首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The growth of M. japonica in hexadecane or decane medium was markedly improved by dialysis culture and there existed a “growth-inhibitory factor” in the dialyzable material. This material inhibited the growth in hydrocarbon medium but not in glucose containing medium. Free fatty acids excreted extracellularly by dialysis culture in hexadecane medium were mostly palmitic, myristic and lauric acids in the culturing chamber, but almost exclusively lauric acid was found in the dialyzable material. These acids, assimilated themselves by the organism, inhibited the growth in hexadecane medium but did so only weakly in glucose. It was concluded that lauric acid was at least partly an active principle of “growth-inhibitory factor” in the dialyzable material in hexadecane medium.  相似文献   

2.
n-Hexadecane added as electron donor and carbon source to an anaerobic enrichment culture from an oil production plant or to anoxic marine sediment samples allowed dissimilatory sulfate reduction to sulfide. The enrichment from the oil field was purified via serial dilutions in liquid medium under a hexadecane phase and in agar medium with caprylate. A pure culture of a sulfate-reducing bacterium, strain Hxd3, with relatively tiny cells (0.4–0.5 by 0.8–2 m) was isolated that grew anaerobically on hexadecane without addition of further organic substrates. Most of the cells were found to adhere to the hydrocarbon phase. It was verified that neither organic impurities in hexadecane nor residual oxygen were responsible for growth. Strain Hxd3 was grown with n-hexadecane of high purity (99.5%) in anoxic glass ampoules sealed by fusion. Of 0.4 ml hexadecane added per l (1.4 mmol per l), 90% was degraded with concomitant reduction of sulfate. Controls with pasteurized cells or a common Desulfovibrio species neither consumed hexadecane nor reduced sulfate. Incubation of cell-free medium with low reducing capacity and a redox indicator showed that the ampoules were completely oxygen-tight. Measured degradation balances and enzyme activities suggested a complete oxidation of the alkane to CO2 via the carbon monoxide dehydrogenase pathway. However, the first step in anaerobic alkane oxidation is unknown. On hexadecane, strain Hxd3 produced as much as 15 to 20 mM H2S, but growth was rather slow; with 5% inoculum, cultures were fully grown after 5 to 7 weeks. The new sulfate reducer grew on alkanes from C12 to C20, 1-hexadecene, 1-hexadecanol, 2-hexadecanol, palmitate and stearate. Best growth occurred on stearate (doubling time around 26 h). Growth on soluble fatty acids such as caprylate was very poor. Alkanes with chains shorter than C12, lactate, ethanol or H2 were not used. Strain Hxd3 is the first anaerobe shown to grow definitely on saturated hydrocarbons.Abbreviations CO dehydrogenase carbon monoxide dehydrogenase - DTE 1,4-dithioerythritol - Tris tris(hydroxymethyl)-aminomethane Dedicated to Dr. Ralph S. Wolfe on occasion of his 70th birthday  相似文献   

3.
Summary Rates of oxygen uptake and the oxygen demand during growth of Candida tropicalis on hexadecane and glucose were determined in batch experiments. Oxygen demand was 2.5 fold higher for the synthesis of one unit of cell mass from hydrocarbon than from glucose. On the other hand specific respiration is of the same order of magnitude for both substrates, e.g. 12 mmoles O2xh-1xg-1 (dry weight) and seems to be a constant of this organism. Higher rates of oxygen supply into the medium had no effect on the specific rates of respiration. Specific growth rates on hexadecane were 2.4 times lower than on glucose. It is concluded, that rates of synthesis of cell components are controlled by the overall capacity of the respiratory pathways.  相似文献   

4.
Oxidation of Alkanes to Internal Monoalkenes by a Nocardia   总被引:1,自引:0,他引:1       下载免费PDF全文
A suspension of glucose-grown resting cells of Nocardia salmonicolor PSU-N-18 oxidized hexadecane to a mixture of internal monohexadecenes. The latter exhibited a cis configuration, and the mixture consisted of the following: 7-hexadecene, 80%; 8-hexadecene, 18%; and 6-hexadecene, 2%. Alkanes other than hexadecane also were unsaturated by the resting cells, and the composition of the monoalkenes resulting from octadecane dehydrogenation was 9-octadecene, 91%; 8-octadecene, 2 to 3%; 7-octadecene, 1 to 2%; and 6- and 5-octadecenes, trace amounts. Only minute quantities of unsaturated hydrocarbons accumulated during growth on hexadecane and during resting-cell incubation of hexadecane-grown cells with hexadecane. The dehydrogenation of hydrocarbons did not appear to be related to the formation of unsaturated fatty acids. It is postulated that double bond insertion may represent an early step in a new pathway of aliphatic hydrocarbon degradation.  相似文献   

