首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of chemokines to glycosaminoglycans is thought to play a crucial role in chemokine functions. It has recently been shown that stromal cell-derived factor-1alpha (SDF-1alpha), a CXC chemokine with potent anti-human immunodeficiency virus activity, binds to heparan sulfate through a typical consensus sequence for heparin recognition (BBXB, where B is a basic residue KHLK, amino acids 24-27). Calculation of the accessible surface, together with the electrostatic potential of the SDF-1alpha dimer, revealed that other amino acids (Arg-41 and Lys-43) are found in the same surface area and contribute to the creation of a positively charged crevice, located at the dimer interface. GRID calculations confirmed that this binding site will be the most energetically favored area for the interaction with sulfate groups. Site-directed mutagenesis and surface plasmon resonance-based binding assays were used to investigate the structural basis for SDF-1alpha binding to heparin. Among the residues clustered in this basic surface area, Lys-24 and Lys-27 have dominant roles and are essential for interaction with heparin. Amino acids Arg-41 and Lys-43 participate in the binding but are not strictly required for the interaction to take place. Direct binding assays and competition analysis with monoclonal antibodies also permitted us to show that the N-terminal residue (Lys-1), an amino acid critical for receptor activation, is involved in complex formation. Binding studies with selectively desulfated heparin, heparin oligosaccharides, and heparitinase-resistant heparan sulfate fragments showed that a minimum size of 12-14 monosaccharide units is required for efficient binding and that 2-O- and N-sulfate groups have a dominant role in the interaction. Finally, the heparin-binding site was identified on the crystal structure of SDF-1alpha, and a docking study was undertaken. During the energy minimization process, heparin lost its perfect ribbon shape and fitted the protein surface perfectly. In the model, Lys-1, Lys-24, Lys-27, and Arg-41 were found to have the major role in binding a polysaccharide fragment consisting of 13 monosaccharide units.  相似文献   

2.
Activation of extracellular signal-regulated kinase (ERK) is known to be regulated by cell adhesion, namely "anchorage dependence". Most studies on the anchorage-dependent regulation have focused on the upstream activating components. We previously reported that the focal adhesion protein vinexin beta can induce the anchorage-independent activation of ERK2. We show here that vinexin beta-induced anchorage-independent activation of ERK2 involves prevention of the dephosphorylation of ERK2, but not the promotion of MEK1 or Raf1 activity. Furthermore, knockdown of vinexin beta resulted in a faster dephosphorylation of ERK2 in A549 cells. Moreover, the coexpression of MKP3/rVH6, an ERK2 specific phosphatase, suppressed the anchorage-independent activation of ERK2 induced by vinexin beta. These results suggest that vinexin beta can prevent the dephosphorylation of ERK2 stimulated by cell detachment, leading to the anchorage-independent activation of ERK2. Furthermore, we found that phosphatase activity directed against activated ERK2 was higher in suspended cells than in adherent cells. In addition, orthovanadate efficiently induces anchorage-independent activation of ERK2 without marked activation of MEK1 in NIH3T3 cells. These observations suggest that the anchorage dependence of ERK1/2 activation is regulated not only by upstream kinases, Raf1 and MEK, but also by phosphatases acting against ERK1/2 and that vinexin beta can induce anchorage-independent activation of ERK by preventing the inactivation of ERK1/2.  相似文献   

3.
4.
Stromal cell-derived factor-1 (SDF-1; CXCL12), a CXC chemokine, has been found to be involved in inflammation models in vivo and in cell adhesion, migration, and chemotaxis in vitro. This study aimed to determine whether exogenous SDF-1 induces leukocyte recruitment in mice. After systemic administration of SDF-1alpha, expression of the adhesion molecules P-selectin and VCAM-1 in mice was measured using a quantitative dual-radiolabeled Ab assay and leukocyte recruitment in various tissues was evaluated using intravital microscopy. The effect of local SDF-1alpha on leukocyte recruitment was also determined in cremaster muscle and compared with the effect of the cytokine TNFalpha and the CXC chemokine keratinocyte-derived chemokine (KC; CXCL1). Systemic administration of SDF-1alpha (10 microg, 4-5 h) induced upregulation of P-selectin, but not VCAM-1, in most tissues in mice. It caused modest leukocyte recruitment responses in microvasculature of cremaster muscle, intestine, and brain, i.e., an increase in flux of rolling leukocytes in cremaster muscle and intestines, leukocyte adhesion in all three tissues, and emigration in cremaster muscle. Local treatment with SDF-1alpha (1 microg, 4-5 h) reduced leukocyte rolling velocity and increased leukocyte adhesion and emigration in cremasteric venules, but the responses were much less profound than those elicited by KC or TNFalpha. SDF-1alpha-induced recruitment was dependent on endothelial P-selectin, but not P-selectin on platelets. We conclude that the exogenous SDF-1alpha enhances leukocyte-endothelial cell interactions and induces modest and endothelial P-selectin-dependent leukocyte recruitment.  相似文献   

