首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This study deals with the effects of the initial nitrogen source (NZ Case TT) level and the protocol of glucose addition during the fed‐batch production of tetanus toxin by Clostridium tetani. An increase in the initial concentration of NZ Case TT (NZ0) accelerated cell growth, increased the consumption of the nitrogen source as well as the final yield of tetanus toxin, which achieved the highest values (50–60 Lf/mL) for NZ0 ≥ 50 g/L. The addition of glucose at fixed times (16, 56, and 88 h) ensured a toxin yield (~60 Lf/mL) about 33% higher than those of fed‐batch runs with addition at fixed concentration (~45 Lf/mL) and about 300% higher than those obtained in reference batch runs nowadays used at industrial scale. The results of this work promise to substantially improve the present production of tetanus toxin and may be adopted for human vaccine production after detoxification and purification. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

2.
The production of water-soluble single-sugar glucuronic acid-based oligosaccharides (WSOS) by a cellulose producing strain Gluconacetobacter hansenii PJK was studied in a periodically recycled and fed-batch cultivations using glucose/ethanol or glucose only. Fermentations were carried out in a 2 L jar fermenter equipped with a turbine impeller with 6 flat blades. WSOS were produced constantly but the bacterial cellulose (BC) production stopped at 48 h of cultivation in a periodically recycled culture using the exhausted medium supplemented with glucose and ethanol. Tremendous quantities of WSOS were obtained in fed-batch cultivations using glucose/ethanol (35.6 g/L at 132 h of cultivation) or glucose only (86 g/L after 240 h of cultivation) as the nutritional source. However, the BC production yield under these nutritional conditions decreased significantly in comparison to previous studies about the BC production by the same strain. The overall results revealed that G. hansenii is capable of producing enormous quantities of WSOS compared to those reported previously for compounds of a related chemical nature. Moreover, the WSOS production was found to be dependent on the pH of the culture broth.  相似文献   

3.
Tetanus toxin, a potent neurotoxin which blocks neurotransmitter release in the CNS, also inhibits Ca2+-induced catecholamine release from digitonin-permeabilized, but not from intact bovine chromaffin cells. In searching for intracellular targets for the toxin we studied the binding of affinity-purified tetanus toxin to bovine adrenal chromaffin granules. Tetanus toxin bound in a neuraminidase-sensitive fashion to intact granules and to isolated granule membranes, as assayed biochemically and visualized by electron microscopic techniques. The binding characteristics of the toxin to chromaffin granule membranes are very similar to the binding of tetanus toxin to brain synaptosomal membranes. We suggest that the toxin-binding site is a glycoconjugate of the G1b type (a polysialoganglioside or a glycoprotein-proteoglycan) which is localized on the cytoplasmic face of the granule membrane and might directly be involved in exocytotic membrane fusion.  相似文献   

4.
Tetanus neurotoxin binds via its carboxyl-terminal H(C)-fragment selectively to neurons mediated by complex gangliosides. We investigated the lactose and sialic acid binding pockets of four recently discovered potential binding sites employing site-directed mutagenesis. Substitution of residues in the lactose binding pocket drastically decreased the binding of the H(C)-fragment to immobilized gangliosides and to rat brain synaptosomes as well as the inhibitory action of recombinant full length tetanus neurotoxin on exocytosis at peripheral nerves. The conserved motif of S(1287)XWY(1290) em leader G(1300) assisted by N1219, D1222, and H1271 within the lactose binding site comprises a typical sugar binding pocket, as also present, for example, in cholera toxin. Replacement of the main residue of the sialic acid binding site, R1226, again caused a dramatic decline in binding affinity and neurotoxicity. Since the structural integrity of the H(C)-fragment mutants was verified by circular dichroism and fluorescence spectroscopy, these data provide the first biochemical evidence that two carbohydrate interaction sites participate in the binding and uptake process of tetanus neurotoxin. The simultaneous binding of one ganglioside molecule to each of the two binding sites was demonstrated by mass spectroscopy studies, whereas ganglioside-mediated linkage of native tetanus neurotoxin molecules was ruled out by size exclusion chromatography. Hence, a subsequent displacement of one ganglioside by a glycoprotein receptor is discussed.  相似文献   