5.
Zhao  Dahe  Kumar  Sumit  Zhou  Jian  Wang  Rui  Li  Ming  Xiang  Hua 《Extremophiles : life under extreme conditions》2017,21(6):1081-1090

Bioremediation in hypersaline environments is particularly challenging since the microbes that tolerate such harsh environments and degrade pollutants are quite scarce. Haloarchaea, however, due to their inherent ability to grow at high salt concentrations, hold great promise for remediating the contaminated hypersaline sites. This study aimed to isolate and characterize novel haloarchaeal strains with potentials in hydrocarbon degradation. A haloarchaeal strain IM1011 was isolated from Changlu Tanggu saltern near Da Gang Oilfield in Tianjin (China) by enrichment culture in hypersaline medium containing hexadecane. It could degrade 57 ± 5.2% hexadecane (5 g/L) in the presence of 3.6 M NaCl at 37 °C within 24 days. To get further insights into the mechanisms of petroleum hydrocarbon degradation in haloarchaea, complete genome (3,778,989 bp) of IM1011 was sequenced. Phylogenetic analysis of 16S rRNA gene, RNA polymerase beta-subunit (rpoB’) gene and of the complete genome suggested IM1011 to be a new species in Halorientalis genus, and the name Halorientalis hydrocarbonoclasticus sp. nov., is proposed. Notably, with insights from the IM1011 genome sequence, the involvement of diverse alkane hydroxylase enzymes and an intact β-oxidation pathway in hexadecane biodegradation was predicted. This is the first hexadecane-degrading strain from Halorientalis genus, of which the genome sequence information would be helpful for further dissecting the hydrocarbon degradation by haloarchaea and for their application in bioremediation of oil-polluted hypersaline environments.

  相似文献   

6.
Acinetobacter calcoaceticus RAG-1, a hydrocarbon-degrading bacterium which adheres avidly to hydrocarbons and other hydrophobic surfaces, possesses numerous thin fimbriae (ca. 3.5-nm diameter) on the cell surface. MR-481, a nonadherent mutant of RAG-1 which is unable to grow on hexadecane under conditions of limited emulsification and low initial cell density, lacks these fimbriae. Prolonged incubation of MR-481 in hexadecane medium enriched for partial adherence revertants. The reappearance of thin fimbriae was observed in all such revertant strains. RAG-1 cells and partial revertant strains were agglutinated in the presence of antibody, whereas MR-481 cells were not. Another mutant, AB15, which was previously isolated on the basis of its nonagglutinability in the presence of antibody, also lacked thin fimbriae and was conditionally nonadherent. Furthermore, strain AB15 was unable to grow on hexadecane medium. Adherence of RAG-1 cells to hexadecane was considerably reduced after shearing treatment. The material removed from the cell surface by shearing of RAG-1 and the partial revertant strains yielded a single antigenic band in RAG-1 and partial revertant strains, as observed by crossed immunoelectrophoresis. This band was absent in both fimbriae-less mutants, MR-481 and AB15. The data demonstrate that the thin fimbriae of RAG-1 (i) are a major factor in adherence to polystyrene and hydrocarbon, (ii) may be crucial in enabling growth of cells on hexadecane, and (iii) constitute the major cell surface agglutinogen.  相似文献   

7.
Nondialyzable bioemulsifiers were found in the extracellular fluid of 16 different strains ofAcinetobacter calcoaceticus following growth on ethanol-salts medium. The amount of emulsifying activity, its specific activity, and hydrocarbon substrate specificity varied from one strain to another. In general, strains that grew well on the ethanol medium (2.4–2.6 mg cell dry wt/ml) produced high emulsifying activities (88–239 units/ml), whereas strains that grew more poorly (1.0–1.7 mg cell dry wt/ml) also produced less emulsifying activity (14–52 units/ml). With one exception, hexadecane/2-methylnaphthalane mixtures were emulsified more efficiently than pure hexadecane or 2-ethylnaphthalane.  相似文献   