5.
The tumor suppressor, Pten, has emerged as a critical negative regulator of phosphatidylinositol-3-kinase-dependent intracellular signaling pathways responsible for phenomena such as cellular adhesion, proliferation, and apoptosis. Herein, we present evidence that Pten regulates chemokine-dependent events in B lymphocytes. Primary B cells isolated from Pten(+/-) mice demonstrated increased responsiveness to stromal cell-derived factor-1-induced chemotaxis. This was accompanied by an elevated level of protein kinase B phosphorylation on Ser(473). Our results suggest not only that Pten may be an important regulator of stromal cell-derived factor-1-directed chemotaxis, but also that Pten heterozygosity is associated with increased cellular sensitivity to this chemokine, likely via dysregulation of events lying downstream of phosphatidylinositol-3-kinase. These observations suggest a mechanism by which loss of a single Pten allele may confer a selective advantage on cells during multistep tumor progression.  相似文献   

6.
7.
We investigated the role of H-Ras in chemokine-induced integrin regulation in leukocytes. Stimulation of Jurkat T cells with the CXC chemokine stromal cell-derived factor-1alpha (SDF-1alpha) resulted in a rapid increase in the phosphorylation, i.e., activation of extracellular signal receptor-activated kinase (ERK) but not c-Jun NH(2)-terminal kinase or p38 kinase, and phosphorylation of Akt, reflecting phosphatidylinositol 3-kinase (PI3-K) activation. Phosphorylation of ERK in Jurkat cells was enhanced and attenuated by expression of dominant active (D12) or inactive (N17) forms of H-Ras, respectively, while N17 H-Ras abrogated SDF-1alpha-induced Akt phosphorylation. SDF-1alpha triggered a transient regulation of adhesion to intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 mediated by lymphocyte function antigen-1 (LFA-1) and very late antigen-4 (VLA-4), respectively, and a rapid increase in LFA-1 binding to soluble ICAM-1.Ig, which was inhibited by D12 but not N17 H-Ras. Both D12 and N17 H-Ras abrogated the regulation of LFA-1 but not VLA-4 avidity, and impaired LFA-1-mediated transendothelial chemotaxis but not VLA-4-dependent transmigration induced by SDF-1alpha. Analysis of the mutant Jurkat J19 clone revealed LFA-1 with constitutively high affinity and reduced ERK phosphorylation, which were partially restored by expression of active H-Ras. Inhibition of PI3-K blocked the up-regulation of Jurkat cell adhesion to ICAM-1 by SDF-1alpha, whereas inhibition of mitogen-activated protein kinase kinase impaired the subsequent down-regulation and blocking both pathways abrogated LFA-1 regulation. Our data suggest that inhibition of initial PI3-K activation by inactive H-Ras or sustained activation of an inhibitory ERK pathway by active H-Ras prevail to abolish LFA-1 regulation and transendothelial migration induced by SDF-1alpha in leukocytes, establishing a complex and bimodal involvement of H-Ras.  相似文献   

