首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary We examined the distribution of binding sites for alpha-atrial natriuretic peptide (125I-ANP1–28) and the recently discovered porcine brain natriuretic peptide (125I-pBNP) on immunocytochemically identified cells in dissociated culture preparations of the rat trachea. Specific binding sites for both 125I-ANP1–28 and 125I-pBNP were evenly distributed over distinet subpopulations of smooth muscle myosin-like immunoreactive muscle cells, fibronectin-like immunoreactive fibroblasts and S-100-like immunoreactive glial cells. Neither keratin-like immunoreactive epithelial cells nor protein gene product 9.5-like immunoreactive paratracheal neurones expressed natriuretic peptide binding sites, although autoradiographically labelled glial cells were seen in close association with both neuronal cell bodies and neurites. The binding of each radiolabelled peptide was abolished by the inclusion of either excess (1 M) unlabelled rat ANP or excess unlabelled porcine BNP, suggesting that ANP and BNP share binding sites in the trachea. Furthermore, the ring-deleted analogue, Des-[Gln18, Ser19, Gly20, Leu21, Gly22]-ANF4–23-NH2, strongly competed for specific 125I-ANP1–28 and 125I-pBNP binding sites in the tracheal cultures; this suggests that virtually all binding sites were of the clearance (ANP-C or ANF-R2) receptor subtype.  相似文献   

2.
Summary The distribution of atrial natriuretic peptide binding sites on cells in dissociated culture preparations of neonatal rat superior cervical ganglia and in explant cultures of rat thoracic sympathetic chain ganglia has been studied. The autoradiographic visualisation of atrial natriuretic peptide binding sites has been combined with the use of specific immunocytochemical markers for glial cells (antiserum to S-100 protein), fibroblasts (antiserum to fibronectin) and neurones (antiserum to protein gene product 9.5) in order to achieve unambiguous identification of the cell types in culture. Specific binding sites for rat125I-atrial natriuretic peptide(1–28) were observed over subpopulations of fibronectin-like-immunoreactive fibroblasts and S-100-like-immunoreactive glia in the dissociated superior cervical ganglion cultures. However, only a subpopulation of fibronectin-like-immunoreactive fibroblasts possessed atrial natriuretic peptide binding sites in the explant culture preparations. No atrial natriuretic peptide-like-immunoreactive cells were present in either culture. The distribution of autoradiographic grains over individual cell surfaces in culture was uniform, but there were distinct differences in the density of labelling of single cells of the same type. This apparent variation in the number of binding sites on glial cells and fibroblasts in culture did not seem to be related to the morphology of the cells or the surrounding cell types. No sympathetic neurones were labelled with autoradiographic grains in either the dissociated or explant culture preparations. However, the presence of atrial natriuretic peptide binding sites on non-neuronal cells of sympathetic ganglia in culture may be linked to the relationship between atrial natriuretic peptide and the sympathetic nervous system.  相似文献   

3.
Brain (BNP) and atrial natriuretic peptides (ANP) have been identified which may represent endogenous agonists of kidney receptor subtypes. Quantitative in vitro autoradiography was used to investigate the regional distribution of receptor subpopulations and the competitive inhibition of 125I porcine BNP1-26 (pBNP1-26) and 125I rat alpha-ANP1-28 (rANP1-28) renal binding sites. Specific, high affinity binding (Kd 0.2-1.37 nM range) was localized to glomeruli, inner medulla, interlobar and arcuate arteries, vasa recta bundles, and smooth muscle in the renal pelvis. pBNP1-26 competed for the same sites as rANP1-28 but displayed a lower potency and was less selective for nonclearance sites. Clearance binding sites were discriminated by competitive inhibition with C-ANP4-23 and comprised some 65% of glomerular sites as well as the vast majority of sites in the renal pelvis. Nonclearance sites predominated in the inner medulla and intrarenal arteries. C-terminal changes in amino acid sequence induced a significant loss of inhibitory potency. Immunohistochemical studies identified a distinct population of BNP-like immunoreactive renal nerve fibers, associated with intra-renal arteries. Circulating natriuretic peptides and BNP sequences derived from renal nerves may influence renal function by interacting with specific receptor subpopulations in the kidney.  相似文献   