5.
Yeh FL  Dong M  Yao J  Tepp WH  Lin G  Johnson EA  Chapman ER 《PLoS pathogens》2010,6(11):e1001207
Tetanus neurotoxin causes the disease tetanus, which is characterized by rigid paralysis. The toxin acts by inhibiting the release of neurotransmitters from inhibitory neurons in the spinal cord that innervate motor neurons and is unique among the clostridial neurotoxins due to its ability to shuttle from the periphery to the central nervous system. Tetanus neurotoxin is thought to interact with a high affinity receptor complex that is composed of lipid and protein components; however, the identity of the protein receptor remains elusive. In the current study, we demonstrate that toxin binding, to dissociated hippocampal and spinal cord neurons, is greatly enhanced by driving synaptic vesicle exocytosis. Moreover, tetanus neurotoxin entry and subsequent cleavage of synaptobrevin II, the substrate for this toxin, was also dependent on synaptic vesicle recycling. Next, we identified the potential synaptic vesicle binding protein for the toxin and found that it corresponded to SV2; tetanus neurotoxin was unable to cleave synaptobrevin II in SV2 knockout neurons. Toxin entry into knockout neurons was rescued by infecting with viruses that express SV2A or SV2B. Tetanus toxin elicited the hyper excitability in dissociated spinal cord neurons - due to preferential loss of inhibitory transmission - that is characteristic of the disease. Surprisingly, in dissociated cortical cultures, low concentrations of the toxin preferentially acted on excitatory neurons. Further examination of the distribution of SV2A and SV2B in both spinal cord and cortical neurons revealed that SV2B is to a large extent localized to excitatory terminals, while SV2A is localized to inhibitory terminals. Therefore, the distinct effects of tetanus toxin on cortical and spinal cord neurons are not due to differential expression of SV2 isoforms. In summary, the findings reported here indicate that SV2A and SV2B mediate binding and entry of tetanus neurotoxin into central neurons.  相似文献   

6.
7.
A subclone of rat pheochromocytoma cells expresses high affinity receptors for tetanus toxin on differentiation with NGF [Walton, K.M., Sandberg, K., Rogers, T.B. and Schnaar, R.L. (1988) J. Biol. Chem. 263, 2055–2063]. In the presence of protein cross-linking agents, [125I]tetanus toxin, bound to these cells at 0°C, forms a cross-linked product with apparent molecular weight of 120 kDa. The formation of [125I]tetanus toxin conjugate involves the heavy chain of the toxin, is prevented by cold toxin and it is largely reduced by pretreating cells with proteases, The cross-linked product is formed only upon incubation of the toxin with NGF-differentiated cells. These results suggest that a protein with apparent molecular weight of 20 kDa is involved in the neurospecific binding of tetanus toxin.  相似文献   

8.
9.
Padfield PJ 《FEBS letters》2000,484(2):129-132
The neurotoxin sensitivity of regulated exocytosis in the pancreatic acinar cell was investigated using streptolysin-O permeabilized pancreatic acini. Treatment of permeabilized acini with botulinum toxin B (BoNT/B) or botulinum toxin D (BoNT/D) had no detectable effect on Ca(2+)-dependent amylase secretion but did result in the complete cleavage of VAMP 2. In comparison, tetanus toxin (TeTx) treatment both significantly inhibited Ca(2+)-dependent amylase secretion and cleaved VAMP 2. These results indicate that regulated exocytosis in the pancreatic acinar cell requires a tetanus toxin sensitive protein(s) other than VAMP 2.  相似文献   

