首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The glutamine cycle has been proposed as a pathway in which glutamine synthesized in glia provides substrate for synthesis of the neurotransmitters glutamate and GABA as they are lost from neurons. To test whether GABA may regulate this pathway, the effect of elevated GABA on the glial enzyme glutamine synthetase was examined in rat brain. Repeated subcutaneous injections of the antiepileptic GABA transaminase inhibitor γ-vinylGABA at a dose of 150 mg/kg per day for 21 days reduced glutamine synthetase activity by 36% in the cortex and 22% in the cerebellum. At 30 mg/kg per day, glutamine synthetase activity was reduced by 9.5% in the cortex but unchanged in the cerebellum. The reductions were brain specific because the skeletal muscle and liver enzymes were unaffected by γ-vinylGABA administration. Amino acid analysis of the cortex from γ-vinylGABA-treated rats demonstrated a 270% increase in GABA levels after 150 mg/kg but no change after 30 mg/kg. GABA levels and glutamine synthetase activity were inversely correlated. The 150 mg/kg dose significantly lowered cortical glutamine and glutamate levels. The decline in brain glutamine synthetase activity with chronic γ-vinylGABA administration developed gradually over time and may be due to the slow turnover of this enzyme in vivo.  相似文献   

2.
Acute administration of GABA transaminase inhibitors to rats results in a dose-dependent increase in both brain and blood GABA content and administration of isonicotinic acid hydrazide (INH), at a dose which decreases the amount of brain GABA, also lowers blood levels of this amino acid. Chronic treatment (10 days) with INH (20mg/kg), y-acetylenic-GABA (10 mg/kg) or aminooxyacetic acid (AOAA) (10 mg/kg) results in a significant elevation in both rat brain and blood GABA concentrations. At the doses studied, only AOAA caused a significant elevation in CSF GABA content. Co-administration of pyridoxal phosphate (2 mg/kg) blocks the chronic INH-induced rise in blood GABA but does not affect the increase in brain content of this amino acid. Chronic administration of di-n-propylacetate (20 mg/kg) did not significantly alter brain, blood or CSF GABA levels. The results suggest that, under the proper conditions, changes in blood GABA levels after administration of inhibitors of GABA synthesis or degradation may be an indirect indicator of changes in the brain content of this amino acid. Blood GABA determinations may be useful for studying the biochemical effectiveness of GABA transaminase inhibitors in man.  相似文献   

3.
Abstract— Aminooxyacetic acid (AOAA) administration produced an increase in γ-aminobutyric acid (GABA) levels in regions of cerebral cortex, subcortex and cerebellum. In some cortical areas studied, the maximal effect was observed with 25 mg/kg AOAA; in other regions GABA levels were increased further with 50 and 75 mg/kg AOAA. Pretreatment with 25 mg/kg AOAA effectively inhibited GABA:2-oxoglutarate aminotransferase (GABA-T) and partially inhibited glutamic acid decarboxylase (GAD) activity in regions of cerebral cortex. However, this dose did not affect GAD activity in substantia nigra while GABA-T in the nigra and in the cerebellum was only partially inhibited. In both cortical and subcortical areas, the increase in GABA produced by 25 mg/kg of AOAA was linear. In contrast, l -glutamic acid-hydrazide (GAH) had no effect in the pyriform and cingulate cortex for the first 60 min after injection, and produced a biphasic GABA increase in caudate and substantia nigra over a 4 h period. Results suggest that GAH and AOAA affect regional GABA metabolism differentially and that there are several problems associated with estimating absolute GABA synthesis rates by measuring the rate or GABA accumulation after inhibition of GABA catabolism with these agents. This approach, however, may provide an easily obtainable indication of whether drugs or other manipulations are altering GABA synthesis in a given region.  相似文献   

4.
Ethanolamine O-sulphate (400 mg/kg, i.p.) was administered to rat pups at 9 days of age and on alternate days up to 17 days of age. At 18 days of age, gamma-aminobutyric acid (GABA) concentration was increased (three- to fourfold), glutamic acid decarboxylase (GAD) activity reduced to 55% of control, and the number of GABAA and GABAB binding sites increased in the cerebral cortex. This is the same pattern of change as seen previously with oral administration of ethanolamine O-sulphate to the adult rat but the changes occur more rapidly in the developing rat. A lower dose of ethanolamine O-sulphate (100 mg/kg, i.p.), administered according to the same schedule, caused a twofold increase in cortical GABA at 18 days of age whereas GAD activity and GABAA binding were not significantly altered.  相似文献   