4.
We have studied muscarinic acetylcholine (ACh) receptors in intact atrial and ventricular heart cells dissociated from 8-day chick embryos and maintained in sparse cell cultures. Two specific antagonists, [3H]quinuclidinyl benzilate (QNB) and [3H]N-methyl scopolamine (NMS), bind to surface sites with affinity (Kds ? 40 and 400 pM, respectively). The concentration of [3H]QNB sites in ventricular cell cultures (460 fmole/mg protein) was comparable to the concentration of sites in atrial cultures (420 fmole/mg protein). The same result was obtained with [3H]NMS. Autoradiography following incubation in saturating concentrations of [3H]QNB shows that nearly all of the atrial and ventricular myocytes were labeled and that the distribution of grains over individual cells was uniform. The mean binding site density was 109/μm2 for atrial cells 117/μm2 for ventricular cells. In contrast to the antagonist binding results, microelectrode recordings from individual myocytes or from small clusters of cells showed that many more atrial myocytes (89%) were sensitive to 10?4M carbachol than were ventricular myocytes (26%). Saline extract of embryonic brain tissue added to the culture medium did not alter the number or distribution of ligand binding sites but it produced a 2.6-fold increase in the number of carbachol-sensitive ventricular cells.  相似文献   

5.
Human thyroid follicles and primary cell cultures derived from them demonstrated atrial natriuretic peptide (ANP)-like immunoreactivity when stained with a monoclonal antibody raised against rat alpha-ANP (ANP 1-28). In thyroid sections the staining was most intense in the tall cuboidal epithelium of small follicles. The intracellular distribution of immunoreactive (ir)-ANP in primary cultures of thyroid follicular cells consisted of discrete granules with a largely perinuclear distribution. The granule density increased with time in culture but was unaffected by exogenous ANP, suggesting an intrinsic synthesis of the immunoreactivity. Thyroid stimulating hormone (TSH; thyrotropin) failed to alter the distribution of ir-ANP after either short-term (6 h) or long-term (1-12 day) exposure. Epinephrine or norepinephrine treatment, however, caused a reduction in the ir-ANP granularity compared with controls in what might represent a stimulated release of the immunoreactivity. The present results suggest that the peptide ANP coexists with thyroid hormones in follicular cells and that the two endocrine activities might be under separate control mechanisms.  相似文献   

6.
Binding sites specific for inositol 1,4,5-trisphosphate (InsP3) have been demonstrated in sarcoplasmic reticulum vesicles isolated from heart muscle. Scatchard analysis of a binding isotherm indicated a high as well as a low affinity binding site [1]. In this study a comparison was made between InsP3 binding to crude microsomal membranes prepared from rat heart atria and ventricles respectively. Results obtained showed a four-fold higher incidence of binding to atrial membranes. Furthermore, the receptor populations of the atria and ventricles behaved differently during conditions causing fluctuations in tissue InsP3 levels, viz. ischaemia, reperfusion and 1-adrenergic stimulation. Reperfusion, as well as phenylephrine stimulation, caused an increase in InsP3 levels associated with down-regulation of the ventricular InsP3 receptor population while binding to atrial binding sites was elevated. In the ventricular population this down-regulation was the result of a reduction in Bmax alone with no changes in the Kd values of the high- or the low-affinity binding sites. The reason(s) for the differential response of the atrial and ventricular InsP3 receptor populations to changes in InsP3 levels, remains to be established.  相似文献   

7.
Summary Previous studies have shown that somatostatin modulates angiotensin-induced aldosterone secretion by adrenal glomerulosa cells. This effect is mediated through specific receptors which do not show any preference for somatostatin-14 (S14) or the N-extended form somatostatin-28 (S28). The study of the distribution of 125I-Tyr [Tyr0, DTrp8] S14-and 125I-Tyr[Leu8, DTrp22, Tyr25] S28-binding in frozen sections of the rat adrenal by autoradiography indicated that both peptides bind to similar loci. High concentrations of binding sites were observed in the zona glomerulosa, and low concentrations were detected in the medulla. At the ultrastructural level, immunocytochemistry after cryoultramicrotomy revealed endogenous S14-and S28-like immunoreactive material in zona glomerulosa and in medulla. In glomerulosa cells, immunoreactive material was localized at the plasma membrane level, in the cytoplasmic matrix, in the mitochondria, and in the nucleus. S14-and S28-like materials were detected in both epinephrine and norepinephrine-storing cells of the adrenal medulla. In these cells, the distribution of either immunoreactive product was similar; it was observed in cytoplasmic matrix, secretory granules and nucleus, but not at the plasma membrane level. In situ hybridization does not reveal somatostatin mRNA in zona glomerulosa or medulla. These results demonstrate that S14 and S28 bind to, and are taken up by zona glomerulosa and adrenal medullary cells, but are not produced by these cells.  相似文献   