8.
Chemokines provide directional cues for leukocyte migration and activation that are essential for normal leukocytic trafficking and for host responses during processes such as inflammation, infection, and cancer. Recently we reported that matrix metalloproteinases (MMPs) modulate the activity of the CC chemokine monocyte chemoattractant protein-3 by selective proteolysis to release the N-terminal tetrapeptide. Here we report the N-terminal processing, also at position 4-5, of the CXC chemokines stromal cell-derived factor (SDF)-1alpha and beta by MMP-2 (gelatinase A). Robustness of the MMP family for chemokine cleavage was revealed from identical cleavage site specificity of MMPs 1, 3, 9, 13, and 14 (MT1-MMP) toward SDF-1; selectivity was indicated by absence of cleavage by MMPs 7 and 8. Efficient cleavage of SDF-1alpha by MMP-2 is the result of a strong interaction with the MMP hemopexin C domain at an exosite that overlaps the monocyte chemoattractant protein-3 binding site. The association of SDF-1alpha with different glycosaminoglycans did not inhibit cleavage. MMP cleavage of SDF-1alpha resulted in loss of binding to its cognate receptor CXCR-4. This was reflected in a loss of chemoattractant activity for CD34(+) hematopoietic progenitor stem cells and pre-B cells, and unlike full-length SDF-1alpha, the MMP-cleaved chemokine was unable to block CXCR-4-dependent human immunodeficiency virus-1 infection of CD4(+) cells. These data suggest that MMPs may be important regulatory proteases in attenuating SDF-1 function and point to a deep convergence of two important networks, chemokines and MMPs, to regulate leukocytic activity in vivo.  相似文献   

9.
Stromal cell-derived factor (SDF)-1 is a chemoattractant for T cells, precursor B cells, monocytes, and neutrophils. SDF-1alpha was also found to up-regulate expression of early activation markers (CD69, CD25, and CD154) by anti-CD3-activated CD4+ T cells. In addition, SDF-1alpha costimulated proliferation of CD4+ T cells and production of IL-2, IFN-gamma, IL-4, and IL-10. Stimulation with SDF-1alpha alone did not induce activation marker expression, proliferation, or cytokine production by the CD4+ T cells. SDF-1alpha-mediated costimulation was blocked by anti-CXC chemokine receptor-4 mAb. RANTES also increased activation marker expression by anti-CD3-stimulated peripheral CD4+ T cells, but less effectively than SDF-1alpha did, and did not up-regulate IL-2 production and proliferation. These results indicate that SDF-1 and CXC chemokine receptor-4 interactions not only play a role in T cell migration but also provide potent costimulatory signals to Ag-stimulated T cells.  相似文献   

10.
Although many stimuli activate extracellular signal-regulated kinases 1 and 2 (ERK1/2), the kinetics and compartmentalization of ERK1/2 signals are stimulus-dependent and dictate physiological consequences. ERKs can be inactivated by dual specificity phosphatases (DUSPs), notably the MAPK phosphatases (MKPs) and atypical DUSPs, that can both dephosphorylate and scaffold ERK1/2. Using a cell imaging model (based on knockdown of endogenous ERKs and add-back of wild-type or mutated ERK2-GFP reporters), we explored possible effects of DUSPs on responses to transient or sustained ERK2 activators (epidermal growth factor and phorbol 12,13-dibutyrate, respectively). For both stimuli, a D319N mutation (which impairs DUSP binding) increased ERK2 activity and reduced nuclear accumulation. These stimuli also increased mRNA levels for eight DUSPs. In a short inhibitory RNA screen, 12 of 16 DUSPs influenced ERK2 responses. These effects were evident among nuclear inducible MKP, cytoplasmic ERK MKP, JNK/p38 MKP, and atypical DUSP subtypes and, with the exception of the nuclear inducible MKPs, were paralleled by corresponding changes in Egr-1 luciferase activation. Simultaneous removal of all JNK/p38 MKPs or nuclear inducible MKPs revealed them as positive and negative regulators of ERK2 signaling, respectively. The effects of JNK/p38 MKP short inhibitory RNAs were not dependent on protein neosynthesis but were reversed in the presence of JNK and p38 kinase inhibitors, indicating DUSP-mediated cross-talk between MAPK pathways. Overall, our data reveal that a large number of DUSPs influence ERK2 signaling. Together with the known tissue-specific expression of DUSPs and the importance of ERK1/2 in cell regulation, our data support the potential value of DUSPs as targets for drug therapy.  相似文献   

