首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Evoked activity of sensorimotor cortical neurones in response to stimulation of the pyramidal tract, medial lemniscus and reticular nucleus of the midbrain tegmentum; driving reaction of cortical neurones at stimulation of these brain structures of growing frequency, and conditioned reflexes elaborated by combination of direct stimulation of the sensorimotor cortex and electrocutaneous stimulation were studied in awake nonimmobilized rabbits. Application to the cortex of GABA solutions of low concentration (less than or equal to 1%) emphasizes the evoked neuronal responses, facilitates the appearance of driving reaction and contributes to the manifestation of the temporary connection. Application of GABA solutions of higher concentration (greater than 2%) leads to opposite effects. Positive correlation is found between electrical and behavioural phenomena. The described experimental approach may be used for analysis of various types of influences on temporary connection formation.  相似文献   

2.
The current method of localizing somatosensory and motor cortex during neurosurgical removal of abnormal tissue is Penfield's method of cortical stimulation. While useful, this method has drawbacks, in particular the need to operate under local anesthesia. Another method of localization, described here, involves intra-operative recording of short-latency somatosensory evoked potentials to stimulation of the contralateral median nerve, from electrodes placed directly on central cortex. Proper localization involves identification of potentials which invert in polarity across the central sulcus, identification of other potentials which are largest in the medial portion of the hand area of somatosensory cortex and do not polarity invert, and determination of the region of maximal potential amplitude. This method of localization works equally well whether the patient is under local or general anesthesia, but it occasionally fails in patients with tumors abutting or invading the hand area of sensorimotor cortex.  相似文献   

3.
The effect of low-frequency continuous vabration, hypokinesia, and shielding from the geomagnetic field were studied on 424 albino mongrel male rats. The action of these low-intensity factors of a different nature caused changes first of all in the microcirculatory bed (MCB) of the cerebral cortex. Structural disturbances, as well as the disturbances of redox metabolism in the neurons appeared close to those observed during hypoxia of a different origin; they obviously resulted from the disturbances of the MCB functions, which caused discrepancy between the needs for energy supply and the transport system state. Specificities of the disturbances evoked by different factors can be related to desynchronization of the biorhythms (e.g., caused by deprivation of the geomagnetic field).  相似文献   

4.
In the presence of Cu2+ and Zn2+ carnosine (beta-alanyl-L-histidine) possesses a superoxide-scavenging activity. The efficiency of scavenging as measured by the inhibition of tetrazolium nitroblue reduction in superoxide anion generation systems (phenazine methasulfate/NADH and xanthine/xanthine oxidase) is concentration-dependent and shows a maximum in the presence of millimolar concentrations of carnosine and equimolar concentrations of Cu2+ and Zn2+. In the presence of Cu2+ and Zn2+ histidine also exhibits a superoxide-scavenging activity. The feasible role of the superoxide-scavenging activity of histidine-containing dipeptide complexes with bivalent metal ions in the realization of physiological function of these dipeptides in skeletal muscles is discussed.  相似文献   

5.
During the hypotensive phase of electronocuous shock in rabbits, injection of nalorphine to the hypothalamus provoked elevation in the blood pressure (BP), recovery of the evoked potential (EP) of the sensorimotor brain cortex in response to electrodermal stimulation (EDS) of the hind limb. Injection of the drug to the central gray of the midbrain resulted in an insignificant short-term elevation of the BP followed by its drop. It is concluded that the endogenous opioid system of the hypothalamus is of importance in the genesis of the hypotensive response and suppression of the EP of the rabbit sensorimotor brain cortex in response to EDS during electronocuous shock.  相似文献   

6.
In acute experiments on cats evoked potentials (EP) of the orbital cortex were recorded and the electrogenesis and functional purpose of individual components of associative responses (AR) were investigated. It was concluded that the initial negative fluctuation of the AR arises as a consequence of the physical propagation of potentials from the projection somatosensory cortex and the second, positive, component and the following negative component are the result of arrival of an afferent volley into the orbital cortex via specific thalamic nuclei. These two components are due to activation of neurons of the orbital cortex. The afterdischarge, which appears sometimes, develops under the effect of impulses arriving from nonspecific thalamic nuclei. It is shown that during the second, positive, phase of the AR, primarily afferent neurons are activated, and during the negative phase, efferent neurons of the orbital cortex. The afterdischarge, which complicates the negative phase of the AR, is due to inhibition of afferent neurons.N. I. Pirogov Medical Institute, Vinnitsa. Translated from Neirofiziologiya, Vol. 2, No. 4, pp. 384–390, July–August, 1970.  相似文献   

7.
8.
Investigation into the influence of motor training on the functional activity of the rat sensorimotor cortex in ontogenesis has shown that three to four-month training, starting at the age of four weeks, leads to a statistically significant enhancement of sensorimotor cortex activity both by latencies and recovery cycles durations. A similar six to seven-month locomotor training produces the same statistically significant results. The differences in the shifts of functional activity after motor training observed between two age groups are not statistically significant. The probability of changes in the average definitive electrophysiological parameters of functional activity after motor training observed between two age groups are not statistically significant. The probability of changes in the average definitive electrophysiological parameters of functional activity of the sensorimotor cortex is suggested in rats aged more than a month, as a result of individual experience.  相似文献   