8.
Summary The localisation of GABA immunoreactive neurones in retinas of a variety of animals was examined. Immunoreactivity was associated with specific populations of amacrine neurones in all species examined, viz. rat, rabbit, goldfish, frog, pigeon and guinea-pig. All species, with the exception of the frog, possessed immunoreactive perikarya in their retinal ganglion cell layers. These perikarya are probably displaced amacrine cells because GABA immunoreactivity was absent from the optic nerves and destruction of the rat optic nerve did not result in degeneration of these cells. GABA immunoreactivity was also associated with the outer plexiform layers of all the retinas studied; these processes are derived from GABA-positive horizontal cells in rat, rabbit, frog, pigeon and goldfish retinas, from bipolar-like cells in the frog, and probably from interplexiform cells in the guinea-pig retina.The development of GABA-positive neurones in the rabbit retina was also analysed. Immunoreactivity was clearly associated with subpopulations of amacrine and horizontal cells on the second postnatal day. The immunoreactivity at this stage is strong, and fairly well developed processes are apparent. The intensity of the immunoreactivity increases with development in the case of the amacrine cells. The immunoreactive neurones appear fully developed at about the 8th postnatal day, although the immunoreactivity in the inner plexiform layer becomes more dispersed as development proceeds. The immunoreactive horizontal cells become less apparent as development proceeds, but they can still be seen in the adult retina.The GABA immunoreactive cells in rabbit retinas can be maintained in culture. Cultures of retinal cells derived from 2-day-old animals can be maintained for up to 20 days and show the presence of GABA-positive cells at all stages. In one-day-old cultures the GABA immunoreactive cells lacked processes but within three days had clearly defined processes. After maintenance for 10 days a meshwork of GABA-positive fibres could also be seen in the cultures.  相似文献   

9.
《FEBS letters》1986,208(2):263-268
Synthetic rat atrial natriuretic factor (Ile-ANF-26) stimulated cyclic GMP formation by up to several hundred-fold in osteoblast-rich cultures from newborn rat calvaria and in clonal osteogenic sarcoma cells (UMR 106-01) which are phenotypically osteoblast. ANF had no effect on the cyclic AMP response to parathyroid hormone in the same cells. Specific, high-affinity binding sites for ANF were identified in both cell types, with Kd and receptor numbers in normal osteoblasts of 1.2 ± 0.1 × 10−10 M and 42 ± 4 × 103 per cell, and in UMR 106-01 cells of 1.4 ± 0.1 × 10−10M and 22 ± 4 × 103per cell.  相似文献   

10.
Abstract: The developmental properties of primary rat cerebellar granule cells have been characterised with respect to their expression of GABAA receptor subtypes using both an immunological approach and radioligand binding assays. At day 1 in culture, the GABAA receptor α1 subunit was detectable in immunoblots and increased in level up to day 9. The GABAA receptor α6 subunit was not detectable at day 1; however, at days 3–5, a specific Mr 58,000 anti-α6 1–16 Cys immunoreactive species was present which further increased in level up to 9 days in culture. Similar qualitative results were obtained for the expression of the GABAA receptor α6 subunit in age-matched rat cerebellar membranes. In parallel studies, it was found that although there was an overall increase in [3H]Ro 15–4513 binding sites with days in culture, the relative contributions of diazepam-sensitive and diazepam-in-sensitive [3H]Ro 15–4513 binding changed. A time-dependent enrichment of the diazepam-insensitive binding site up to a maximum of 74% of total [3H]Ro 15–4513 sites was found. This was concomitant with the appearance of the GABAA receptor α6 subunit. These results are in agreement with the pharmacology described for α6βγ2 cloned receptors. They suggest a developmentally regulated expression of the GABAA receptor α6 subunit gene at a time that is correlated in vivo with establishment of neuronal connections.  相似文献   