11.
Angiogenesis requires the mobilization of progenitor cells from the bone marrow (BM) and homing of progenitor cells to ischemic tissue. The cholesterol lowering drug Statins can stimulate angiogenesis via mobilization of BM derived endothelial progenitor cells (EPCs), promoting EPC migration, and inhibiting EPC apoptosis. The chemokine stromal cell-derived factor-1 (SDF-1) augments EPC chemotaxis, facilitates EPC incorporation into the neovasculature. The combined use of a statin to mobilize EPCs and local overexpression of SDF-1 to augment EPC homing to ischemic muscle resulted in superior angiogenesis versus use of either agent alone. Their effects are through augmenting EPC mobilization, incorporation, proliferation, migration and tube formation while inhibiting EPC apoptosis. Statin and SDF-1 therefore display synergism in promoting neovascularization by improving reperfusion of ischemic muscle, increasing progenitor cell presentation and capillary density in ischemic muscle, and diminishing apoptosis. These results suggest that the combination of statin and SDF-1 may be a new therapeutic strategy in the treatment of limb ischemia.Key words: angiogenesis, endothelial progenitor cells, statin, SDF-1, migrationAngiogenesis is the process by which new vessels form in ischemic tissue. The cytokine Stromal Cell Derived Factor-1 (SDF-1) is released into the circulation in response to ischemia and is an initiating signal in the angiogenesis process. SDF-1 mobilizes bone marrow cells (BMC) by binding to the cell surface receptor CXCR4. BMCs then enter the circulation and migrate to the ischemic site following the SDF-1 gradient. On arrival, BMCs promote angiogenesis by providing cellular elements such as endothelial cells (EC) and perivascular cells and also by secreting signaling proteins that mature the angiogenesis process. BMC surface CXCR4 expression and the SDF-1/CXCR4 interaction are essential for BMC to home to the injured site.Cell-based strategies to improve neovascularization of ischemic tissue have been achieved by injecting mononuclear cells derived from either BM1 or peripheral blood, directly into ischemic muscle,2 or by mobilizing BM-MNC with cytokines3 or other drugs such as statins.46Statins are 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors and are primarily used to lower circulating cholesterol levels. In addition to reducing cholesterol synthesis, inhibition of the mevalonate pathway prevents synthesis of isoprenoid intermediates including geranylgeranylpyrophosphate. Geranylgeranylation is important in the posttranslational modification of intracellular signaling proteins, including Rho GTPases. This mechanism underlies many of the pleiotropic effects including the ability of statins to stabilize endothelial nitric oxide synthase mRNA and increase nitric oxide biosynthesis. In fact, statins have been shown to protect against ischemic injury of the heart and stimulate angiogenesis in ischemic limbs of normocholesterolemic animals.7,8 The mechanism of action of statins has been demonstrated via mobilization of BM endothelial progenitor cells (EPCs) and facilitation of EPC incorporation into the neovasculature through a phosphoinositide-3 (PI-3) kinase-dependent pathway.46 Statins have also been reported to enhance EPC migration, augment EPC chemotaxis and inhibit EPC apoptosis both in vitro and in vivo.4,9,10SDF-1, an 89-amino acid polypeptide, is a member of the chemokine CXC subfamily originally isolated from murine bone marrow stromal cells.11 SDF-1 was initially identified as a potent chemoattractant for lymphocytes and monocytes, and as an enhancer of B cell proliferation. SDF-1 is considered to be a key regulator of hematopoietic stem cell trafficking between BM and the peripheral circulation. SDF-1 is highly expressed in ischemic tissues.12,13 Elevation of SDF-1 levels in peripheral blood results in BMC mobilization to the peripheral circulation with a concurrent decrease within the BM.14 SDF-1 not only mobilizes progenitor cells in BM but also directs them to the ischemic site by promoting cell migration and proliferation.3,15 SDF-1 may generate a gradient similar to developmental morphogens during ischemia that provides the cues and directions for progenitor cell mobilization into peripheral blood and homing to ischemic tissues.16,17 Furthermore, SDF-1 also reduces EPC apoptosis and enhances survival of the progenitor cells.3,18 SDF-1, either delivered locally in its protein form,3,19,20 or generated in situ via plasmid and viral vector-mediated gene expression,10,21,22 enhances