8.
A proof‐of‐concept study to evaluate the biological removal of hydrocarbons (naphthalene, n‐hexadecane, and fuel oil #2) from contaminated wood (Southern yellow pine) was conducted using 14C‐labeled tracers and gas chromatography. Contaminated wood was brought in contact with n‐hexadecane‐degrading Pseudomonas aeruginosa PG201 or naphthalene degrading environmental isolates by the application either on mineral medium agar or filter paper containing a previously grown biomass (“overlay” technique). The experiments showed a significant acceleration of naphthalene removal by biomass. Due to biodegradation combined with evaporation, naphthalene was nearly completely removed (up to 90–98 %) in 4–8 days from freshly contaminated 6 mm‐ and 17 mm‐thick wood samples. The removal of a less volatile hydrocarbon, n‐hexadecane, was less efficient, at 40–60% in 20–40 days, with the only variable significantly affecting this pollutant's removal rate being the moisture content of the medium. Biodegradation experiments with standard heating fuel oil #2 (a representative real‐world contaminant) resulted in significant removal of light hydrocarbons (C10–C16), i.e., more mobile/volatile substrates, in 3 weeks (up to 70 %) whereas heavier hydrocarbons (C17–C19) were less affected. Pollutant mobility in both wood and aqueous media was shown to be the crucial factor affecting the removal efficiency. These results point toward a promising technique to reclaim wooden structures contaminated with volatile and semi‐volatile chemicals.  相似文献   

9.
The partition of n-hexadecane in the spent growth medium of Acinetobacter sp. HOI-N was determined by measuring the increase in the relative aqueous solubility of 3H-hexadecane as compared to controls. The amount of hexadecane partitioned was proportional to the protein concentration. The specific solubility of hexadecane (nmol/mg protein) was analyzed by least-squares fitting yielding an average slope of 0.6 with a standard deviation of 0.3, indicating either nonequilibrium of hexadecane or physical aggregation of protein. The amount of hexadecane partitioned was concentration dependent yielding optically clear microemulsions at hexadecane concentrations of less than 1.4mM and macroemulsions at hexadecane concentrations of 1.4mM or greater. Preliminary results indicated that hexadecane and partitioned by a lipoprotein complex.  相似文献   

10.
Summary Glycogen was markedly accumulated inCandida tropicalis growing on glucose with increasing limitation of external substrate supply. The same effect was caused by a N-free medium. The lipid content did not show any significant change in either case. On the hydrocarbon substrate, lipid increased as substrate availability decreased, whereas glycogen accumulation was only slight. However, the increase of lipid content on hydrocarbons did not reach the same level of accumulation as glycogen on glucose. In N-free medium both glycogen and lipids were accumulated, indicating that glycogen is not substituted by lipids as the carbon energy reserve on a hydrocarbon substrate.In addition, a refined shift technique is described. The disturbing influence of excess substrate at the beginning of a shift from glucose to hydrocarbons is avoided by a portioned substrate feeding according to the cell activity.  相似文献   

11.
Production of surfactant by Arthrobacter paraffineus ATCC 19558   总被引:1,自引:0,他引:1  
A. paraffineus ATCC 19558 grown in MMSM (modified mineral salts medium) containing hydrocarbon produced surfactant, with a maximum CMC(-1) value obtained by using hexadecane as the carbon source. No activity of surface active agent in whole broth was observed when glucose was used in the MMSM instead of hexadecane. The biomass concentration obtained with glucose was about 40% of that obtained with hexadecane. Glucose (4%) in the medium contaning hexadecane caused a 27 and 21% decrease of biomass and surfactant concentrations, respectively. In the process of surfactant production, glucose can be used as a carbon source for growth, and hexadecane added later can serve for production of the surface active agent. The optimum temperature for production of surfactant is 27 degrees C.  相似文献   