11.
The effects of atrial natriuretic peptide (ANP) on action potential characteristics were studied in various (human, rabbit, guinea-pig) atrial and guinea-pig right ventricular papillary muscles. ANP (1–100 nM) did not modify the resting membrane potential nor the maximum rate of depolarization phase (Vmax). Up to 10 nM, ANP dose-dependently decreased the action potential amplitude both in guinea-pig atrial and ventricular muscles, but it did not affect this parameter in the other atrial preparations. ANP caused a dose-dependent, marked decrease of action potential duration (APD) in practically every cardiac preparation studied (exception of guinea-pig left atrium). The strongest effect on APD can be observed in human atrial and guinea-pig ventricular fibers. The K+ channel blocker 4-aminopyridine (1 mM) and the ATP-dependent K+ channel inhibitor glibenclamide (10Nl) prevented the effect of ANP on APD in both ventricular atrial preparations. ANP prevented the appearance of isoprenaline (0.5 M) induced slow AP in K+ depolarized myocardium. The present data suggest that ANP may inhibit the slow inward Ca2+ channel activity and facilitate the K+ channel activity.  相似文献   

12.
Primary cultures of atrial and ventricular myocytes (approx. 1 x 10(5) cells/culture) were prepared from adult teleost fish Gila atraria and maintained for 10 days. Immunoreactive atrial natriuretic peptide (ir-ANP) from fish atrial and ventricular cells was 3.9 and 2.8 ng/culture respectively, values not significantly different. Atriocytes from rat and mouse secreted comparable amounts of ANP which were not significantly different from atrial fish cultures (5.2 and 4.3 ng/culture). In contrast, their ventricular myocytes secreted only small quantities of ANP (0.8 and 0.3 ng/culture). When analyzed by reversed-phase HPLC, the media of both fish atrial and ventricular myocytes contained a peptide which exhibited properties similar to authentic human ANP (Ser 99-Tyr 126), suggesting a significant degree of sequence homology between fish and mammalian ANP. Fish ventricular cells, unlike normal mammalian ventricular cells, secrete substantial quantities of immunoreactive-ANP.  相似文献   

13.
Summary Cardiocytes positive for human atrial natriurectic peptide (hANP) were identified histochemically in the eel atrium, but they were not found in the ventricule. Secretory granules were frequently observed in atrial cardiocytes by electron microscopy, but the number of such granules was quite small in the ventricle. Immunogold cytochemistry revealed that immunoreactive ANP (IR-ANP) in atrial cardiocytes was localized in these granules. In spite of poor immunostaining of the eel ventricle, an acid extract of the ventricle contained 25±4 ng·g tissue-1 (n=9) of IR-ANP when the level of IR-ANP was measured by radioimmunoassay (RIA) for hANP. This level was one eight of that measured in atrial extracts (203±13 ng·g tissue-1, n=9). Plasma contained 116.7±18.6 pg·ml-1 (n=9) of IR-ANP. An extract of eel hearts decreased arterial pressure in eels and quail as did hANP. The level of ANP in the extract, as measured by an eel vasodepressor bioassay, was much greater than that measured by RIA for hANP. The immunoreactive and bioactive ANP in the heart extract are identical since the vasodepressor activity disappeared after IR-ANP was absorbed by excess antibodies raised against hANP. Chromatography on Sephadex G-75 generated a major peak of IR-ANP at a position that corresponded to a molecular weight of 14 kD and minor peaks at 3–7 kD from both plasma and heart extract. Reverse phase HPLC of plasma and heart extract generated several peaks of IR-ANP at positions more hydrophilic than those of mammalian ANPs. These results show that eel hearts contain immunoreactive and bioactive ANPs which are distinctly different from hANP. These ANPs are synthesized both in the atrium and in the ventricle, and they are secreted into the circulation mostly in the larger molecular form. The atrial ANP may be stored in the granules and secreted upon exposure of eels to certain stimuli, but the ventricular ANP may be secreted constitutively into the circulation without prior storage in the granules.Abbreviations ANP atrial natriuretic peptide - BSA bovine serum albumin - IR-ANP immunoreactive ANP - PBS phosphate-buffered saline - RIA radioimmunoassay  相似文献   

