共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Conservation of high efficiency promoter sequences in Saccharomyces cerevisiae. 总被引:59,自引:44,他引:59
下载免费PDF全文

M J Dobson M F Tuite N A Roberts A J Kingsman S M Kingsman R E Perkins S C Conroy L A Fothergill 《Nucleic acids research》1982,10(8):2625-2637
The position of the yeast phosphoglycerate kinase (PGK) gene has been mapped on a 2.95kb Hind III fragment. We have determined the nucleotide sequence of the 5' flanking region and compared this sequence with those from 16 other yeast genes. PGK, like all other yeast genes has an adenine residue at position -3. It has two possible TATA boxes at positions -114 and -152 and a CAAT box at -129. In addition we have defined a structure at position -63 to -39 that is common to all yeast genes that encode an abundant RNA. This structure is a CT-rich block followed, about 10 nucleotides later, by the sequence CAAG. 相似文献
3.
4.
The small natural product wortmannin inhibits protein synthesis by modulating several phosphatidylinositol (PI) metabolic pathways. A primary target of wortmannin in yeast is the plasma membrane-associated PI 4-kinase (PI4K) Stt4p, which is required for actin cytoskeleton organization. Here we show that wortmannin treatment or inactivation of Stt4p, but not disorganization of the actin cytoskeleton per se, leads to a rapid attenuation of translation initiation. Interestingly, inactivation of Pik1p, a wortmannin-insensitive, functionally distinct PI4K, implicated in the regulation of Golgi functions and secretion, also results in severe translation initiation defects with a marked increase of the phosphorylation of the translation initiation factor eIF2alpha. Because wortmannin largely phenocopies the effects of rapamycin (e.g. it triggers nuclear accumulation of Gln3p), it likely also inhibits the PI kinase-related, target of rapamycin (TOR) kinases. Importantly, however, neither inactivation of Stt4p nor Pik1p significantly affects TOR-controlled readouts other than translation initiation, indicating that these PI4Ks do not simply function upstream of TOR. Together, our results reveal the existence of a novel translation initiation control mechanism in yeast that is tightly coupled to the synthesis of distinct PI4P pools. 相似文献
5.
The Ded1 protein (Ded1p), a member of the DEAD-box family, has recently been shown to be essential for translation initiation in Saccharomyces cerevisiae. Here, we show that Ded1p purified from Escherichia coli has an ATPase activity, which is stimulated by various RNA substrates. Using an RNA strand-displacement assay, we show that Ded1p has also an ATP-dependent RNA unwinding activity. Hydrolysis of ATP is required for this activity: the replacement of ATP by a nonhydrolyzable analog or a mutation in the DEAD motif abolishing ATPase activity results in loss of RNA unwinding. We find that cells harboring a Ded1 protein with this mutated DEAD motif are nonviable, suggesting that the ATPase and RNA helicase activities of this protein are essential to the cell. Finally, RNA binding measurements indicate that the presence of ATP, but not ADP, increases the affinity of Ded1p for duplex versus single-stranded RNA; we discuss how this differential effect might drive the unwinding reaction. 相似文献
6.
Transcriptional control of the Saccharomyces cerevisiae PGK gene by RAP1. 总被引:18,自引:11,他引:18
下载免费PDF全文

A Chambers J S Tsang C Stanway A J Kingsman S M Kingsman 《Molecular and cellular biology》1989,9(12):5516-5524
7.
Piyaviriyakul Prapruddee Panyim Sakol Eurwilaichitr Lily 《World journal of microbiology & biotechnology》2002,18(8):773-777
Different yeast plasmid systems containing different promoters such as ADH1, PGK, GAPDH and GAL1, and different selectable markers, such as URA3, TRP1 and leu2-d were compared to obtain the yeast expression system that provides high intracellular expression of giant catfish growth hormone (gcGH). The highest level of gcGH expression was observed in a recombinant yeast under the control of PGK promoter (17.1 mg/l or 1.4 g/0.1 OD). The amount of gcGH was increased six-fold (102.5 mg/l) when cells were grown in a rich medium (YEPD) with the inoculum and medium ratio of 1:1, although the amount of gcGH expression per cell density did not increase (1.0 g/0.1 OD). This indicated that the increased yield of gcGH in rich medium was due to the increased cell density. The aim of the study was to produce high level gcGH in the cells of S. cerevisiae in order to use the yeast cells as potential feed additives to promote growth in giant catfish. 相似文献
8.