5.
Aldrin, a chlorinated hydrocarbon group of pesticide, is a well known central nervous system (CNS) stimulant. The CNS stimulating effect of aldrin is manifested in the form of an increase in locomotor activity (LA) of animals. Maximum increase in LA was observed at 2 h following aldrin (2-10 mg/kg, p.o.) treatment and this aldrin-induced increase in LA attained a peak at a dose of 10 mg/kg, p.o. Administration of aldrin (2 or 5 mg/kg/day, p.o.) enhanced LA of rats and reached a maxima after 12 consecutive days of treatment following which aldrin-induced LA was gradually reduced and restored to control value after 20 consecutive days of aldrin treatment. A single administration of aldrin (2-10 mg/kg, p.o.) reduced the GABA system in cerebellum, hypothalamus and pons-medulla. The treatment with aldrin (2 mg/kg/day, p.o.) for 12 consecutive days produced more inhibition in those brain regional GABA system than that observed with a single dose of aldrin. These results, thus, suggest that aldrin-induced inhibition of central GABA may be a cause of stimulation of LA with aldrin either at a single dose or for 12 consecutive days.  相似文献   

6.
The influence of a subconvulsant dose of kainic acid (KA) on the activity of neurons was studied in the sensorimotor cortical area of urethane-anesthetized rats. A total of 41 neurons was recorded, 38 of these in layer V (probably pyramidal cells). The activity of 18 neurons was recorded before as well as more than 30 min after KA administration (6 mg/kg i.p.). Nine out of these 18 neurons increased their firing rate significantly even 20 min after KA injection, whereas the remaining neurons did not change their activity. Altogether, the increase in the firing rate was significant. KA was found to enhance markedly the firing rate of a part of cortical neurons at very early stages of its action.  相似文献   

7.
Oral administration of K2Cr2O7 to male albino rats at an acute dose of 1500 mg/kg body wt/day for 3 days brought about sharp decrease in the activities of glucose-6-phosphate dehydrogenase and glutathione reductase of kidney epithelial cells. The scavenging system of kidney epithelium is also affected as evident by the highly significant fall in the activities of glutathione peroxidase, superoxide dismutase and catalase which ultimately leads to the increase in lipid peroxidation value in kidney cortical homogenate. However, glutathione-s-transferase activity in cytosol and glutathione and total thiol content in cortical homogenate were not altered. Chronic oral administration of K2Cr2O7 (300 mg/kg body wt/day) for 30 days to rats lead to elevation in the activities of glutathione peroxidase, glutathione reductase, glutathione-s-transferase, superoxide dismutase and catalase with no change in glucose-6-phosphate dehydrogenase activity in epithelial cells. This might lead to the increase in glutathione and total thiol status and decrease in lipid peroxidation value in whole homogenate system.  相似文献   

8.
The effect of cholecystokinin tetrapeptide (CCK(4)) and of different anxiolytic drugs on GABA outflow from the cerebral cortex was investigated in freely moving rats, by using the epidural cup technique. CCK(4) (3-30 microg/kg, i.p.) increased GABA outflow and induced objective signs of anxiety. These neurochemical and behavioral responses were prevented by the CCK(B) antagonist GV150013 at 0.1 microg/kg (i.p.). At higher doses (up to 30 microg/kg) this compound per se reduced GABA release and caused sedation, suggesting the presence of a CCKergic positive tonic modulation on GABA interneurons. Similarly the GABA(A) receptors modulator, diazepam (2mg/kg, i.p.) and the 5-HT(1A) agonist buspirone (3mg/kg, i.p.) reduced GABA outflow and caused the expected behavioral effects (reduced muscle tone, mild 5-HT syndrome) which were prevented by the respective, selective antagonists, flumazenil (1mg/kg, i.p.) and NAN-190 (3mg/kg, i.p.). These findings support the idea that GV150013, diazepam and buspirone inhibit GABAergic cortical activity, through the respective receptors. This neurochemical effect may represent the end-effect of various anxiolytic compounds affecting the cortical circuitry.  相似文献   

