首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Utilizing ATDC5 murine chondrogenic cells and human articular chondrocytes, this study sought to develop facile, reproducible three-dimensional models of cartilage generation with the application of tissue engineering strategies, involving biodegradable poly(glycolic acid) scaffolds and rotating wall bioreactors, and micromass pellet cultures. Chondrogenic differentiation, assessed by histology, immunohistochemistry, and gene expression analysis, in ATDC5 and articular chondrocyte pellets was evident by the presence of distinct chondrocytes, expressing Sox-9, aggrecan, and type II collagen, in lacunae embedded in a cartilaginous matrix of type II collagen and proteoglycans. Tissue engineered explants of ATDC5 cells were reminiscent of cartilaginous structures composed of numerous chondrocytes, staining for typical chondrocytic proteins, in lacunae embedded in a matrix of type II collagen and proteoglycans. In comparison, articular chondrocyte explants exhibited areas of Sox-9, aggrecan, and type II collagen-expressing cells growing on fleece, and discrete islands of chondrocytic cells embedded in a cartilaginous matrix.  相似文献   

2.
The external ear is composed of elastic cartilage. Microtia is a congenital malformation of the external ear that involves a small reduction in size or a complete absence. The aim of tissue engineering is to regenerate tissues and organs clinically implantable based on the utilization of cells and biomaterials. Remnants from microtia represent a source of cells for auricular reconstruction using tissue engineering. To examine the macromolecular architecture of microtia cartilage and behavior of chondrocytes, in order to enrich the knowledge of this type of cartilage as a cell reservoir. Auricular cartilage remnants were obtained from pediatric patients with microtia undergoing reconstructive procedures. Extracellular matrix composition was characterized using immunofluorescence and histological staining methods. Chondrocytes were isolated and expanded in vitro using a mechanical-enzymatic protocol. Chondrocyte phenotype was analyzed using qualitative PCR. Microtia cartilage preserves structural organization similar to healthy elastic cartilage. Extracellular matrix is composed of typical cartilage proteins such as type II collagen, elastin and proteoglycans. Chondrocytes displayed morphological features similar to chondrocytes derived from healthy cartilage, expressing SOX9, COL2 and ELN, thus preserving chondral phenotype. Cell viability was 94.6 % during in vitro expansion. Elastic cartilage from microtia has similar characteristics, both architectural and biochemical to healthy cartilage. We confirmed the suitability of microtia remnant as a reservoir of chondrocytes with potential to be expanded in vitro, maintaining phenotypical features and viability. Microtia remnants are an accessible source of autologous cells for auricular reconstruction using tissue engineering strategies.  相似文献   

3.
4.
Developments in tissue engineering over the past decade have offered promising future for the repair and reconstruction of damaged tissues. To regenerate three dimensional and weight-bearing implants, advances in biomaterials and manufacturing technologies prompted cell cultivations with natural or artificial scaffolds, in which cells are allowed to proliferate, migrate, and differentiate in vitro. In this article, we develop a mathematical model for cell growth in a porous scaffold. By treating the cell-scaffold construct as a porous medium, a continuum model is set up based on basic principles of mass conservation. In addition to cell growth kinetics, we incorporate cell diffusion in the model to describe the effects of cell random walks. Computational results are compared to experimental data found in the literature. With this model, we are able to investigate cell motility, heterogeneous cell distributions, and non-uniform seeding for tissue engineering applications. Results show that random walks tend to enhance uniform cell spreads in space, which in turn increases the probabilities for cells to acquire nutrients; therefore random walks are likely to be a positive contribution to the overall cell growth on scaffolds.  相似文献   

