首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maltose is transported across the cytoplasmic membrane of Escherichia coli by a binding protein-dependent transport system. The three membrane-associated components of the transport system, the MalK, MalF, and MalG proteins, have been solubilized from the membrane and maltose transport activity has been reconstituted in proteoliposome vesicles (Davidson, A. L., and Nikaido, H. (1990) J. Biol. Chem. 265, 4254-4260). A modification of the reconstitution technique is presented which permits reconstitution from the detergent dodecyl maltoside. Utilizing reconstitution of maltose transport as an assay, we have purified these proteins in the presence of n-dodecyl-beta-D-maltoside. The purified proteins catalyze both maltose transport activity and ATP hydrolysis. In all experiments, the MalF, MalG, and MalK proteins behaved as a multiprotein complex; all three proteins were immunoprecipitated using antibody prepared against MalF, and they copurified, eluting from a gel filtration column between markers of Mr 160,000 and 200,000. Each complex contains two MalK, one MalF, and one MalG proteins, providing two putative sites for ATP hydrolysis. Chemical cross-linking detected specific interactions between MalF and MalG and between MalF and MalK.  相似文献   

2.
The binding protein-dependent maltose transport system of enterobacteria (MalFGK(2)), a member of the ATP-binding cassette (ABC) transporter superfamily, is composed of two integral membrane proteins, MalF and MalG, and of two copies of an ATPase subunit, MalK, which hydrolyze ATP, thus energizing the translocation process. In addition, an extracellular (periplasmic) substrate-binding protein (MalE) is required for activity. Ligand translocation and ATP hydrolysis are dependent on a signaling mechanism originating from the binding protein and traveling through MalF/MalG. Thus, subunit-subunit interactions in the complex are crucial to the transport process but the chemical nature of residues involved is poorly understood. We have investigated the proximity of residues in a conserved sequence ("EAA" loop) of MalF and MalG to residues in a helical segment of the MalK subunits by means of site-directed chemical cross-linking. To this end, single cysteine residues were introduced into each subunit at several positions and the respective malF and malG alleles were individually co-expressed with each of the malK alleles. Membrane vesicles were prepared from those double mutants that contained a functional transporter in vivo and treated with Cu(1,10-phenanthroline)(2)SO(4) or bifunctional cross-linkers. The results suggest that residues Ala-85, Lys-106, Val-114, and Val-117 in the helical segment of MalK, to different extents, participate in constitution of asymmetric interaction sites with the EAA loops of MalF and MalG. Furthermore, both MalK monomers in the complex are in close contact to each other through Ala-85 and Lys-106. These interactions are strongly modulated by MgATP, indicating a structural rearrangement of the subunits during the transport cycle. These data are discussed with respect to current transport models.  相似文献   

3.
We have studied cofactor-induced conformational changes of the maltose ATP-binding cassette transporter by employing limited proteolysis in detergent solution. The transport complex consists of one copy each of the transmembrane subunits, MalF and MalG, and of two copies of the nucleotide-binding subunit, MalK. Transport activity further requires the periplasmic maltose-binding protein, MalE. Binding of ATP to the MalK subunits increased the susceptibility of two tryptic cleavage sites in the periplasmic loops P2 of MalF and P1 of MalG, respectively. Lys(262) of MalF and Arg(73) of MalG were identified as probable cleavage sites, resulting in two N-terminal peptide fragments of 29 and 8 kDa, respectively. Trapping the complex in the transition state by vanadate further stabilized the fragments. In contrast, the tryptic cleavage profile of MalK remained largely unchanged. ATP-induced conformational changes of MalF-P2 and MalG-P1 were supported by fluorescence spectroscopy of complex variants labeled with 2-(4'-maleimidoanilino)naphthalene-6-sulfonic acid. Limited proteolysis was subsequently used as a tool to study the consequences of mutations on the transport cycle. The results suggest that complex variants exhibiting a binding protein-independent phenotype (MalF500) or containing a mutation that affects the "catalytic carboxylate" (MalKE159Q) reside in a transition state-like conformation. A similar conclusion was drawn for a complex containing a replacement of MalKQ140 in the signature sequence by leucine, whereas substitution of lysine for Gln(140) appears to lock the transport complex in the ground state. Together, our data provide the first evidence for conformational changes of the transmembrane subunits of an ATP-binding cassette import system upon binding of ATP.  相似文献   