9.
Adult female rats were treated subcutaneously (sc) with zinc chloride (ZnCl, 10 or 20 mg kg body weight, bw) four times during two ovarian cycles. The third injection was accompanied by cadmium chloride (CdCl) administration sc (2.5, 5 and 10 mg kg bw). The fourth zinc (Zn) treatment was followed by mating.ZnCl (20 mg kg) itself impaired fertility by 20%, while CdCl dose-dependently blocked the receptivity of female rats. In combination with 2.5 and 5 mg kg CdCl the metal salts decreased fertility in an additive fashion, whereas at the highest CdCl dose (10 mg kg) a marked ameliorating effect of ZnCl (10 and 20 mg kg) on cadmium (Cd)-caused sterility was observed.In the pregnant animals apart from the higher Cd-induced blood progesterone levels and reduced body weight gain of dams, no significant treatment-related maternal and fetal effects could be observed. ZnCl (10 to 80 m) and CdCl (10 to 80 m) were added to the culture medium of ovarian granulosa cells. CdCl suppressed follicle-stimulating-hormone- (FSH-) and cAMP-stimulated progesterone accumulation. No protective effect of Zn against Cd-induced drop in progesterone production could be seen, while Zn by itself induced a significant increase in FSH-supported progesterone synthesis.In conclusion, while Zn protected against Cd-induced sterility in vivo, it failed to counteract the direct effect of Cd on steroid biosynthesis. The data indicate that Zn protection does not take place at the level of ovary. Moreover, Zn and Cd seem to affect FSH-stimulated progesterone production by different mechanisms.  相似文献   

10.
Intraperitoneal administration of n-dipropylacetate (DPA) to naive rats produced abstinence behaviour including shaking, digging, hunchback posture, piloerection and ptosis during 15 min and increased motor activity considerably. Treatment with a subconvulsive dose of the GABA antagonist bicuculline suppressed this DPA-induced abstinence behaviour, indicating that GABA was increased at receptor sites. Also morphine in a low dose of 1 mg/kg suppressed this behaviour, while administration of naloxone after morphine treatment could release the abstinence behaviour. Simultaneous treatment with morphine and naloxone or naloxone alone were without effect. The administration to DPA treated rats of doses higher than 1 mg/kg morphine resulted in a severe depression of motor activity. It is concluded that an increased availability of GABA at its receptor sites plays an important role in the behaviour observed after DPA administration. The experiments with morphine and naloxone suggest that morphine receptors are involved in DPA-induced abstinence behaviour.  相似文献   

11.
A study was made of the effect of haloperidol on convulsions induced in mice by bicuculline and thiosemicarbazide and on the recovery cycles of the primary response in the rat sensorimotor cortex. In doses of 0.3--0.5 mg/kg producing a tranquilizing effect, haloperidol exerts a protective action in convulsions induced by bicuculline blocking of the GABA receptors and enhances the depression of the testing response during recovery cycle of the rat sensorimotor cortex primary response. It means that over this dosage range haloperidol potentiates GABA-induced effects. An increase in the neuroleptic dose up to 1--2 mg/kg entails disappearance of the efficacy shown by both the tests. The authors' own and reported data suggest an important role played by the postsynaptic GABA-positive effect in realization of the tranquilizing action of haloperidol and other neurotropic agents.  相似文献   

12.
[Trp5]-oryzatensin(5-9) (WPLPR), an agonist peptide for complement C3a receptor, has been designed based on the C-terminal region of ileum-contracting peptide oryzatensin derived from rice protein. We previously reported that WPLPR has anti-analgesic and anti-amnesic activities after central or oral administration. In this study, we found a novel function of WPLPR on food intake. WPLPR suppressed food intake after intracerebroventricular or intraperitoneal (i.p.) administration at a dose of 3-30 nmol/mouse or 30-300 mg/kg, respectively, in fasted mice. Orally administered WPLPR at a dose of 300 mg/kg also decreased food intake. WPLPR decreased gastric emptying after i.p. injection at a dose of 300 mg/kg. The anorexigenic activity of WPLPR was blocked by cyclooxygenase inhibitor or antagonist for prostaglandin (PG) E receptor EP4 subtype. These results suggest that WPLPR decreases food intake through PGE2 production followed by EP4 receptor activation.  相似文献   

13.
The influence of some drugs (piracetam and 3-oxypyridine derivative) having a nootropic effect on ethanol-induced changes of bioelectrical activity was studied in experiments on freely moving rats. Discontinuation of ethanol administration (1, 2 g/kg, i.p. for 40 days) has been found to provoke destructuring of Fourier's spectral power of sensorimotor cortex and dorsal hippocamp on the EEG. Long-term administration of piracetam or 3-oxypyridine derivative (300 and 50 mg/kg, respectively, i.p. for 40 days) with ethanol has a protective effect and normalizes EEG at the cortical level. The authors discuss possible neurophysiological mechanisms of nootropic drug action in ethanol-induced pathology.  相似文献   