5.
6.
The present work was a comparative study of the bio-effects induced by exposure to 6 mT static magnetic field (MF) on several primary cultures and cell lines. Particular attention was dedicated to apoptosis. Cell viability, proliferation, intracellular Ca(2+) concentration and morphology were also examined. Primary cultures of human lymphocytes, mice thymocytes and cultures of 3DO, U937, HeLa, HepG2 and FRTL-5 cells were grown in the presence of 6 mT static MF and different apoptosis-inducing agents (cycloheximide, H(2)O(2), puromycin, heat shock, etoposide). Biological effects of static MF exposure were found in all the different cells examined. They were cell type-dependent but apoptotic inducer-independent. A common effect of the exposure to static MF was the promotion of apoptosis and mitosis, but not of necrosis or modifications of the cell shape. Increase of the intracellular levels of Ca(2+) ions were also observed. When pro-apoptotic drugs were combined with static MF, the majority of cell types rescued from apoptosis. To the contrary, apoptosis of 3DO cells was significantly increased under simultaneous exposure to static MF and incubation with pro-apoptotic drugs. From these data we conclude that 6 mT static MF exposure interfered with apoptosis in a cell type- and exposure time-dependent manner, while the effects of static MF exposure on the apoptotic program were independent of the drugs used.  相似文献   

7.
The treatment of cartilage pathology and trauma face the challenges of poor regenerative potential and inferior repair. Nevertheless, recent advances in tissue engineering indicate that adult stem cells could provide a source of chondrocytes for tissue engineering that the isolation of mature chondrocytes has failed to achieve. Various adjuncts to their propagation and differentiation have been explored, such as biomaterials, bioreactors and growth hormones. To date, all tissue engineered cartilage has been significantly mechanically inferior to its natural counterparts and further problems in vivo relate to poor integration and deterioration of tissue quality over time. However, adult stem cells--with their high rate of proliferation and ease of isolation--are expected to greatly further the development and usefulness of tissue engineered cartilage.  相似文献   

8.
Stem cells embody the tremendous potential of the human body to develop, grow, and repair throughout life. Understanding the biologic mechanisms that underlie stem cell-mediated tissue regeneration is key to harnessing this potential. Recent advances in molecular biology, genetic engineering, and material science have broadened our understanding of stem cells and helped bring them closer to widespread clinical application. Specifically, innovative approaches to optimize how stem cells are identified, isolated, grown, and utilized will help translate these advances into effective clinical therapies. Although there is growing interest in stem cells worldwide, this enthusiasm must be tempered by the fact that these treatments remain for the most part clinically unproven. Future challenges include refining the therapeutic manipulation of stem cells, validating these technologies in randomized clinical trials, and regulating the global expansion of regenerative stem cell therapies.  相似文献   

9.
10.
11.
12.
Cartilage tissue engineering requires the use of bioreactors in order to enhance nutrient transport and to provide sufficient mechanical stimuli to promote extracellular matrix (ECM) synthesis by chondrocytes. The amount and quality of ECM components is a large determinant of the biochemical and mechanical properties of engineered cartilage constructs. Mechanical forces created by the hydrodynamic environment within the bioreactors are known to influence ECM synthesis. The present study characterizes the hydrodynamic environment within a novel wavy-walled bioreactor (WWB) used for the development of tissue-engineered cartilage. The geometry of this bioreactor provides a unique hydrodynamic environment for mammalian cell and tissue culture, and investigation of hydrodynamic effects on tissue growth and function. The flow field within the WWB was characterized using two-dimensional particle-image velocimetry (PIV). The flow in the WWB differed significantly from that in the traditional spinner flask both qualitatively and quantitatively, and was influenced by the positioning of constructs within the bioreactor. Measurements of velocity fields were used to estimate the mean-shear stress, Reynolds stress, and turbulent kinetic energy components in the vicinity of the constructs within the WWB. The mean-shear stress experienced by the tissue-engineered constructs in the WWB calculated using PIV measurements was in the range of 0-0.6 dynes/cm2. Quantification of the shear stress experienced by cartilage constructs, in this case through PIV, is essential for the development of tissue-growth models relating hydrodynamic parameters to tissue properties.  相似文献   