14.
5-Hydroxytryptamine (5-HT) is an endogenous stimulant of intestinal propulsive reflexes. It exerts its effects partly through 5-HT4 receptors; 5-HT4 receptor agonists that are stimulants of intestinal transit are in clinical use. Both pharmacological and recent immunohistochemical studies indicate that 5-HT4 receptors are present on enteric neurons but the specific neurons that express the receptors have not been determined. In the present work, we describe the characterization of an anti-5-HT4 receptor antiserum that reveals immunoreactivity for enteric neurons and other cell types in the gastrointestinal tract. With this antiserum, 5-HT4 receptor immunoreactivity has been found in the muscularis mucosae of the rat oesophagus, a standard assay tissue for 5-HT4 receptors. It is also present in the muscularis mucosae of the guinea-pig and mouse oesophagus. In guinea-pig small intestine and rat and mouse colon, 5-HT4 receptor immunoreactivity occurs in subpopulations of enteric neurons, including prominent large neurons. Double-staining has shown that these large neurons in the guinea-pig small intestine are also immunoreactive for two markers of intrinsic primary afferent neurons, cytoplasmic NeuN and calbindin. Some muscle motor neurons in the myenteric ganglia are immunoreactive for this receptor, whereas it is rarely expressed by secretomotor neurons. Immunoreactivity also occurs in the interstitial cells of Cajal but is faint in the external muscle. Expression of the protein and mRNA has been confirmed in extracts containing enteric neurons. The observations suggest that one site of action of 5-HT4 receptor agonists is the intrinsic primary afferent neurons.This work was supported by the National Health and Medical Research Council of Australia and Pfizer Pharmaceuticals, Japan.  相似文献   

15.
[3H]Mepyramine binds with high affinity to membranes from brain of human, rat, guinea-pig, rabbit and mouse with drug specificity indicating an association with histamine H1receptors. Considerable species differences occur in the affinity of [3H]mepyramine, with guinea-pig and human having 34 times greater affinity than rat, mouse or rabbit. The greater affinity of [3H]mepyramine in guinea-pig than in rat is attributable both to faster association and slower dissociation rates in guinea-pig. Species differences in affinity for H1 receptor sites occur for some antihistamines but not for others. Some tricyclic antidepressant and neuroleptic drugs are extremely potent inhibitors of [3H]mepyramine binding, exceeding in potency any H1 antihistamines examined. The tricyclic antidepressant doxepin and the neuroleptic clozapine are the most potent of all drugs examined in competing for [3H]mepyramine binding. The regional distribution of specific [3H]mepyramine binding differs considerably in the various species examined.  相似文献   

16.
Specific β1-adrenoreceptors antagonist [3H]CGP 26505 binding was characterized in rat cerebral cortex and heart sinus atrial node. In both tissues [3H]CGP 26505 binding was maximal at 25°C, it was specific, saturable and protein concentration dependent. Scatchard analysis of saturation isotherms of specific [3H]CGP 26505 binding in cerebral cortex showed that [3H]CGP 26505 binds a single class of high affinity sites with a dissociation constant (KD) of 1±0.3 nM and a maximal number of binding sites (Bmax) of 40±2 fmol/mg of protein. In sinus atrial node, [3H]-CGP 26505 binds a single class of high affinity sites (KD=1.9±0.4 nM, Bmax=28±2 fmol/mg of protein).  相似文献   

17.
We evaluated the effects of prostaglandins (PGs) on rat glioma C6BU-1 cells by supplementing the culture media with PGs. In the medium containing PGD2 (15 or 20 μM), the glial cells showed altered morphology from an elongated fibroblastic form to a spreading multipolar one within 24 h, and their growth rate was suppressed to half of that of control cultures. In these cultures, the specific activity of glutamine synthetase (GS) increased approximately twofold within 48 h in comparison to the value for vehicle-treated controls. Simultaneous treatment with actinomycin D or cycloheximide completely blocked the PGD2-elicited increase in GS specific activity, suggesting that the increase was due to de novo synthesis of the enzyme. PGD2-like prostanoids such as PGD1 and 9-deoxy-Δ9, Δ12-13,14-dihydro-PGD2 (Δ12-PGJ2), when added to the culture medium, mimicked the actions of PGD2 on the C6BU-I cells, though their effective concentrations were not necessarily identical. PGs of the E- and F-series had almost no discernible effect on the glioma. These results might imply a possibility that PGD2 plays a regulatory effect in growth and/or differentiation of rat glioma C6BU-1 cells.  相似文献   

