLR4-Fab01 could specifically bind to TLR4, and its treatment obviously attenuated the proinflammatory effect, characterized by less LPS-induced TNF-α, IL-1, IL-6 and IL-8 production in human macrophages. In conclusion, we have successfully prepared the hTLR4-Fab01 with efficient activity for blocking LPS-induced proinflammatory cytokines production, suggesting that the hTLR4-Fab01 may be a potential candidate for the treatment of hepatic fibrosis.  相似文献   

11.
Viperidae venom has several local and systemic effects, such as pain, edema, inflammation, kidney failure and coagulopathy. Additionally, bothropic venom and its isolated components directly interfere on cellular metabolism, causing alterations such as cell death and proliferation. Inflammatory cells are particularly involved in pathological envenomation mechanisms due to their capacity of releasing many mediators, such as nitric oxide (NO). NO has many effects on cell viability and it is associated to the development of inflammation and tissue damage caused by Bothrops and Bothropoides venom. Bothropoides insularis is a snake found only in Queimada Grande Island, which has markedly toxic venom. Thus, the aim of this work was to evaluate the biological effects of Bothropoides insularis venom (BiV) on RAW 264.7 cells and assess NO involvement. The venom was submitted to colorimetric assays to identify the presence of some enzymatic components. We observed that BiV induced H2O2 production and showed proteolytic and phospholipasic activities. RAW 264.7 murine macrophages were incubated with different concentrations of BiV and then cell viability was assessed by MTT reduction assay after 2, 6, 12 and 24 hours of incubation. A time- and concentration-dependent effect was observed, with a tendency to cell proliferation at lower BiV concentrations and cell death at higher concentrations. The cytotoxic effect was confirmed after lactate dehydrogenase (LDH) measurement in the supernatant from the experimental groups. Flow cytometry analyses revealed that necrosis is the main cell death pathway caused by BiV. Also, BiV induced NO release. The inhibition of both proliferative and cytotoxic effects with L-NAME were demonstrated, indicating that NO is important for these effects. Finally, BiV induced an increase in iNOS expression. Altogether, these results demonstrate that B. insularis venom have proliferative and cytotoxic effects on macrophages, with necrosis participation. We also suggest that BiV acts by inducing iNOS expression and causing NO release.  相似文献   

12.
To better understand the early biochemical events that occur in human rhinovirus (HRV) infections, we examined the kinetics and mechanisms of interleukin-8 (IL-8) and IL-6 production from infected epithelial cells. Several HRV strains caused IL-8 and IL-6 production, but HRV-16 induced maximal IL-8 and IL-6 mRNA expression and protein production more rapidly than did HRV-14, despite similar rates of replication of the two viral strains. Viral induction of cytokine mRNA does not require new protein synthesis, since it was unaffected by cycloheximide treatment. The potent glucocorticoid budesonide did not affect viral replication or cytokine mRNA induction but modestly inhibited cytokine protein production. Interestingly, the nitric oxide donor 3-(2-hydroxy-2-nitroso-1-propylhydrazino)-1-propanamine (NONOate) inhibited both rhinovirus replication and cytokine production in a dose-dependent fashion without reducing levels of cytokine mRNA. The NONOate effects were due to release of nitric oxide, because NONOate that had been depleted of its nitric oxide content had no effect. Thus, nitric oxide may play an important anti-inflammatory and antiviral role in colds and nitric oxide donors may represent a novel therapeutic approach.  相似文献   

13.
Trichomonas vaginalis commonly causes vaginitis and perhaps cervicitis in women and urethritis in men and women. Macrophages are important immune cells in response to T. vaginalis infection. In this study, we investigated whether human macrophages could be involved in inflammation induced by T. vaginalis. Human monocyte-derived macrophages (HMDM) were co-cultured with T. vaginalis. Live, opsonized-live trichomonads, and T. vaginalis lysates increased proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6 by HMDM. The involvement of nuclear factor (NF)-κB signaling pathway in cytokine production induced by T. vaginalis was confirmed by phosphorylation and nuclear translocation of p65 NF-κB. In addition, stimulation with live T. vaginalis induced marked augmentation of nitric oxide (NO) production and expression of inducible NO synthase (iNOS) levels in HMDM. However, trichomonad-induced NF-κB activation and TNF-α production in macrophages were significantly inhibited by inhibition of iNOS levels with L-NMMA (NO synthase inhibitor). Moreover, pretreatment with NF-κB inhibitors (PDTC or Bay11-7082) caused human macrophages to produce less TNF-α. These results suggest that T. vaginalis stimulates human macrophages to produce proinflammatory cytokines, such as IL-1, IL-6, and TNF-α, and NO. In particular, we showed that T. vaginalis induced TNF-α production in macrophages through NO-dependent activation of NF-κB, which might be closely involved in inflammation caused by T. vaginalis.  相似文献   

14.
Ovarian cancer G protein-coupled receptor 1 (OGR1) is a proton-sensing molecule that can detect decreases in extracellular pH that occur during inflammation. Although OGR1 has been shown to have pro-inflammatory functions in various diseases, its role in autoimmunity has not been examined. We therefore sought to determine whether OGR1 has a role in the development of T cell autoimmunity by contrasting the development of experimental autoimmune encephalomyelitis between wild type and OGR1-knockout mice. OGR1-knockout mice showed a drastically attenuated clinical course of disease that was associated with a profound reduction in the expansion of myelin oligodendrocyte glycoprotein 35-55-reactive T helper 1 (Th1) and Th17 cells in the periphery and a reduced accumulation of Th1 and Th17 effectors in the central nervous system. We determined that these impaired T cell responses in OGR1-knockout mice associated with a reduced frequency and number of dendritic cells in draining lymph nodes during EAE and a higher production of nitric oxide by macrophages. Our studies suggest that OGR1 plays a key role in regulating T cell responses during autoimmunity.  相似文献   

15.
16.
Xie Z  Feng P  Zhang J  Li X  Sun J  Lu C  Huang H  Xi L 《Molecular biology reports》2012,39(2):839-844
The cell divisions cycle 42 (Cdc42) gene has been characterized in the fungi, such as Candida albicans, Penicillium marneffei, and Wangiella (Exophiala) dermatitidis, which plays important roles during growth and development. The partial cDNA sequence of Cdc42 of Fonsecaea monophora (F. monophora), designated FmCdc42, was obtained using degenerate primers based on the conserved domain of the other fungi Cdc42. Then the complete cDNA sequence of FmCdc42 was obtained by 5′ and 3′ RACE. The full-length cDNA is 1,510 bp in size which had an open reading frame (ORF) of 582 bp, encoding 193 amino acid residues. The predicted molecular mass of FmCdc42 is 21.5 kDa with an estimated theoretical isoelectric point of 5.67. The deduced amino acid sequence of FmCdc42 shows 99% identity to that of Wangiella (Exophiala) dermatitidis. 5 exons and 4 introns are identified within the 1,617 bp FmCdc42 genomic DNA sequence of F. monophora. The ORF could be subcloned into the pCDNA6/myc-His B expression vector. The recombinant protein about 27.5 kD infusion protein had high expression level in Vero cells with SDS-PAGE and Western blot analysis. Quantitative real time RT-PCR revealed that FmCdc42 was the highest expression in the sclerotic bodies’ stage compared with that in the mycelia and conidia stages, which indicated that the FmCdc42 may be involved in formation of F. monophora sclerotic bodies.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号