14.
The effect of administration of chlorpromazine on the activity of glutamine synthetase and glutaminase and the content of glutamate and gamma-aminobutyric acid (GABA) in different regions of rat brain was studied in an investigation of the possible role of these amino acids in the lowering of the seizure threshold following prolonged administration of chlorpromazine. Chlorpromazine was administered at a dose of 20 mg/kg of body weight s.c. For the acute study, the animals were killed 20 min after a single injection. For the long-term study, the animals were treated every day with the same dose for 21 days and were killed 20 min after the last injection. The results showed an increase in glutamate level in each brain region investigated following long-term administration, but only in the cerebral cortex after a single dose. GABA levels showed an increase in the brainstem only in acute experiments. Glutamine synthetase activity was increased in all three regions after a single dose and only in cerebral cortex after long-term administration. Glutaminase activity showed a decrease in cerebral cortex only after long-term administration of the drug. These results suggest the possible occurrence of a state of increased excitability in the brain as a result of long-term administration of chlorpromazine, thus contributing to the known complication of seizures.  相似文献   

15.
The role of GABA in the mediation of anti-conflict activity by drugs remains controversial. Amino-oxyacetic acid (AOAA), 30 mg/kg, i.p., 2 h, and γ-vinyl GABA (GVG) 900 mg/kg, i.p., 4 h, elevated rat forebrain GABA, but failed to exert any anti-conflict activity in a waterlick paradigm in rats. The GABA analogue, THIP, 0.1–10.0 mg/kg, i.p., 30 min, was also ineffective. Sodium valproate (VPA), 400 mg/kg, i.p., showed no increase in forebrain GABA at 5 min and 4 h, and a very weak elevation, to 106% of control, at 30 min. However, VPA elicited anti-conflict activity at 5 as well as at 30 min. The VPA mediated anti-conflict behavior at 5 min unrelated to increased forebrain GABA level and the lack of anti-conflict activity of AOAA and GVG in spite of significantly elevated GABA suggest an anti-conflict mechanism independent of increased brain GABA concentration. A GABA receptor involvement in the anti-conflict mechanism of VPA was nevertheless indicated by the ability of bicuculline, 0.3 mg/kg, s.c., 15 min, to completely suppress VPA elicited anti-conflic response at 5 min.  相似文献   

16.
In experiments on alert rabbits high frequency stimulation of the CA1 field of the dorsal hippocampus reduced the peak latency of the main negative component of the evoked potential (EP) to a light flash in the sensorimotor and occipital tests areas of the cerebral cortex. A single stimulation of the same part of the hippocampus resulted in a gradually developing facilitation of secondary negativity of the EP 5th component, predominantly in the sensorimotor cortex. Investigation of neuronal responses in the same cortical areas to a stimulation of the CA1 field with different parameters has shown that the effects of EP modulation are due to dynamic reorganizations of cortical neuronal activity.  相似文献   

17.
In rats immobilized by d-Tubocurarine the spontaneous activity of 100 mesencephalic reticular neurones was recorded extracellularly and statistically evaluated before and after repeated intravenous administration of 15 mg/kg doses of Pentobarbital. Number of spontaneously active neurones decreases quasi-linearly with repeated 15 mg/kg Pentobarbital doses. After a 75 mg/kg cumulative dose practically all neurones ceased firing spontaneously, whereas cortical EEG activity fully disappeared after the 90 mg/kg Pentobarbital dose. The firing rate was characterized by the mean interval with its standard deviation. Mean value for the total sample of spontaneously active neurones was 146.7 +/- 192.3 msec without Pentobarbital and increased to 302.7 +/- 367.5 msec after 15 mg/kg and to 400.6 +/- 452.5 msec after 30 mg/kg cumulative dose of Pentobarbital. The 15 mg/kg dose increased the frequency of firing in 5% of neurones only. The most often encountered type of interval histogram in the mesencephalic reticular formation was the exponential type (59% in unanaesthetized state), which was also most sensitive to Pentobarbital. Synchronized activity in bursts, characterized by periodical peaks and dips frequently occurred in neurones with the exponential-like interspike interval density after Pentobarbital administration. On the contrary, neurones with gamma-like and especially with symmetrical-like types of density were less influenced by Pentobarbital. In many neurones a periodical increase in the firing rate (with intervals of tens of seconds) related to the occurrence of spindles was present in the cortical EEG activity.  相似文献   