4.
M Mourez  M Hofnung    E Dassa 《The EMBO journal》1997,16(11):3066-3077
The cytoplasmic membrane proteins of bacterial binding protein-dependent transporters belong to the superfamily of ABC transporters. The hydrophobic proteins display a conserved, at least 20 amino acid EAA---G---------I-LP region exposed in the cytosol, the EAA region. We mutagenized the EAA regions of MalF and MalG proteins of the Escherichia coli maltose transport system. Substitutions at the same positions in MalF and MalG have different phenotypes, indicating that EAA regions do not act symmetrically. Mutations in malG or malF that slightly affect or do not affect transport, determine a completely defective phenotype when present together. This suggests that EAA regions of MalF and MalG may interact during transport. Maltose-negative mutants fall into two categories with respect to the cellular localization of the MalK ATPase: in the first, MalK is membrane-bound, as in wild-type strains, while in the second, it is cytosolic, as in strains deleted in the malF and malG genes. From maltose-negative mutants of the two categories, we isolated suppressor mutations within malK that restore transport. They map mainly in the putative helical domain of MalK, suggesting that EAA regions may constitute a recognition site for the ABC ATPase helical domain.  相似文献   

5.
In Escherichia coli, interaction of a periplasmic maltose-binding protein with a membrane-associated ATP-binding cassette transporter stimulates ATP hydrolysis, resulting in translocation of maltose into the cell. The maltose transporter contains two transmembrane subunits, MalF and MalG, and two copies of a nucleotide-hydrolyzing subunit, MalK. Mutant transport complexes that function in the absence of binding protein are thought to be stabilized in an ATPase-active conformation. To probe the conformation of the nucleotide-binding site and to gain an understanding of the nature of the conformational changes that lead to activation, cysteine 40 within the Walker A motif of the MalK subunit was modified by the fluorophore 2-(4'-maleimidoanilino)naphthalene-6-sulfonic acid. Fluorescence differences indicated that residues involved in nucleotide binding were less accessible to aqueous solvent in the binding protein independent transporter than in the wild-type transporter. Similar differences in fluorescence were seen when a vanadate-trapped transition state conformation was compared with the ground state in the wild-type transporter. Our results and recent crystal structures are consistent with a model in which activation of ATPase activity is associated with conformational changes that bring the two MalK subunits closer together, completing the nucleotide-binding sites and burying ATP in the interface.  相似文献   

6.
Active accumulation of maltose and maltodextrins by Escherichia coli depends on an outer-membrane protein. LamB, a periplasmic maltose-binding protein (MalE, MBP) and three inner-membrane proteins, MalF, MalG and MalK. MalF and MalG are integral transmembrane proteins, while MalK is associated with the inner aspect of the cytoplasmic membrane via an interaction with MalG. Previously we have shown that MBP is essential for movement of maltose across the inner membrane. We have taken advantage of malF and malG mutants in which MBP interacts improperly with the membrane proteins. We describe the properties of malE mutations in which a proper interaction between MBP and defective MalF and MalG proteins has been restored. We found that these malE suppressor mutations are able to restore transport activity in an allele-specific manner. That is, a given malE mutation restores transport activity to different extents in different malF and malG mutants. Since both malF and malG mutations could be suppressed by allele-specific malE suppressors, we propose that, in wild-type bacteria, MBP interacts with sites on both MalF and MalG during active transport. The locations of different malE suppressor mutations indicate specific regions on MBP that are important for interacting with MalF and MalG.  相似文献   