12.
The results achieved by the cultivation of the yeast. Candida lipolytica on gas oil are referred. By using a distillation fraction of gas oil distilling between 180–400°C, containing 10–20% of n-alkanes, the optimal condition for biomass production and deparaffination were estimated for various dilution rates and various amounts of gas oil in the medium. The main factor, which influences the yield coefficient by hydrocarbon fermentation is the polyauxie of the hydrocarbon substrate. The penetration of dispersed hydrocarbons into the yeast cell is demonstrated on electron micrographs and the velocity and reversibility of this process is estimated by using tritium-traced hexadecane.  相似文献   

13.
Summary Corynebacterium lepus produced a considerable amount of extracellular surfactant during growth in a mineral salts medium containing hexadecane as the sole carbon source. The study revealed that the bacterium also produced a large amount of surfactant when grown on glucose, but in this case the surface active agent was cell bound. The surfactant was released from the cells when they were treated with hexadecane after growth. Tetradecane also showed a good capability for release of the surfactant. Decane and octane were less effective than hexadecane and tetradecane.  相似文献   

14.
The oil-degrading Arthrobacter sp. RAG-1 produced an extracellular nondialyzable emulsifying agent when grown on hexadecane, ethanol, or acetate medium. The emulsifier was prepared by two procedures: (i) heptane extraction of the cell-free culture medium and (ii) precipitation with ammonium sulfate. A convenient assay was developed for measurement of emulsifier concentrations between 3 and 75 micrograms/ml. The rate of emulsion fromation was proportional to both hydrocarbon and emulsifier concentrations. Above pH 6, activity was dependent upon divalent cations; half-maximum activity was obtained in the presence of 1.5 mM Mg2+. With a ratio of gas oil to emulsifier of 50, stable emulsions were formed with average droplet sizes of less than 1 micron. Emulsifier production was parallel to growth on either hydrocarbon or nonhydrocarbon substrates during the exponential phase; however, production continued after growth ceased.  相似文献   

15.
The rhamnolipid biosurfactant produced by Pseudomonas aeruginosa influences various processes related to hydrocarbon degradation. However, degradation can only be enhanced by the surfactant when it stimulates a process that is rate limiting under the applied conditions. Therefore we determined how rhamnolipid influences hexadecane degradation by P. aeruginosa UG2 under conditions differing in hexadecane availability. The rate of hexadecane degradation in shake flask cultures was lower for hexadecane entrapped in a matrix with 6 nm pores (silica 60) or in quartz sand than for hexadecane immobilized in matrices with pore sizes larger than 300 nm or for hexadecane present as a separate liquid phase. This indicates that the availability of hexadecane decreased with decreasing pore size under these conditions. The rate-limiting step for hexadecane entrapped in silica 60 was the mass transfer of substrate from the matrix to the bulk liquid phase, whereas for hexadecane present as a second liquid phase it was the uptake of the substrate by the cells. Hexadecane degradation in batch incubations was accelerated by the addition of rhamnolipid or other surfactants in all experiments except in those where hexadecane was entrapped in silica 60, indicating that the surfactants stimulated uptake of hexadecane by the cells. Since rhamnolipid stimulated the degradation rate in batch experiments to a greater extent than any of the other 14 surfactants tested, hexadecane uptake was apparently more enhanced by rhamnolipid than by the other surfactants. Although rhamnolipid did not stimulate the release of hexadecane from silica 60 under conditions of intense agitation, it significantly enhanced this rate during column experiments in the absence of strain UG2. The results demonstrate that rhamnolipid enhances degradation by stimulating release of entrapped substrate in column studies under conditions of low agitation and by stimulating uptake of substrate by the cells, especially when degradation is not limited by release of substrate from the matrices.  相似文献   

16.
The oil-degrading Arthrobacter sp. RAG-1 produced an extracellular nondialyzable emulsifying agent when grown on hexadecane, ethanol, or acetate medium. The emulsifier was prepared by two procedures: (i) heptane extraction of the cell-free culture medium and (ii) precipitation with ammonium sulfate. A convenient assay was developed for measurement of emulsifier concentrations between 3 and 75 micrograms/ml. The rate of emulsion fromation was proportional to both hydrocarbon and emulsifier concentrations. Above pH 6, activity was dependent upon divalent cations; half-maximum activity was obtained in the presence of 1.5 mM Mg2+. With a ratio of gas oil to emulsifier of 50, stable emulsions were formed with average droplet sizes of less than 1 micron. Emulsifier production was parallel to growth on either hydrocarbon or nonhydrocarbon substrates during the exponential phase; however, production continued after growth ceased.  相似文献   