10.
Tetanus toxin is a potent neurotoxin that inhibits the release of neurotransmitters from presynaptic nerve endings. The mature toxin is composed of a heavy and a light chain that are linked via a disulfide bridge. After entry of tetanus toxin into the cytoplasm, the released light chain causes block of neurotransmitter release. Recent evidence suggests that the L-chain may act as a metalloendoprotease. Here we demonstrate that blockade of neurotransmission by tetanus toxin in isolated nerve terminals is associated with a selective proteolysis of synaptobrevin, an integral membrane protein of synaptic vesicles. No other proteins appear to be affected by tetanus toxin. In addition, recombinant light chain selectively cleaves synaptobrevin when incubated with purified synaptic vesicles. Our data suggest that cleavage of synaptobrevin is the molecular mechanism of tetanus toxin action.  相似文献   

11.
The Malayan krait (Bungarus candidus) is one of the medically most important snake species in Southeast Asia. The venom from this snake has been shown to posses both presynaptic and post-synaptic neurotoxins. We have isolated a previously uncharacterized post-synaptic neurotoxin - alphaN3 from the venom of B. candidus. Isolation of the toxin was achieved in three successive chromatography steps - gel filtration on a Sephadex G75 column, followed by ion exchange chromatography (Mono-S strong cationic exchanger) and a final reverse-phase chromatography step (PRO-RPC C18 column). Purified toxin alphaN3 was shown to have an apparent molecular weight of ∼7 to 8 kDa on SDS-PAGE. The complete amino acid sequence of toxin alphaN3 was determined by Edman degradation and was found to share a high degree of homology with known post-synaptic neurotoxins (93% with alpha-bungarotoxin from Bungarus multicinctus, 50% with alpha cobratoxin from Naja kaouthia). The intravenous LD50 of toxin alphaN3 was determined to be 0.16 ± 0.09 μg/g in mice which is comparable to alpha-bungarotoxin from B. multicinctus. Experiments with isolated nerve-muscle preparations suggested that toxin alphaN3 was a post-synaptic neurotoxin that produced complete blockade of neuromuscular transmission by binding to nicotinic acetylcholine receptors.  相似文献   

12.
The entry of tetanus neurotoxin into neuronal cells proceeds through the initial binding of the toxin to gangliosides on the cell surface. The carboxyl-terminal fragment of the heavy chain of tetanus neurotoxin contains the ganglioside-binding site, which has not yet been fully characterized. The crystal structures of native H(C) and of H(C) soaked with carbohydrates reveal a number of binding sites and provide insight into the possible mode of ganglioside binding.  相似文献   

13.
为改善乳酸乳球菌的生长性能,以轮枝链霉菌染色体DNA为模板,扩增得到编码谷氨酰胺转胺酶成熟酶的基因mtg,将其克隆到质粒pNZ8148中,电转化乳酸乳球菌NZ9000,获得乳酸乳球菌NZ9000(pFL001)(重组菌)。在不控制pH条件下,重组菌的胞外pH显著高于对照菌NZ9000(pNZ8148);前者的最高生物量可达4.13gL,而后者只有0.34gL。在控制pH为6.5±0.1的条件下,重组菌最高生物量为4.73gL,对葡萄糖的菌体最高平均得率为71.1gmol,而相同条件下对照菌最高生物量为2.6gL,对葡萄糖的菌体最高平均得率为27.3gmol。由此表明,重组菌与对照菌相比,好氧生长性能得到显著改善。可能的原因是mtg的活性表达升高了重组菌的胞内pH,原先用于泵出胞内H 所需的部分能量可能因此得到节省,这样相应增加了用于细胞生长的能量。  相似文献   

14.
The tetanus neurotoxin (TeNT) is a highly potent toxin produced by Clostridium tetani that inhibits neurotransmission of inhibitory interneurons, causing spastic paralysis in the tetanus disease. TeNT differs from the other clostridial neurotoxins by its unique ability to target the central nervous system by retrograde axonal transport. The crystal structure of the tetanus toxin reveals a “closed” domain arrangement stabilised by two disulphide bridges, and the molecular details of the toxin's interaction with its polysaccharide receptor. An integrative analysis combining X‐ray crystallography, solution scattering and single particle electron cryo‐microscopy reveals pH‐mediated domain rearrangements that may give TeNT the ability to adapt to the multiple environments encountered during intoxication, and facilitate binding to distinct receptors.  相似文献   