7.
The binding-protein-dependent maltose-transport system of enterobacteria, a member of the ATP-binding-cassette (ABC) transporter superfamily, is composed of two integral membrane proteins, MalF and MalG, and two copies of an ATPase subunit, MalK, which hydrolyze ATP, thus energizing the translocation process. Isolated MalK displays spontaneous ATPase activity, whereas in the assembled MalFGK2 complex, reconstituted in liposomes, ATP hydrolysis requires stimulation by the substrate-loaded extracellular maltose-binding protein, MalE. The ATPase domains of ABC transporters, including MalK, share a unique sequence motif ('LSGGQ', 'signature sequence' or 'linker peptide') with as yet unknown function. To elucidate its role in the transport process, we investigated the consequences of mutations affecting two highly conserved residues (G137, Q140) in the MalK-ATPase of Salmonella typhimurium, by biochemical means. Residues corresponding to Q140 in other ABC proteins have not yet been studied. All mutant alleles (G137--> A, V, T; Q140--> L, K, N) fail to restore a functional transport complex in vivo. In addition, the mutations increase the repressing activity of MalK on other maltose-regulated genes when compared with wild-type MalK. Purified variants of G137 have lost the ability to hydrolyze ATP but still display nucleotide-binding activity, albeit with reduced affinity. Binding of MgATP results in similar protection against trypsin, as observed with wild-type, indicating no major change in protein structure. In contrast, the variants of Q140 differ in their properties, depending on the chemical nature of the replacement residue. MalKQ140L fails to hydrolyze ATP and exhibits a strong intrinsic resistance to trypsin in the absence of MgATP, suggesting a drastically altered conformation. In contrast, the purified mutant proteins Q140K and Q140N display ATPase activities and MgATP-induced changes in the tryptic cleavage pattern similar to those of wild-type. However, mutant transport complexes containing the Q140K or Q140N variants, when studied in proteoliposomes, are severely impaired in MalE-maltose-stimulated ATPase activity. These results are discussed with respect to the crystal structure of the homologous HisP protein [Hung, L.-W., Wang, I.X., Nikaido, K., Liu, P.-Q., Ames, G.F.-L. & Kim, S.-H. (1998) Nature (London) 396, 703-707] and are interpreted in favor of a role of the signature sequence in activating the hydrolyzing activity of MalK upon substrate-initiated conformational changes in MalF/MalG.  相似文献   

8.
Maltose is transported across the cytoplasmic membrane of Escherichia coli by a binding protein-dependent transport system. We observed a 10-fold increase in the level of transport activity in assays with membrane vesicles when the three membrane-associated components of the transport system (the MalF, MalG, and MalK proteins) were overproduced. In addition, we have successfully reconstituted maltose transport activity in proteoliposome vesicles from solubilized proteins using a detergent dilution procedure. The addition of ATP as an energy source was sufficient to obtain transport, and this activity was dependent on the presence of maltose binding protein and was not seen in proteoliposomes prepared from a strain with a deletion of the maltose genes. We determined that hydrolysis of ATP was directly coupled to maltose uptake. In the majority of these experiments, an average of 1.4 mol of ATP was hydrolyzed for each mole of maltose accumulated. However, in the remaining experiments, ATP hydrolysis was observed to be much higher and averaged 17 mol of ATP hydrolyzed per mol of maltose transported. Possible explanations for a variable stoichiometry are discussed. These results provide strong evidence that it is the hydrolysis of ATP by a component of the transport complex that provides the energy required for active maltose transport.  相似文献   

9.
The maltose transport complex (MTC) is a member of the ATP-binding cassette superfamily of membrane transport proteins and is a model for understanding the folding and assembly of hetero-oligomeric membrane protein complexes. The MTC is made up of two integral membrane proteins, MalF and MalG, and a peripheral membrane protein, MalK. These proteins associate with a stoichiometry of 1:1:2 to form the complex MalFGK2. In our studies of the oligomerization of this complex, we have shown that the ATP-binding component, MalK, forms a dimer in the absence of MalF and MalG. Epitope-tagged MalK coimmunoprecipitated with wild-type MalK, indicating that the MalK protein forms an oligomer. The relative amounts of tagged and wild-type MalK that were present in the whole cell extracts and in the immunoprecipitated complexes show that the MalK oligomer is a dimer. These hetero-oligomers can also be formed in vitro by mixing two extracts, each containing either tagged or wild-type MalK. The dimerization of MalK was also demonstrated in vivo using the bacteriophage lambda repressor fusion assay. The formation of a MalK dimer in the absence of MalF and MalG may represent an initial step in the assembly pathway of the MTC.  相似文献   