neovascularization by augmenting EPC recruitment into ischemic tissues.SDF-1 binding to its receptor CXCR4 on the cell surface provides essential signals for mobilization and homing of EPCs to the injured site.2325 SDF-1 binding with CXCR4 triggers internalization of CXCR4. This SDF-1/CXCR4 interaction results in elevation of cytoplasmic Ca2+ levels26 and phosphorylation of PI-3 kinase and other protein kinases, e.g. Akt,21 MEK/ERK27,28 and Janus kinase (JAK)-2.29 Activation of Akt protein kinase further upregulates the activity of eNOS by increasing both eNOS expression and phosphorylation, which in turn catalyzes the production of nitric oxide (NO), an important signal molecule for vascular protection and remodeling.21,26 Disruption of SDF-1/CXCR4 interaction impaired incorporation of EPC into sites of ischemia, and disturbed ischemic limb neo-vascularization.30To explore if the combined use of a statin to mobilize BM EPCs and local overexpression of SDF-1 to augment EPC homing to ischemic muscle will result in superior angiogenesis versus use of either agent alone, we used the murine hindlimb ischemia model to determine the effects of Fluvastatin and SDF-1 on angiogenesis.10 Fluvastatin (5 mg/kg) was injected intra-peritoneally into the mice daily for 7 days to mobilize progenitor cells prior to ischemia-inducing surgery. NIH 3T3 cells transduced with the retroviral vector carrying SDF-1 gene were injected I.M. into the ischemic limb after surgery to locally deliver SDF-1 to ischemic muscle.22 The number of circulating EPCs increased 9–18 fold seven days post statin/SDF-1 treatment.Our data of single treatment with Fluvastatin are consistent with the previous reports that statins not only augment mobilization of progenitor cells by increasing circulating EPC originated from BM,4,31 but also modulate their differentiation. We further give a new insight view of the mechanism for statin induced EPC mobilization. We found that statin induced activation of matrix metalloproteinases (MMP)-2 and -9 in EPC. The increased MMP activity could result in degradation of extracellular matrix.17 Progenitor cells will be such mobilized into circulation when the cellular attachment is reduced within the bone marrow niches. We show that statin alone can enhance the phosphorylation of Akt, promote EPC proliferation, migration and inhibit cell apoptosis in vitro. The proangiogenic effects of statin are also illustrated in vivo using a murine hind-limb ischemia model. In this model, Fluvastatin treatment results in more EPC in circulation, more BM derived progenitor cells in ischemic muscle, more cell proliferation, enhanced capillary formation, and diminished cell apoptosis; these effects end up in improved reperfusion versus control. The beneficial effects of statin on angiogenesis are independent of cholesterol since the total serum cholesterol level is not changed by Fluvastatin treatment under these experimental conditions.To be noted, the effect of statins on EPCs was found to be concentration dependent. EPC proliferation, migration and the inhibition of apoptosis are enhanced at low statin concentrations (10 nM and 100 nM) but are significantly inhibited at a higher statin concentration (1,000 nM). The toxic effect of statin at high concentration cannot be compensated by addition of SDF-1, indicating that Statin causes apoptosis in a pathway different from the pathway that SDF-1 uses to prevent EPC apoptosis. Increased apoptosis at the higher statin concentration could explain the reversed effect of stain in angiogenesis. These findings are consistent with the reports in which statins were found to have proangiogenic effects at low therapeutic concentrations but angiostatic effects at high concentrations, the latter effect being reversible by geranylgeranyl pyrophosphate.32,33Combined statin and SDF-1 treatment significantly enhanced angiogenesis versus treatment with either reagent alone. More cell proliferation and less apoptosis were observed both in vitro and in vivo, along with increased cell migration and tube formation in vitro, and enhanced progenitor cell incorporation and higher capillary density in ischemic tissue in vivo. It is interesting to note that neither statin nor SDF-1 alone promotes EPC tube formation, but combined treatment results in significant EPC tube formation. These results suggest that SDF-1 and statin have different mechanisms of action with regards to the promotion of neovascularization. It is possible that each drug affects a specific subset of progenitor cells.The facilitative effect of both statin and SDF-1 on EPC