13.
A study (100 days duration) was conducted to evaluate the efficiency of an exotic earthworm species (epigeic-Eisenia foetida) for decomposition of different types of organic substrates (kitchen waste, agro-residues, institutional and industrial wastes including textile industry sludge and fibres) into valuable vermicompost. The percentage of, nitrogen, phosphorous and potassium in vermicompost was found to increase while pH and total organic carbon declined as a function of the vermicomposting period. 4.4-5.8-fold increases in TKN was observed in different feed mixtures at the end of vermicomposting period. The increase in TKN for different feed substrates was found in the order: textile sludge>textile fibre=institutional waste>agro-residues>kitchen waste. Available Phosphorus increased 1.4 to 6.5-fold in different feed mixtures in comparison to control. Reduction in TOC was highest in agro-residues (3-fold) followed by kitchen waste (2.2-fold), institutional waste (1.7-fold) and textile industrial wastes (sludge, 1.5-fold and fibre, 1.68-fold) in earthworm-inoculated pots than control. The data reveals that vermicomposting (using E. foetida) is a suitable technology for the decomposition of different types of organic wastes (domestic as well as industrial) into value-added material.  相似文献   

14.
Mesenchymal stem cells (MSC) can be obtained from human bone marrow aspirates and, thanks to their differentiation potential and excellent in vitro culture properties, represent an attractive cell line for the regeneration of mesenchymal tissue. Both in vitro and in vivo, they can differentiate into cartilage, bone, tendons and fat cells, and-in contrast to embryonic stem cells-they are not under ethical scrutiny. Cultured on three-dimensional scaffolds according to the tissue engineering concept, they have already been successfully employed for reconstruction of mesenchymal tissues in numerous studies involving both small and large animal models. Recently, immunological properties of MSC have been investigated by several groups. On the basis of the available literature, MSC have to be referred to as immune privileged, and they seem to be available for HLA-independent cell transplantation. While clinical MSC transplantation has also been successfully performed in pilot studies in humans, numerous points still remain to be clarified, underscoring the need for further intensive research before large-scale clinical application can be contemplated. Only then can it be shown whether the associated high expectations are justified.  相似文献   

15.
16.
A cell leakproof porous poly(DL ‐lactic‐co‐glycolic acid) (PLGA)‐collagen hybrid scaffold was prepared by wrapping the surfaces of a collagen sponge except the top surface for cell seeding with a bi‐layered PLGA mesh. The PLGA‐collagen hybrid scaffold had a structure consisting of a central collagen sponge formed inside a bi‐layered PLGA mesh cup. The hybrid scaffold showed high mechanical strength. The cell seeding efficiency was 90.0% when human mesenchymal stem cells (MSCs) were seeded in the hybrid scaffold. The central collagen sponge provided enough space for cell loading and supported cell adhesion, while the bi‐layered PLGA mesh cup protected against cell leakage and provided high mechanical strength for the collagen sponge to maintain its shape during cell culture. The MSCs in the hybrid scaffolds showed round cell morphology after 4 weeks culture in chondrogenic induction medium. Immunostaining demonstrated that type II collagen and cartilaginous proteoglycan were detected in the extracellular matrices. Gene expression analyses by real‐time PCR showed that the genes encoding type II collagen, aggrecan, and SOX9 were upregulated. These results indicated that the MSCs differentiated and formed cartilage‐like tissue when being cultured in the cell leakproof PLGA‐collagen hybrid scaffold. The cell leakproof PLGA‐collagen hybrid scaffolds should be useful for applications in cartilage tissue engineering. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

17.
In cartilaginous tissues, perichondrium cambium layer may be the source of new cartilage. Human nasal septal perichondrium is considered to be a homogeneous structure in which some authors do not recognize the perichondrium internal zone or the cambium layer as a layer distinct from adjacent cartilage surface. In the present study, we isolated a chondrogenic cell population from human nasal septal cartilage surface zone. Nasoseptal chondrogenic cells were positive for surface markers described for mesenchymal stem cells, with exception of CD146, a perivascular cell marker, which is consistent with their avascular niche in cartilage. Although only Sox-9 was constitutively expressed, they also revealed osteogenic and chondrogenic, but not adipogenic, potentials in vitro, suggesting a more restricted lineage potential compared to mesenchymal stem cells. Interestingly, even in absence of chondrogenic growth factors in the pellet culture system, nasoseptal chondrogenic cells had a capacity to synthesize sulfated glycosaminoglycans, large amounts of collagen type II and to a lesser extent collagen type I. The spontaneous chondrogenic potential of this population of cells indicates that they may be a possible source for cartilage tissue engineering. Besides, the pellet culture system using nasoseptal chondrogenic cells may also be a model for studies of chondrogenesis.  相似文献   