15.
BACKGROUND: This study was undertaken to examine putative mechanisms of calcium independent signal transduction pathway of cell swelling-induced insulin secretion. METHODS: The role of phospholipase A(2), G proteins, and soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) in insulin secretion induced by 30% hypotonic medium was studied using isolated rat pancreatic islets. RESULTS: In contrast to glucose stimulation, osmotically induced insulin secretion from pancreatic islets was not inhibited by 10 micromol/l bromoenol lactone, an iPLA(2) (Ca(2+) independent phospholipase) inhibitor. Similarly, preincubation of islets for 20 hours with 25 microg/ml mycophenolic acid to inhibit GTP synthesis fully abolished glucose-induced insulin secretion but was without effect on hypotonicity stimulated insulin release. Glucose-induced insulin secretion was prevented by preincubation with 20 nmol/l tetanus toxin (TeTx), a metalloprotease inactivating soluble SNARE. Cell swelling-induced insulin secretion was inhibited by TeTx in the presence of calcium ions but not in calcium depleted medium. The presence of N-ethylmaleimide (NEM, 5 mmol/l, another inhibitor of SNARE proteins) in the medium resulted in high basal insulin secretion and lacking response to glucose stimulation. In contrast, high basal insulin secretion from NEM treated islets further increased after hypotonic stimulation. CONCLUSION: G proteins and iPLA(2) - putative mediators of Ca(2+) independent signaling pathway participate in glucose but not in hypotonicity-induced insulin secretion. Hypotonicity-induced insulin secretion is sensitive to clostridial neurotoxin TeTx but is resistant to NEM.  相似文献   

16.
《Biologicals》2014,42(4):199-204
Tetanus vaccines contain detoxified tetanus neurotoxin. In order to check for residual toxicity, the detoxified material (toxoid) has to be tested in guinea pigs. These tests are time-consuming and raise animal welfare issues. In line with the “3R” principles of replacing, reducing and refining animal tests, the “binding and cleavage” (BINACLE) assay for detection of active tetanus neurotoxin has been developed as a potential alternative to toxicity testing in animals. This in vitro test system can discriminate well between toxic and detoxified toxin molecules based on their receptor-binding and proteolytic characteristics.Here we describe an international study to assess the transferability of the BINACLE assay. We show that all participating laboratories were able to successfully perform the assay. Generally, assay variability was within an acceptable range. A toxin concentration-dependent increase of assay signals was observed in all tests. Furthermore, participants were able to detect low tetanus neurotoxin concentrations close to the estimated in vivo detection limit.In conclusion, the data from this study indicate that the methodology of the BINACLE assay seems to be robust, reproducible and easily transferable between laboratories. These findings substantiate our notion that the method can be suitable for the routine testing of tetanus toxoids.  相似文献   

17.
Of the seven amino acids required by Clostridium botulinum type E, tryptophan is the most essential and may provide the cell with nitrogen. The addition of excess tryptophan (10–20 mM) or other nitrogenous nutrients to minimal growth medium markedly decreased toxin formation but did not affect growth in C. botulinum type E. On the other hand, the addition of an enzymatic digest of casein (NZ Case) stimulated toxin formation and overcame repression by tryptophan. Immunoblots of proteins in culture fluids using antibodies to type E toxin indicated that tryptophan-repressed cultures produced less neurotoxin protein. Inhibitors of neurotoxin did not accumulate in cultures grown in minimal medium supplemented with high tryptophan. The results suggest that tryptophan availability in foods or in the intestine may be important for toxin formation by C. botulinum type E.  相似文献   