proliferation and migration is involved with Akt phosphorylation and endothelial nitric oxide synthase (eNOS) activation. The mechanism by which statins promote angiogenesis is through, at least partly, improved nitric oxide bioavailability. Statins have been reported to induce eNOS mRNA stability34 and eNOS activity through a PI3k/Akt dependent pathway.31,3537 However, neither eNOS mRNA/protein expression nor EPCs are reported to be essential for the therapeutic effect of Fluvastatin on hypoxia-induced pulmonary hypertension; Fluvastatin improved eNOS phosphorylation by a mechanism independent of Akt activation.38 Our data favor a mechanism involving Akt phosphorylation since phosphorylated Akt is increased when EPCs are cultured in the presence of statin, and statin-enhanced EPC proliferation and migration were inhibited by the PI3K/Akt inhibitor LY294002.The angiogenic effects of SDF-1 also involve increased production of NO26 as NO is essential for EC migration and angiogenesis. SDF-1α gene transfer has been shown to enhance eNOS activity.21 Our in vitro data confirmed the involvement of Akt and eNOS in SDF-1 mediated cell migration.10 Phosphorylated Akt is increased when EPCs are cultured in the presence of SDF-1. The facilitative effect of SDF-1 on EPC migration is blocked by both the Akt inhibitor LY294002 and the eNOS inhibitor L-NMMA. In contrast, L-NMMA does not reverse the inhibitory effect of SDF-1 on apoptosis, indicating that the inhibitory effect of SDF-1 on apoptosis is not mediated through NO.22We also show that the expression of MMP-2 and MMP-9 was increased when EPCs were cultured in the presence of statin or SDF-1. MMPs are a family of proteolytic enzymes that degrade components of the extracellular matrix (ECM). Degradation of ECM is an essential step for cell mobilization and migration. Our data indicate that the novel effect of statin and SDF-1 on migration is through enhancement of MMP-2 and MMP-9 activity, resulting in ECM degradation, thus promoting progenitor cell mobilization and migration. Both Akt phosphorylation and expression of MMP-2 and MMP-9 in EPCs are further enhanced by combined treatment with statin and SDF-1. This result indicates that treatment of EPCs with either statin or SDF-1 as monotherapy results in a sub-maximal angiogenic response. The effects of statin partially overlap with that of SDF-1; and the combined use of two factors appears to have an optimal effect on progenitor cells (Fig. 1).Open in a separate windowFigure 1Effect of statins and SDF-1 on promoting angiogenesis. Statin enhances the phosphorylation of Akt with a yet undefined mechanism. SDF-1 binding with the G-protein coupled membrane receptor CXCR4 results in phosphorylation of protein kinases like PI3 kinase and Akt. Activation of Akt then upregulates the activities of MMPs and eNOS. NOS catalyze the synthesis of NO which is essential for the EPC migration. MMPs degrade extracellular matrix to initiate cell migration. Activation of Akt also prevents cell apoptosis. These reactions promote cell migration and proliferation and enhance EPC survival. EPCs from bone marrow are thus mobilized into circulation. The circulating EPC are homed into ischemia area in lure of SDF-1. EPCs contribute to neovascularisation, either directly by incorporation into endothelium and differentiation into endothelial cells or indirectly by differentiating into perivascular cells that provide physical support and secrete signaling proteins and structural enzymes enabling the angiogenesis process. The effects of statin partially overlap with that of SDF-1; and the combined use of two factors appears to have an additive/synergistic effect on progenitor cells.In summary, the combination of progenitor cell mobilization with statin and targeted recruitment into the ischemic bed by SDF-1 leads to improved blood flow in the ischemic limb versus treatment with either agent alone. Statin and SDF-1 therefore display synergism in promoting neovascularization. This result suggests that the combination of statin and SDF-1 may be a new therapeutic strategy in the treatment of limb ischemia. However, the use of statins as a clinical modifier of angiogenesis is still unproven. A great number of patients have been treated with these drugs and if they were potently proangiogenic, one might expect to see an increased risk of tumors. However, there is no evidence that these drugs encourage tumor development. Likewise, there is no definitive evidence for an antiangiogenic, tumor-modulating action of statins. We await further studies with interest.  相似文献   