10.
ATP-binding cassette transporters perform energy-dependent transmembrane solute trafficking in all organisms. These proteins often mediate cellular resistance to therapeutic drugs and are involved in a range of human genetic diseases. Enzymological studies have implicated a helical subdomain within the ATP-binding cassette nucleotide-binding domain in coupling ATP hydrolysis to solute transport in the transmembrane domains. Consistent with this, structural and computational analyses have indicated that the helical subdomain undergoes nucleotide-dependent movement relative to the core of the nucleotide-binding domain fold. Here we use theoretical methods to examine the allosteric nucleotide dependence of helical subdomain transitions to further elucidate its role in interactions between the transmembrane and nucleotide-binding domains. Unrestrained 30-ns molecular dynamics simulations of the ATP-bound, ADP-bound, and apo states of the MJ0796 monomer support the idea that interaction of a conserved glutamine residue with the catalytic metal mediates the rotation of the helical subdomain in response to nucleotide binding and hydrolysis. Simulations of the nucleotide-binding domain dimer revealed that ATP hydrolysis induces a large transition of one helical subdomain, resulting in an asymmetric conformation of the dimer not observed previously. A coarse-grained elastic network analysis supports this finding, revealing the existence of corresponding dynamic modes intrinsic to the contact topology of the protein. The implications of these findings for the coupling of ATP hydrolysis to conformational changes in the transmembrane domains required for solute transport are discussed in light of recent whole transporter structures.  相似文献   

11.
Escherichia coli accumulates malto-oligosaccharides by the maltose transport system, which is a member of the ATP-binding-cassette (ABC) superfamily of transport systems. The proteins of this system are LamB in the outer membrane, maltose-binding protein (MBP) in the periplasm, and the proteins of the inner membrane complex (MalFGK2), composed of one MalF, one MalG, and two MalK subunits. Substrate specificity is determined primarily by the periplasmic component, MBP. However, several studies of the maltose transport system as well as other members of the ABC transporter superfamily have suggested that the integral inner membrane components MalF and MalG may play an important role in determining the specificity of the system. We show here that residue L334 in the fifth transmembrane helix of MalF plays an important role in determining the substrate specificity of the system. A leucine-to-tryptophan alteration at this position (L334W) results in the ability to transport lactose in a saturable manner. This mutant requires functional MalK-ATPase activity and the presence of MBP, even though MBP is incapable of binding lactose. The requirement for MBP confirms that unliganded MBP interacts with the inner membrane MalFGK2 complex and that MBP plays a crucial role in triggering the transport process.  相似文献   

12.
The maIG gene encodes a hydrophobic cytoplasmic membrane protein which is required for the energy-dependent transport of maltose and maltodextrins in Escherichia coli. The MalG protein, together with MalF and MalK proteins, forms a multimeric complex in the membrane consisting of two MalK subunits for each MalF and MalG subunit. Fifteen mutations have been isolated in malG by random linker insertion mutagenesis. Two regions essential for maltose transport have been identified. In particular, a hydro philic region containing the peptidic motif EAA—G———I-LP, highly conserved among inner membrane proteins from binding protein-dependent transport systems, is essential for maltose transport. The results also show that several regions of MalG are not essential for function. A region (residues 30–50) encompassing the first predicted transmembrane segment and the first periplasmic loop in MalG may be modified extensively with little effect on maltose transport and no effect on the stability and the localization of the protein. A region located at the middle of the protein (residues 153–157) is not essential for the function of the protein. A region, essential for maltodextrin utilization but not for maltose transport, has been identified near the C-terminus of the protein.  相似文献   