18.
Abstract: The present results demonstrate stable expression of α-bungarotoxin (α-BGT) binding sites by cells of the GH4C1 rat pituitary clonal line. Wild-type GH4C1 cells do not express α-BGT binding sites, nor do they contain detectable mRNA for nicotinic receptor α2, α3, α4, α5, α7, β2, or β3 subunits. However, GH4C1 cells stably transfected with rat nicotinic receptor α7 cDNA (α7/GH4C1 cells) express the transgene abundantly as mRNA, and northern analysis showed that the message is of the predicted size. The α7/GH4C1 cells also express saturable, high-affinity binding sites for 125I-labeled α-BGT, with a KD of 0.4 nM and Bmax of 3.2 fmol/106 intact cells. 125I-α-BGT binding affinities and pharmacological profiles are not significantly different for sites in membranes prepared either from rat brain or α7/GH4C1 cells. Furthermore, KD and Ki values for 125I-α-BGT binding sites on intact α7/GH4C1 cells are essentially similar to those for hippocampal neurons in culture. Sucrose density gradient analysis showed that the size of the α-BGT binding sites expressed in α7/GH4C1 cells was similar to that of the native brain α-BGT receptor. Chronic exposure of α7/GH4C1 cells in culture to nicotine or an elevated extracellular potassium concentration induces changes in the number of α-BGT binding sites comparable to those observed in cultured neurons. Collectively, the present results show that the properties of α-BGT binding sites in transfected α7/GH4C1 cells resemble those for brain nicotinic α-BGT receptors. If the heterologously expressed α-BGT binding sites in the present study are composed solely of α7 subunits, the results could suggest that the rat brain α-BGT receptor has a similar homooligomeric structure. Alternatively, if α-BGT binding sites exist as heterooligomers of α7 plus some other previously identified or novel subunit(s), the data would indicate that the α7 subunits play a major role in determining properties of the α-BGT receptor.  相似文献   

19.
Dispersed cells of the bovine adrenal medulla express immunoreactive vasoactive intestinal polypeptide (VIP) after 24 hours in culture, although VIP could not be detected in extracts of bovine adrenal medulla or cortex. Immunoreactive VIP eluted from a reversed-phrase chromatography column with the same retention time as authentic porcine VIP1–28. VIP in chromaffin cells in culture appears to be contained in a secretory granule pool, since it, like methionine-enkephalin (met-enk) was released into the medium after exposure of cells to nicotine, carbachol, veratridine and elevated potassium in a dose-dependent manner. Doseresponse curves for VIP and enkephalin release by the above secretagogues were similar but not identical. Enkephalins and VIP may either be contained in separate subpopulations of chromaffin cells or co-stored in the same cells.  相似文献   

20.
Summary We have demonstrated that atrial natriuretic peptide-like immunoreactivity is stored and secreted by ventricular and atrial myocytes in dissociated cell culture preparations from the heart of newborn rat. Culture preparations were maintained in either foetal calf serum-supplemented medium 199 or in hormone-supplemented, serum-free medium 199. The presence of atrial natriuretic peptidelike immunoreactivity in the cultured myocytes was demonstrated at both light-and electron-microscopical levels. Release of atrial natriuretic peptide-like immunoreactivity into the culture medium was measured by radioimmunoassay; molecular forms of the stored and secreted peptide were determined by gel column chromatography. The atrial natriuretic peptide-like immunoreactivity of cultured atrial and ventricular myocytes was concentrated in the perinuclear cytoplasm and was localised to electron-dense secretory granules. The number of immunoreactive ventricular myocytes and the intensity of their immunofluorescence changed with time in culture and was higher in cultures in foetal calf serum-supplemented medium than in serum-free medium. Gamma-atrial natriuretic peptide was stored and released by cultured atrial and ventricular myocytes, but was broken down to alpha-atrial natriuretic peptide in the growth medium. This process was foetal calf serum-independent, since it occurred in both the media used, indicating that cardiac myocytes in culture may release a factor that cleaves gamma-atrial natriuretic peptide to form alphaatrial natriuretic peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号