12.
Angiogenesis requires the mobilization of progenitor cells from the bone marrow (BM) and homing of progenitor cells to ischemic tissue. The cholesterol lowering drug Statins can stimulate angiogenesis via mobilization of BM derived endothelial progenitor cells (EPCs), promoting EPC migration, and inhibiting EPC apoptosis. The chemokine stromal cell-derived factor-1 (SDF-1) augments EPC chemotaxis, facilitates EPC incorporation into the neovasculature. The combined use of a statin to mobilize EPCs and local over-expression of SDF-1 to augment EPC homing to ischemic muscle resulted in superior angiogenesis versus use of either agent alone. Their effects are through augmenting EPC mobilization, incorporation, proliferation, migration, and tube formation while inhibiting EPC apoptosis. Statin and SDF-1 therefore display synergism in promoting neovascularization by improving reperfusion of ischemic muscle, increasing progenitor cell presentation and capillary density in ischemic muscle, and diminishing apoptosis. These results suggest that the combination of statin and SDF-1 may be a new therapeutic strategy in the treatment of limb ischemia.  相似文献   

13.
Abstract

The chemokine stromal cell-derived factor-1 (SDF-1) regulates the trafficking of progenitor cell (PGC) during embryonic development, cell chemotaxis, and postnatal homing into injury sites. SDF-1 also regulates cell growth, survival, adhesion and angiogenesis. However, in different tissues/cells, the role of SDF-1 is different, such as that it is increased in most of the tumors and associated with cancer metastasis, whereas it is essential for the development of vasculature. For kidney diseases, its role remains controversial. Signaling pathways might be very important in the pathogenesis of kidney diseases. We performed this review to provide a relatively complete signaling pathway flowchart for SDF-1 to the investigators who were interested in the role of SDF-1 in the pathogenesis of kidney diseases. Here, we reviewed the signal transduction pathway of SDF-1 and its role in the pathogenesis of kidney diseases.  相似文献   

14.
CXCL12 (stromal cell-derived factor 1) is a unique biological ligand for the chemokine receptor CXCR4. We previously reported that treatment with a specific CXCR4 antagonist, AMD3100, exerts a beneficial effect on the development of collagen-induced arthritis (CIA) in the highly susceptible IFN-γ receptor-deficient (IFN-γR KO) mouse. We concluded that CXCL12 plays a central role in the pathogenesis of CIA in IFN-γR KO mice by promoting delayed type hypersensitivity against the auto-antigen and by interfering with chemotaxis of CXCR4+ cells to the inflamed joints. Here, we investigated whether AMD3100 can likewise inhibit CIA in wild-type mice and analysed the underlying mechanism. Parenteral treatment with the drug at the time of onset of arthritis reduced disease incidence and modestly inhibited severity in affected mice. This beneficial effect was associated with reduced serum concentrations of IL-6. AMD3100 did not affect anti-collagen type II antibodies and, in contrast with its action in IFN-γR KO mice, did not inhibit the delayed type hypersensitivity response against collagen type II, suggesting that the beneficial effect cannot be explained by inhibition of humoral or cellular autoimmune responses. AMD3100 inhibited the in vitro chemotactic effect of CXCL12 on splenocytes, as well as in vivo leukocyte infiltration in CXCL12-containing subcutaneous air pouches. We also demonstrate that, in addition to its effect on cell infiltration, CXCL12 potentiates receptor activator of NF-κB ligand-induced osteoclast differentiation from splenocytes and increases the calcium phosphate-resorbing capacity of these osteoclasts, both processes being potently counteracted by AMD3100. Our observations indicate that CXCL12 acts as a pro-inflammatory factor in the pathogenesis of autoimmune arthritis by attracting inflammatory cells to joints and by stimulating the differentiation and activation of osteoclasts.  相似文献   

15.
16.
We recently demonstrated that dopaminergic (DA) neurons of the rat substantia nigra constitutively expressed CXCR4, receptor for the chemokine stromal cell-derived factor-1 (SDF-1)/CXCL12 (SDF-1). To check the physiological relevance of such anatomical observation, in vitro and in vivo approaches were used. Patch clamp recording of DA neurons in rat substantia nigra slices revealed that SDF-1 (10 nmol/L) induced: (i) a depolarization and increased action potential frequency; and (ii) switched the firing pattern of depolarized DA neurons from a tonic to a burst firing mode. This suggests that SDF-1 could increase DA release from neurons. Consistent with this hypothesis, unilateral intranigral injection of SDF-1 (50 ng) in freely moving rat decreased DA content and increased extracellular concentrations of DA and metabolites in the ipsilateral dorsal striatum, as shown using microdialysis. Furthermore, intranigral SDF-1 injection induced a contralateral circling behavior. These effects of SDF-1 were mediated via CXCR4 as they were abrogated by administration of a selective CXCR4 antagonist. Altogether, these data demonstrate that SDF-1, via CXCR4, activates nigrostriatal DA transmission. They show that the central functions of chemokines are not restricted, as originally thought, to neuroinflammation, but extend to neuromodulatory actions on well-defined neuronal circuits in non-pathological conditions.  相似文献   