13.
The ATP-binding-cassette (ABC) protein LacK of Agro-bacterium radiobacter displays high sequence similarity to the MalK subunit of the Salmonella typhimurium maltose-transport system (MalFGK2). We have used LacK as a tool to identify sites of interaction of MalK with the membrane-integral components MalF and MalG. Small amounts of LacK, resulting from the expression of the plasmid-borne lacK gene, proved to be sufficient for partial restoration of growth of a malK strain of S. typhimurium on maltose. LacK failed to substitute for MalK in regulating the expression of maltose-inducible genes but the hybrid complex MalFGLacK2 was sensitive to inducer exclusion. The lacK gene also complemented a ugpC mutant of Escherichia coli to growth on sn -glycerol-3-phosphate as the phosphate source. Partially purified LacK exhibited a spontaneous ATPase activity comparable to that of MalK. A MalK'–'LacK chimeric protein was isolated (by in vivo recombination) in which the N-terminal 140 amino acids of MalK are fused to residues 141–363 of LacK. The protein substituted for MalK in maltose transport considerably better than LacK. Furthermore, random mutagenesis of the plasmid-borne lacK gene yielded three clones that were superior to wild-type lacK in complementing a malK mutation. Single mutations (V114M or L123F) substantially improved the growth of a malK strain on maltose, whereas a double mutation (L123F, S295N) resulted in growth and transport rates that were indistinguishable from those obtained with MalK. In contrast, the introduction of the single change S295N into LacK had no effect but combination with the V114M mutation led to a further twofold increase in transport activity. These results indicate that a putative helical domain in MalK, encompassing residues 89–140, is crucial for a functional, high-affinity interaction with MalF and MalG.  相似文献   

14.
We have investigated conformational changes of the purified maltose ATP-binding cassette transporter (MalFGK(2)) upon binding of ATP. The transport complex is composed of a heterodimer of the hydrophobic subunits MalF and MalG constituting the translocation pore and of a homodimer of MalK, representing the ATP-hydrolyzing subunit. Substrate is delivered to the transporter in complex with periplasmic maltose-binding protein (MalE). Cross-linking experiments with a variant containing an A85C mutation within the Q-loop of each MalK monomer indicated an ATP-induced shortening of the distance between both monomers. Cross-linking caused a substantial inhibition of MalE-maltose-stimulated ATPase activity. We further demonstrated that a mutation affecting the "catalytic carboxylate" (E159Q) locks the MalK dimer in the closed state, whereas a transporter containing the "ABC signature" mutation Q140K permanently resides in the resting state. Cross-linking experiments with variants containing the A85C mutation combined with cysteine substitutions in the conserved EAA motifs of MalF and MalG, respectively, revealed close proximity of these residues in the resting state. The formation of a MalK-MalG heterodimer remained unchanged upon the addition of ATP, indicating that MalG-EAA moves along with MalK during dimer closure. In contrast, the yield of MalK-MalF dimers was substantially reduced. This might be taken as further evidence for asymmetric functions of both EAA motifs. Cross-linking also caused inhibition of ATPase activity, suggesting that transporter function requires conformational changes of both EAA motifs. Together, our data support ATP-driven MalK dimer closure and reopening as crucial steps in the translocation cycle of the intact maltose transporter and are discussed with respect to a current model.  相似文献   