18.
From the 4th to the 16th day of incubation, GABA was administered continuously to chick embryos in a mean dose of 9.04 +/- 0.98 mg/kg e.w./24 h. On the 17th day of incubation, spontaneous motility was evaluated from the frequency of spontaneous movements as resting motility and motility after the acute administration of GABA (100 mg/kg e.w.), bicuculline (1 mg/kg e.w.) and oxazepam (10 mg/kg e.w.). 1) The chronic administration of GABA reduced the spontaneous motor activity of the experimental embryos to 38.4-47.8% of the control value. To obtain this effect it was sufficient to administer GABA between the 4th and the 8th day of incubation. 2) The inhibitory effect of the acute administration of GABA in the experimental embryos was only half its effect in the controls. Conversely, the relative size of bicuculline activation of motility was distinctly greater in the experimental embryos, which were also significantly more sensitive to oxazepam. The results show that GABA has a dual effect during embryogenesis--a) an early effect between the 4th and 8th day of incubation causing a chronic debt in the development of spontaneous motor activity, and b) an inhibitory effect as a central transmitter, which begins to be manifested in embryonic spontaneous motility of chick embryos on about the 15th day of incubation.  相似文献   

19.
The effect of 0.05, 0.1, and 0.2 mg sodium selenite/kg body weight ip on the activities of neurobehavioral, acetyl cholinesterase, monoamine oxidase, and the content of dopamine and its metabolites in circadian rhythm centers of male Wistar rats was studied after 7 d of treatment. The results show an appreciable increase in locomotion, stereo-events, distance traveled, and average speed at the dose of 0.1 and 0.2 mg sodium selenite/kg. The data have shown hyperactivity of animals with various doses of sodium selenite, and it was significant and dose-dependent after 3 d of treatment. The activity of acetylcholinesterase (AChE) was inhibited dose dependently, and it was significant in preoptic area with 0.1 or 0.2 mg sodium selenite/kg. Conversely, in the posterior hypothalamus its activity was significantly elevated with the dose of 0.2 mg sodium selenite/kg, but its alteration in brain stem was not significant. Monoamine oxidase (MAO) activity was increased in preoptic area with the dose of 0.1 mg sodium selenite/kg, but its alteration in posterior hypothalamus and brain stem was not significant. The content of dopamine (DA), 3,4-dihydroxyphenyl acetic acid (DOPAC), and homovanilic acid (HVA) was elevated dose dependently and it was significant with the doss of 0.1 and 0.2 mg sodium selenite/kg, but the content of DOPAC and HVA in posterior hypothalamus was not significant with the dose of 0.1 mg sodium selenite/kg.  相似文献   

20.
The technique of estimating gamma-aminobutyric acid (GABA) turnover by inhibiting its major degrading enzyme GABA-T (4-aminobutyrate:2-oxoglutarate aminotransferase; EC 2.6.1.19) and measuring GABA accumulation has been used repeatedly, but, at least in rats, its usefulness has been limited by several difficulties, including marked differences in the degree of GABA-T inhibition in different brain regions after systemic injection of GABA-T inhibitors. In an attempt to improve this type of approach for measuring GABA turnover, the time course of GABA-T inhibition and accumulation of GABA in 12 regions of rat brain has been studied after systemic administration of aminooxyacetic acid (AOAA), injected at various doses and with different routes of administration. A total and rapidly occurring inhibition of GABA-T in all regions was obtained with intraperitoneal injection of 100 mg/kg AOAA, whereas after lower doses, marked regional differences in the degree of GABA-T inhibition were found, thus leading to underestimation of GABA synthesis rates, e.g., in substantia nigra. The activity of the GABA-synthesizing enzyme GAD (L-glutamate-1-decarboxylase; EC 4.1.1.15) was not reduced significantly at any time after intraperitoneal injection of AOAA, except for a small decrease in olfactory bulbs. Even the highest dose of AOAA tested (100 mg/kg) was not associated with toxicity in rats, but induced motor impairment, which was obviously related to the marked GABA accumulation found with this dose. The increase in GABA concentrations induced with intraperitoneal injection of 100 mg/kg AOAA was rapid in onset, allowing one to estimate GABA turnover rates from the initial rate of GABA accumulation, i.e., during the first 30 min after AOAA injection. GABA turnover rates thus determined were correlated in a highly significant fashion with the GAD activities determined in brain regions, with highest turnover rates measured in substantia nigra, hypothalamus, olfactory bulb, and tectum. Pretreatment of rats with diazepam, 5 mg/kg i.p., 5-30 min prior to AOAA, reduced the AOAA-induced GABA accumulation in all 12 regions examined, most probably as a result of potentiation of postsynaptic GABA function. The data indicate that AOAA is a valuable tool for regional GABA turnover studies in rats, provided the GABA-T inhibitor is administered in sufficiently high doses to obtain complete inhibition of GABA degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号