18.
Based on its proven anabolic effects on bone in osteoporosis patients, recombinant parathyroid hormone (PTH1-34) has been evaluated as a potential therapy for skeletal repair. In animals, the effect of PTH1-34 has been investigated in various skeletal repair models such as fractures, allografting, spinal arthrodesis and distraction osteogenesis. These studies have demonstrated that intermittent PTH1-34 treatment enhances and accelerates the skeletal repair process via a number of mechanisms, which include effects on mesenchymal stem cells, angiogenesis, chondrogenesis, bone formation and resorption. Furthermore, PTH1-34 has been shown to enhance bone repair in challenged animal models of aging, inflammatory arthritis and glucocorticoid-induced bone loss. This pre-clinical success has led to off-label clinical use and a number of case reports documenting PTH1-34 treatment of delayed-unions and non-unions have been published. Although a recently completed phase 2 clinical trial of PTH1-34 treatment of patients with radius fracture has failed to achieve its primary outcome, largely because of effective healing in the placebo group, several secondary outcomes are statistically significant, highlighting important issues concerning the appropriate patient population for PTH1-34 therapy in skeletal repair. Here, we review our current knowledge of the effects of PTH1-34 therapy for bone healing, enumerate several critical unresolved issues (e.g., appropriate dosing regimen and indications) and discuss the long-term potential of this drug as an adjuvant for endogenous tissue engineering.  相似文献   

19.
Human embryonic stem cells (hESC) hold tremendous potential in the emerging fields of gene and cell therapy as well as in basic scientific research. One of the major challenges regarding their application is the development of efficient cryopreservation protocols for hESC since current methods present poor recovery rates and/or technical difficulties which impair the development of effective processes that can handle bulk quantities of pluripotent cells. The main focus of this work was to compare different strategies for the cryopreservation of adherent hESC colonies. Slow‐rate freezing protocols using intact hESC colonies was evaluated and compared with a surface‐based vitrification approach. Entrapment within ultra‐high viscous alginate was investigated as the main strategy to avoid the commonly observed loss of viability and colony fragmentation during slow‐rate freezing. Our results indicate that entrapment beneath a layer of ultra‐high viscous alginate does not provide further protection to hESC cryopreserved through slow‐rate freezing, irrespectively of the cryomedium used. Vitrification of adherent hESC colonies on culture dishes yielded significantly higher recovery rates when compared to the slow‐rate freezing approaches investigated. The pluripotency of hESC was not changed after a vitrification/thawing cycle and during further propagation in culture. In conclusion, from the cryopreservation methods investigated in this study, surface‐based vitrification of hESC has proven to be the most efficient for the cryopreservation of intact hESC colonies, reducing the time required to amplify frozen stocks thus supporting the widespread use of these cells in research and clinical applications. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 1079–1087, 2012  相似文献   

20.
Human mesenchymal stem cells are currently being studied extensively because of their capability for self-renewal and differentiation to various connective tissues, which makes them attractive as cell sources for regenerative medicine. Herein we report the isolation of human placenta-derived mesenchymal cells (hPDMCs) that have the potential to differentiate into various lineages to explore the possibility of using these cells for regeneration of cartilage. We first evaluated the chondrogenesis of hPDMCs in vitro and then embedded the hPDMCs into an atelocollagen gel to make a cartilage-like tissue with chondrogenic induction media. For in vivo assay, preinduced hPDMCs embedded in collagen sponges were subcutaneously implanted into nude mice and also into nude rats with osteochondral defect. The results of these in vivo and in vitro studies suggested that hPDMCs can be one of the possible allogeneic cell sources for tissue engineering of cartilage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号