15.
The maltose transport complex of Escherichia coli is a well-studied example of an ATP-binding cassette transporter. The complex, containing one copy each of the integral membrane proteins MalG and MalF and two copies of the peripheral cytoplasmic membrane protein MalK, interacts with the periplasmic maltose-binding protein to efficiently translocate maltose and maltodextrins across the bacterial cytoplasmic membrane. To investigate the role of MalG both in MalFGK2 assembly interactions and in subsequent transport interactions, we isolated and characterized 18 different MalG mutants, each containing a 31-residue insertion in the protein. Eight insertions mapping to distinct hydrophilic regions of MalG permitted either assembly or both assembly and transport interactions to occur. In particular, we isolated two insertions mapping to extracytoplasmic (periplasmic) regions of MalG which preserved both assembly and transport abilities, suggesting that these are permissive sites in the protein. Another periplasmic insertion seems to affect only transport-specific interactions between MalG and maltose-binding protein, defining a novel class of MalG mutants. Finally, four MalG mutant proteins, although stably expressed, are unable to assemble into the MalFGK2 complex. These mutants contain insertions in only two different hydrophilic regions of MalG, consistent with the notion that a restricted number of domains in this protein are critical complex assembly determinants. These MalG mutants will allow us to further explore the intermolecular interactions of this model transporter.Integral membrane proteins play a central role in the ATP-binding cassette (ABC) transporter superfamily, whose prokaryotic and eukaryotic members traffic a variety of substrates such as ions, sugars, amino acids, peptides, and proteins (15). This large family of transporters is defined by a conserved cytoplasmic ATPase component and integral membrane domains which interact to carry out the specific transport process (4, 15). Among the eukaryotic members are such medically relevant proteins as the P-glycoprotein implicated in multidrug-resistant cancer cells, the cystic fibrosis transmembrane regulator protein, and the human peroxisomal adrenoleukodystrophy protein (2, 34, 35). Among the prokaryotic members of the ABC superfamily are the periplasmic binding protein-dependent transporters. These family members are characterized by a conserved region of the integral membrane component(s) in addition to the conserved cytoplasmic ATPase (4). One member of this prokaryotic subgroup, the maltose transport complex of Escherichia coli, presents a useful model for the integral membrane folding and assembly interactions required for ABC transporters. The maltose transport complex consists of the integral membrane proteins MalF and MalG and a peripheral cytoplasmic membrane ATPase, MalK (reviewed in reference 24). These three proteins copurify (11), forming a MalFGK2 tetrameric complex which acts in concert with the periplasmic maltose-binding protein (MBP), the product of malE, to efficiently translocate maltose and maltodextrins across the bacterial cytoplasmic membrane.MalF has been shown to have eight transmembrane (TM) domains (5), whereas MalG possesses six TM domains (6, 10). Following independent insertion of these proteins into the membrane (22a, 31), assembly of the MalFGK2 complex is likely mediated by interactions among discrete domains of MalF, MalG, and MalK, resulting in tetramerization (20, 26).Although the specifics of these interactions are unknown, a combination of biochemistry and genetics has allowed for a partial characterization of the complex. Shuman and colleagues isolated and characterized MalF and MalG mutants which enable the MalFGK2 complex to transport maltose in the absence of MBP (7, 32). These analyses have pointed toward a direct interaction between MBP and periplasmic portions of MalG and MalF (16), between MalG and MalF themselves (7), and between MalK and both MalF and MalG (12). Davidson and Nikaido purified the MalFGK2 complex and demonstrated extensive chemical cross-linking between MalG and MalF and among MalG, MalF, and MalK (11). Traxler and Beckwith observed that periplasmic loops of MalF become protease resistant only in the presence of MalG and MalK, also suggesting that specific interactions occur among the proteins in the context of an assembled complex (31). Finally, a potentially important MalG-MalK protein interaction signal has been identified in the hydrophilic cytoplasmic loop between the fourth and fifth TM domains of MalG (reference 9; Fig. Fig.1).1). This motif is conserved in MalF and in other binding protein-dependent transporters of the ABC superfamily (9, 28) and has been hypothesized to mediate interactions with the conserved ATPase subunit of the complex (17, 22). Open in a separate windowFIG. 1Topology model of MalG. Hydropathy plots and fusion protein analyses (6, 10) suggest that the N and C termini of the 296-residue protein are cytoplasmically localized. The shaded boxes represent putative TM domains, and the shaded amino acids are conserved in integral membrane proteins of periplasmic binding protein-dependent ABC transporters (9, 28). The location of each 31-residue insertion is shown by an arrowhead. The black arrowhead represents an insertion which did not significantly affect MalG transport function, the gray arrowhead depicts partial transport function, and the white arrowheads represent loss of transport ability for the corresponding insertion mutants. Each numbered disc shows the mutant classification of the adjacent insertion mutant (see Discussion for details).Recently, a transposon-mediated insertion mutagenesis technique was developed and used to characterize both permissive and nonpermissive regions of the integral membrane protein LacY (19), as well as the cytoplasmic MalK and LacI proteins (18, 23). These analyses not only identified tolerant hydrophilic regions of each protein but also defined several distinct mutant classes (18, 19, 23). In particular, the phenotypes attributable to the lacI insertion mutations that we isolated were strikingly similar to those of previously characterized amino acid substitutions mapping to the same sites in lacI. Here, we describe the results of this insertion mutagenesis on the MalG protein. This analysis provides a unique in vivo view of the requirements for proper MalG protein folding and of the interactions necessary for MalFGK2 assembly and maltose transport.  相似文献   