18.
By the fusion of lymphocytes from hyperimmunized people with heteromyeloma cells, 600 human hybridoma cell lines were generated. Even though seven cell lines produced antibodies against tetanus toxoid, only two antibodies from hybrid CH8 and CH5 only neutralized the tetanus toxin and completely protected the mice that had been challenged with the toxin even at the level of 90 mean lethal dose. The cDNA of light (L) chain and heavy (H) chain variable region was isolated, and then inserted into expression vectors containing human IgG constant regions. After transfection of the recombinant human IgG gene into Chinese Hamster Ovary (CHO) cells, transformants secreting the complete human antibody were selected. The recombinant human antibodies produced from CHO cells possessed neutralizing activity against tetanus toxin just like the original human antibodies produced from human hybridoma cell lines. Western blot analysis showed that rCH8 and rCH5 antibodies recognized the H chain of tetanus toxin and did not bind to its L chain. The neutralizing test showed that HmAb rCH5 had 4.55IU and HmAb rCH8 had 1.09IU/100 micro g of IgG, respectively. Mixing of the two HmAbs resulted in synergistic effects. On a weight basis (IU/100 micro g IgG), the highest potency values were obtained when the two HmAbs were combined in equal quantity. The neutralizing activity of rCH8 and rCH5 mixture was 6.94IU/100 micro g IgG.  相似文献   

19.
Botulinum and tetanus neurotoxins are structurally and functionally related 150 kDa proteins that are potent inhibitors of neuroexocytosis. Botulinum neurotoxin associates with non-toxic proteins to form complexes of various sizes. The botulinum neurotoxin and non-toxic protein genes are clustered in a DNA segment called the botulinum locus. This locus is probably located on a mobile or degenerate mobile element, which accounts for the various genomic localizations (chromosome, plasmid, phage) in different Clostridium botulinum types. The botulinum neurotoxin and non-toxic protein genes are organized in two polycistronic operons (ntnh-bont and ha operons) transcribed in opposite orientations. The gene that separates the two operons of the botulinum locus in C. botulinum A encodes a 21 kDa protein BotR/A, which is a positive regulator of the expression of the botulinum locus genes. Similarly, in Clostridium tetani, the gene located immediately upstream of the tetanus toxin gene, encodes a positive regulatory protein, TetR. BotR and TetR are possibly alternative sigma factors related to TxeR and UviA, which regulate C. difficile toxin and C. perfringens bacteriocin production, respectively. TxeR and UviA define a new sub-group of the sigma(70) family of RNA polymerase initiation factors. In addition, the C. botulinum genome contains predicted two-component system genes, some of which are possibly involved in regulation of toxinogenesis.  相似文献   

20.
Lysosomal disruption by bacterial toxins   总被引:5,自引:0,他引:5  
Bernheimer, Alan W. (New York University School of Medicine, New York), and Lois L. Schwartz. Lysosomal disruption by bacterial toxins. J. Bacteriol. 87:1100-1104. 1964.-Seventeen bacterial toxins were examined for capacity (i) to disrupt rabbit leukocyte lysosomes as indicated by decrease in turbidity of lysosomal suspensions, and (ii) to alter rabbit liver lysosomes as measured by release of beta-glucuronidase and acid phosphatase. Staphylococcal alpha-toxin, Clostridium perfringens alpha-toxin, and streptolysins O and S affected lysosomes in both systems. Staphylococcal beta-toxin, leucocidin and enterotoxin, Shiga neurotoxin, Serratia endotoxin, diphtheria toxin, tetanus neurotoxin, C. botulinum type A toxin, and C. perfringens epsilon-toxin were not active in either system. Staphylococcal delta-toxin, C. histolyticum collagenase, crude C. perfringens beta-toxin, and crude anthrax toxin caused lysosomal damage in only one of the test systems. There is a substantial correlation between the hemolytic property of a toxin and its capacity to disrupt lysosomes, lending support to the concept that erythrocytes and lysosomes are bounded by similar membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号