17.
The role of phosphatidylinositol 3-kinase (PI3-kinase), an important enzyme involved in signal transduction events, has been studied in the polarization and chemotaxis of lymphocytes induced by the chemokine stromal cell-derived factor-1 alpha (SDF-1 alpha). This chemokine was able to directly activate p85/p110 PI3-kinase in whole human PBL and to induce the association of PI3-kinase to the SDF-1 alpha receptor, CXCR4, in a pertussis toxin-sensitive manner. Two unrelated chemical inhibitors of PI3-kinase, wortmannin and Ly294002, prevented ICAM-3 and ERM protein moesin polarization as well as the chemotaxis of PBL in response to SDF-1 alpha. However, they did not interfere with the reorganization of either tubulin or the actin cytoskeleton. Moreover, the transient expression of a dominant negative form of the PI3-kinase 85-kDa regulatory subunit in the constitutively polarized Peer T cell line inhibited ICAM-3 polarization and markedly reduced SDF-1 alpha-induced chemotaxis. Conversely, overexpression of a constitutively activated mutant of the PI3-kinase 110-kDa catalytic subunit in the round-shaped PM-1 T cell line induced ICAM-3 polarization. These results underline the role of PI3-kinase in the regulation of lymphocyte polarization and motility and indicate that PI3-kinase plays a selective role in the regulation of adhesion and ERM proteins redistribution in the plasma membrane of lymphocytes.  相似文献   

18.
When cells are stimulated by mitogens, extracellular signal-regulated kinase (ERK) is activated by phosphorylation of its regulatory threonine (Thr) and tyrosine (Tyr) residues. The inactivation of ERK may occur by phosphatase-mediated removal of the phosphates from these Tyr, Thr or both residues together. In this study, antibodies that selectively recognize all combinations of phosphorylation of the regulatory Thr and Tyr residues of ERK were developed, and used to study the inactivation of ERK upon mitogenic stimulation. We found that inactivation of ERK in the early stages of mitogenic stimulation involves separate Thr and Tyr phosphatases which operate differently in the nucleus and in the cytoplasm. Thus, ERK is differentially regulated in various subcellular compartments to secure proper length and strength of activation, which eventually determine the physiological outcome of many external signals.  相似文献   

19.
OBJECTIVE: To investigate the kinetics of insulin-like growth factor-1 receptor (IGF-1R) expression in PHA-stimulated T lymphocytes. METHODS: IGF-1R protein and mRNA were detected by flow cytometry and RT-PCR respectively, between 0 and 48 h after cell activation. RESULTS: Few minutes after T lymphocytes were activated, internalization of the IGF-1R from the cell membrane was observed, achieving the lower level between 1 and 6 h and was accompanied by a reduction in its mRNA. This was followed by re-expression of IGF-1R on the cell surface and an increase in IGF-1R mRNA levels in the cytoplasm, reaching levels higher than those recorded initially after 48 h activation. CONCLUSION: This down- and up-regulation suggests that restoration of IGF-1R would be the result of receptor recycling and de novo synthesis and highlights its importance for T lymphocyte proliferation.  相似文献   

20.
Cyclophosphamide (CP) is one of the widely used anticancer agents; however, it has serious deleterious effects on normal host cells due to its nonspecific action. The essential trace element Selenium (Se) is suggested to have chemopreventive and chemotherapeutic efficacy and currently used in pharmaceutical formulations. Previous report had shown Nano-Se could protect CP-induced hepatotoxicity and genotoxicity in normal Swiss albino mice; however, its role in cancer management is still not clear. The aim of present study is to investigate the chemoprotective efficacy of Nano-Se against CP-induced toxicity as well as its chemoenhancing capability when used along with CP in Swiss albino mice against Ehrlich’s ascites carcinoma (EAC) cells. CP was administered (25 mg/kg b.w., i.p.) and Nano-Se was given (2 mg Se/kg b.w., p.o.) in concomitant and pretreatment schedule. Increase levels of serum hepatic marker, hepatic lipid peroxidation, DNA damage, and chromosomal aberration in CP-treated mice were significantly (P < 0.05) reversed by Nano-Se. The lowered status of various antioxidant enzymes in tumor-bearing mice after CP treatment was also effectively increased by Nano-Se. Administration of Nano-Se along with CP caused a significant reduction in tumor volume, packed cell volume, viable tumor cell count, and increased the survivability of the tumor-bearing hosts. The results suggest that Nano-Se exhibits significant antitumor and antioxidant effects in EAC-bearing mice. The potential for Nano-Se to ameliorate the CP-evoked toxicity as well as to improve the chemotherapeutic effect could have beneficial implications for patients undergoing chemotherapy with CP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号