16.
The maltose transport complex of Escherichia coli, a member of the ATP-binding cassette superfamily, mediates the high affinity uptake of maltose at the expense of ATP. The membrane-associated transporter consists of two transmembrane subunits, MalF and MalG, and two copies of the cytoplasmic ATP-binding cassette subunit, MalK. Maltose-binding protein (MBP), a soluble periplasmic protein, delivers maltose to the MalFGK(2) transporter and stimulates hydrolysis by the transporter. Site-directed spin labeling electron paramagnetic resonance spectroscopy is used to monitor binding of MBP to MalFGK(2) and conformational changes in MBP as it interacts with MalFGK(2). Cysteine residues and spin labels have been introduced into the two lobes of MBP so that spin-spin interaction will report on ligand-induced closure of the protein (Hall, J. A., Thorgeirsson, T. E., Liu, J., Shin, Y. K., and Nikaido, H. (1997) J. Biol. Chem. 272, 17610-17614). At least two different modes of interaction between MBP and MalFGK(2) were detected. Binding of MBP to MalFGK(2) in the absence of ATP resulted in a decrease in motion of spin label at position 41 in the C-terminal domain of MBP. In a vanadate-trapped transition state intermediate, all free MBP became tightly bound to MalFGK(2), spin label in both lobes became completely immobilized, and spin-spin interactions were lost, suggesting that MBP was in an open conformation. Binding of non-hydrolyzable MgATP analogs or ATP in the absence of Mg is sufficient to stabilize a complex of open MBP and MalFGK(2). Taken together, these data suggest that closure of the MalK dimer interface coincides with opening of MBP and maltose release to the transporter.  相似文献   

17.
The maltose ATP-binding cassette transporter of Salmonella typhimurium is composed of the soluble periplasmic receptor, MalE, and a membrane-associated complex comprising one copy each of the pore-forming hydrophobic subunits, MalF and MalG, and of a homodimer of the ATP-hydrolyzing subunit, MalK. During the transport process the subunits are thought to undergo conformational changes that might transiently alter molecular contacts between MalFG and MalK(2). In order to map sites of subunit-subunit interactions we have used a comprehensive peptide mapping approach comprising large-scale microsynthesis of labelled probes and array techniques. In particular, we screened the binding of (i) MalFG-derived soluble biotinylated peptides to immobilized MalK, and (ii) radiolabelled MalK to MalFG-derived cellulose membrane-bound peptides. The first approach identified seven peptides (10mers) each of MalF and MalG that specifically bound to MalK. The peptides were localized to TMDs 3 and 6, periplasmic loop P4 and cytoplasmic loops C2 and C3 of MalF, while MalG-derived peptides localized to the N terminus, TMDs 4-6, periplasmic loop P1 and cytoplasmic loop C2. Peptides from C3 and C2, respectively, of MalF and MalG partially encompass the conserved EAA-motif, known to be crucial for interaction with MalK. These results were basically confirmed by screening MalFG-derived peptide arrays consisting of 16mers or 31mers with radiolabelled MalK. This approach also allowed us to perform complete substitutional analyses of peptides in question. The results led to the construction of MalFG variants that were subsequently analyzed for functional consequences in vivo. Growth experiments revealed that most of the mutations had no phenotype, suggesting that the mutated residues themselves are not critical but part of a discontinuous binding site. However, two novel mutations affecting residues from the EAA motifs of MalF (Ile417Glu) and MalG (Phe203Gln/Asn), respectively, displayed severe growth defects, indicating their functional importance. Together, these experimental outcomes identify specific molecular contacts made between MalK and MalFG that extend beyond the well-characterized EAA motif.  相似文献   