M Altmann S Blum J Pelletier N Sonenberg T M Wilson H Trachsel 《Biochimica et biophysica acta》1990,1050(1-3):155-159
Translation initiation factor 4A- and 4E-dependent extracts were developed from Saccharomyces cerevisiae and used to study factor requirements for translation of individual mRNAs in vitro. Whereas all mRNAs tested required eIF-4A, mRNAs devoid of secondary structure in their 5' untranslated region did not require exogenous eIF-4E for translation. The latter included alfalfa mosaic virus RNA4, mRNA containing the untranslated region of tobacco mosaic virus RNA and mRNA containing part of the untranslated region of poliovirus RNA. Furthermore, initiation of translation on mRNAs containing part of the untranslated region of poliovirus RNA is most likely internal. 相似文献
9.
The "killer" plasmid and a larger double-stranded RNA plasmid of yeast exist in intracellular virion particles. Purification of these particles from a diploid killer strain of yeast (grown into stationary growth on ethanol) resulted in co-purification of a DNA-independent RNA polymerase activity. This activity incorporates and requires all four ribonucleoside triphosphates and will not act on deoxyribonucleoside triphosphates. The reaction requires magnesium, is inhibited by sulfhydryl-oxidizing reagents and high concentrations of monovalent cation, but is insensitive to DNase, alpha-amanitin, and actinomycin D. Pyrophosphate inhibits the reaction as does ethidium bromide. Exogenous nucleic acids have no effect on the reaction. The product is mostly single-stranded RNA, some of which is released from the enzymatically active virions. 相似文献
10.
11.
Characterisation of a repetitive DNA family from Entamoeba histolytica containing Saccharomyces cerevisiae ARS consensus sequences 总被引:3,自引:0,他引:3
Several repetitive DNA families were identified in Entamoeba histolytica DNA digested with Sau3AI. Characterisation of one of these repetitive DNA families showed the presence of multiple copies of Saccharomyces cerevisiae autonomously replicating sequence (ARS) core consensus sequences. The E. histolytica ARS consensus sequences allowed a yeast-integrating plasmid, YIP5, to replicate autonomously in S. cerevisiae. A 'bent DNA' fragment was located in one member of this E. histolytica repetitive DNA family. 相似文献
12.
13.
14.
Thermotolerant Saccharomyces strains were crossed with mesophilic Saccharomyces cerevisiae and with cryotolerant Saccharomyces bayanus. The former hybrid is fertile confirming thermotolerant strains as S. cerevisiae. The spores from this hybrid, though, possess a low germinability and give cultures that grow poorly. The hybrid cryotolerant x thermotolerant is sterile and show a new combination of the parental strains' traits improving their technological application. © Rapid Science Ltd. 1998 相似文献
15.
16.
17.
François Iborra Alain Raynal Michel Guerineau 《Molecular & general genetics : MGG》1988,213(1):150-154
Summary The relationship between the promoter length of the Kluyveromyces fragilis -glucosidase gene and the level of its expression in Saccharomyces cerevisiae was studied by gene fusion between deleted promoter fragments of various lengths and the promoterless -galactosidase gene of Escherichia coli. The removal of a region from position-425 to-232 led to a tenfold increase in the expression of the gene. The same results were obtained for the reconstructed -glucosidase gene with the same promoter length. It is likely that the deletion of this part of the promoter removes negative regulatory elements which are functional in Saccharomyces cerevisiae. This increase in activity is the main event which may explain the high increase in gene expression (60-fold) previously observed for an upstream deletion obtained during subcloning experiments of the -glucosidase gene. It is also shown that the expression of the gene greatly depends upon the nature of the recipient strain, the growth phase of the cell and that of the vector carrying it. 相似文献
18.
19.