17.
Twenty strains of Pseudomonas isolated from human clinical specimens on routine laboratory media, without hydrocarbon enrichment and unselected for their growth on hydrocarbons, were tested for their ability to utilize a series of eight n-alkanes and two 1-alkenes as a sole carbon and energy source for growth. Hydrocarbon assimilation does occur with such isolates relative to the chain length and the degree of saturation of the hydrocarbon. The data presented show that all 16 stains of Pseudomonas aeruginosa studied grew readily on dodecane through hexadecane and on 1-hexadecene. In addition, most strains of this species grew on undecane and 1-dodecene after prolonged incubation. There was a long lag period, usually a minimum of 4 days, before onset of growth on any hydrocarbon. In no case did hexane or decane support growth. Two strains each of P. maltophilia and P. stutzeri were unable to grow on any of the hydrocarbons tested. Hexane in concentrations above 1% (vol/vol) is bactericidal toward the Pseudomonas inoculum. It is toxic even to cells utilizing different hydrocarbon for growth. The addition of 1% hexane to 1% (vol/vol) hexadecane markedly prolonged the lag phase of P. aeruginosa utilizing the hexadecane for growth.  相似文献   

18.
Summary The growth of Candida maltosa on hydrocarbons (dodecane and hexadecane) was influenced by adding various natural and synthetic surfactants. Microbial adhesion to the hydrocarbon was used to measure the surface cell hydrophobicity of the yeast, which in the presence of a synthetic surfactant correlated with the degree of hydrocarbon biodegradation. Non-ionic surfactants caused the highest degree of hydrocarbon biodegradation corresponding the lowest hydrophobicity. A different correlation was observed with natural surfactants, of which saponin was the most effective for hydrocarbon biodegradation, though the concentration of this surfactant had no influence on surface cell hydrophobicity.  相似文献   

19.
The objective of this research was to evaluate the effect of low concentrations of a rhamnolipid biosurfactant on the in situ biodegradation of hydrocarbon entrapped in a porous matrix. Experiments were performed with sand-packed columns under saturated flow conditions with hexadecane as a model hydrocarbon. Application of biosurfactant concentrations greater than the CMC (the concentration at which the surfactant molecules spontaneously form micelles or vesicles [0.03 mM]) resulted primarily in the mobilization of hexadecane entrapped within the sand matrix. In contrast, application of biosurfactant concentrations less than the CMC enhanced the in situ mineralization of entrapped hexadecane; however, this effect was dependent on the choice of bacterial isolate. The two Pseudomonas isolates tested, R4 and ATCC 15524, were used because they exhibit different patterns of biodegradation of hexadecane, and they also differed in their physical response to rhamnolipid addition. ATCC 15524 cells formed extensive multicell aggregates in the presence of rhamnolipid while R4 cells were unaffected. This behavior did not affect the ability of the biosurfactant to enhance the biodegradation of hexadecane in well-mixed soil slurry systems but had a large affect on the extent of entrapped hexadecane biodegradation in the sand-packed-column system that was used in this study.  相似文献   

20.
The surface structure of the hypdrocarbon-utilizing yeast Candida tropicalis was investigated by scanning and transmission electron microscopy (SEM and TEM respectively). The sample preparation technique was based on a rapid cryofixation without any addition of cryoprotectants. In subsequently freeze-dried samples the surface structure was analysed by scanning electron microscopy. Thin sections were prepared from freeze substituted samples. Both techniques revealed hair-like structures at the surface of hydrocarbon-grown cells. The hairy surface structure of the cells was less expressed in glucose-grown cells and it was absent completely after proteolytic digestion of the cells. When cells were incubated with hexadecane prior to cyryofixation a contrast-rich region occured in the hair fringe of thin sections as revealed by TEM. Since these structures were characteristic for hexadecane-grown cells and could not be detected in glucose-grown or proteasetreated cells it was concluded that they originate from hexadecane adhering to the cell surface and are functionally related to hexadecane transport. The structure of the surface and its relation to hydrocarbon transport are discussed in view of earlier results on the chemical composition of the surface layer of the cell wall.Abbreviations SEM Scanning electron microscopy - TEM transmission electron microscopy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号