18.
We present a quantitative analysis of conformational changes of the nucleotide-binding subunits, MalK2, of the maltose ATP-binding cassette importer MalFGK2 during the transport cycle. Distance changes occurring between selected residues were monitored in the full transporter by site-directed spin-labeling electron paramagnetic resonance spectroscopy and site-directed chemical cross-linking. We considered S83C and A85C from the conserved Q-loop and V117C located on the outer surface of MalK. Additionally, two native cysteines (C350, C360) were included in the study. On ATP binding, small rearrangements between the native sites, and no distance changes between positions 117 were detected. In contrast, positions 85 come closer together in the ATP-bound state and in the vanadate-trapped intermediate and move back toward the apo-state after ATP hydrolysis. The distance between positions 83 is shown to slightly decrease on ATP binding, and to further decrease after ATP hydrolysis. Results from cross-linking experiments are in agreement with these findings. The data are compared with in silico spin-labeled x-ray structures from both isolated MalK2 and the MalFGK2-E complex. Our results are consistent with a slightly modified “tweezers-like” model of closure and reopening of MalK2 during the catalytic cycle, and show an unforeseen potential interaction between MalK and the transmembrane subunit MalG.  相似文献   

19.
The ATP binding cassette (ABC-) transporter mediating the uptake of maltose/maltodextrins in Escherichia coli/Salmonella enterica serovar Typhimurium is one of the best characterized systems and serves as a model for studying the molecular mechanism by which ABC importers exert their functions. The transporter is composed of a periplasmic maltose binding protein (MalE), and a membrane-bound complex (MalFGK(2)), comprising the pore-forming hydrophobic subunits, MalF and MalG, and two copies of the ABC subunit, MalK. We report on the isolation of suppressor mutations within malFG that partially restore transport of a maltose-negative mutant carrying the malK809 allele (MalKQ140K). The mutation affects the conserved LSGGQ motif that is involved in ATP binding. Three out of four suppressor mutations map in periplasmic loops P2 and P1 respectively of MalFG. Cross-linking data revealed proximity of these regions to MalE. In particular, as demonstrated in vitro and in vivo, Gly-13 of substrate-free and substrate-loaded MalE is in close contact to Pro-78 of MalG. These data suggest that MalE is permanently in close contact to MalG-P1 via its N-terminal domain. Together, our results are interpreted in favour of the notion that substrate availability is communicated from MalE to the MalK dimer via extracytoplasmic loops of MalFG, and are discussed with respect to a current transport model.  相似文献   

20.
We report the purification of the maltose/trehalose transporter complex MalFGK of the hyperthermophilic archaeon Thermococcus litoralis. The complex was expressed in Escherichia coli, solubilized in dodecyl maltoside and purified with the aid of a histidine tag on one of the membrane proteins. One hundred grams of cells yielded 3 mg of pure complex. The final product showed ATPase activity at 70 degrees C and was soluble at low detergent concentration. ATPase activity was not due to dissociation of the MalK subunit from the integral membrane proteins MalF and MalG but could not be further stimulated by trehalose/maltose binding protein (TMBP), be it the native protein as isolated from T. litoralis or the soluble engineered protein. The purified native TMBP was identified as a glycoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号