9.
Intracellular correlates of complex sets of rhythmic cortical "spike and wave" potentials evoked in sensorimotor cortex and of self-sustained rhythmic "spike and wave" activity were examined during acute experiments on cats immobilized by myorelaxants. Rhythmic spike-wave activity was produced by stimulating the thalamic relay (ventroposterolateral) nucleus (VPLN) at the rate of 3 Hz; self-sustained afterdischarges were recorded following 8–14 Hz stimulation of the same nucleus. Components of the spike and wave afterdischarge mainly correspond to the paroxysmal depolarizing shifts of the membrane potential of cortical neurons in length. After cessation of self-sustained spike and wave activity, prolonged hyperpolarization accompanied by inhibition of spike discharges and subsequent reinstatement of background activity was observed in cortical neurons. It is postulated that the negative slow wave of induced spike and wave activity as well as slow negative potentials of direct cortical and primary response reflect IPSP in more deep-lying areas of the cell bodies, while the wave of self-sustained rhythmic activity is due to paroxysmal depolarizing shifts in the membrane potential of cortical neurons.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 18, No. 3, pp. 298–306, May–June, 1986.  相似文献   

10.
11.
12.
13.
The metabolism of GABA and other amino acids was studied in the substantia nigra, the hippocampus and the parietal cortex of rats following microinjections of GAMMA-vinyl-GABA during status epilepticus induced by lithium and pilocarpine. GABA metabolism showed striking regional variations. In controls, both GABA concentration and rate of GABA synthesis were highest in the substantia nigra and lowest in cortex, as expected. In substantia nigra, status epilepticus resulted in a 2 1/2 fold decline in the rate of GABA synthesis and in a 307% increase in the turnover time of the GABA pool. In hippocampus, the rate of GABA synthesis was not altered significantly, but the turnover time of the GABA pool was 284% of controls, and the size of that pool increased to 208% of controls. By contrast, in cortex, where seizure activity is limited in this model, the rate of GABA synthesis increased to 230% of controls while pool size and turnover time did not change. Aspartate concentration decreased in all three brain regions. These data suggest that the observed reduction of the rate of GABA synthesis in substantia nigra could play a key role in seizure spread in this model of status epilepticus.Special Issue dedicated to Claude Baxter.  相似文献   

14.
We investigated the role of the cerebral cortex, particularly the face/tongue area of the primary sensorimotor (SMI) cortex (face/tongue) and supplementary motor area (SMA), in volitional swallowing by recording movement-related cortical potentials (MRCPs). MRCPs with swallowing and tongue protrusion were recorded from scalp electrodes in eight normal right-handed subjects and from implanted subdural electrodes in six epilepsy patients. The experiment by scalp EEG in normal subjects revealed that premovement Bereitschaftspotentials (BP) activity for swallowing was largest at the vertex and lateralized to either hemisphere in the central area. The experiment by epicortical EEG in patients confirmed that face/tongue SMI and SMA were commonly involved in swallowing and tongue protrusion with overlapping distribution and interindividual variability. BP amplitude showed no difference between swallowing and tongue movements, either at face/tongue SMI or at SMA, whereas postmovement potential (PMP) was significantly larger in tongue protrusion than in swallowing only at face/tongue SMI. BP occurred earlier in swallowing than in tongue protrusion. Comparison between face/tongue SMI and SMA did not show any difference with regard to BP and PMP amplitude or BP onset time in either task. The preparatory role of the cerebral cortex in swallowing was similar to that in tongue movement, except for earlier activation in swallowing. Postmovement processing of swallowing was lesser than that of tongue movement in face/tongue SMI; probably suggesting that the cerebral cortex does not play a significant role in postmovement processing of swallowing. SMA plays a supplementary role to face/tongue SMI both in swallowing and tongue movements.  相似文献   

15.
16.
Evoked focal potentials which were induced in vitro in a slice of olfactory tract by stimulation of the lateral olfactory tract (LOT) have been studied. The potential consisted of an initial biphasic wave, the compound action potential of LOT, population synaptic responses, and population spike. Functional significance and possible mechanisms of changes of different focal potential waves have been discussed.  相似文献   

17.
The characteristics of the averaged evoked potentials (AEP) (experiments with awake non-paralysed animals), of the evoked potentials (EP) and of the responses of single sensorimotor cortical neurons (acute experiments) of cats to tone-bursts with frequencies within 0.1-6.0 kHz were studied. Response selectivity to the tone-burst frequencies which are energetically pronounced in some biologically significant sounds for the cat was observed. The averaged curve of the dependence of the amplitude of AEP in the somatosensory cortical region (S1) on the tone-burst frequency has reliable maximum values at the frequencies of 0.8, 1.6 and 2.0-3.0 kHz. Most pronounced changes in the heart rhythm were observed within the tone-burst frequency ranges in which the AEP of the highest amplitudes were recorded. The amplitude of the AEP was found to increase during the conditioned reflex elaboration. The curve of the dependence of the probability of the EP occurrence on the frequency at equal sound pressure levels had maximum values at the frequencies of 1.6 and 3.2 kHz. The highest amplitude values of EP were found at frequencies of 0.8, 1.6 and 3.2 kHz. More than half of the recorded neurons revealed the lowest values of the response thresholds and the maximum values of the occurrence probability under suprathreshold stimulation at frequencies close to 0.8, 1.6, and 3.2 kHz. It is supposed that the above mentioned feature of the input frequency organization in sensorimotor cortex is connected with the selectivity as to the biological significance of acoustic stimuli.  相似文献   

18.
The action of anticonvulsant drugs, phenytoin, diazepam, clonazepam and phenobarbitone, was tested on the release of [14C]-GABA from tissue slices of rat cerebral cortex. All drugs caused a significant dose-dependent depression of the 33mM-K+-evoked release of [14C]-GABA but had little effect on the resting release of [14C]-GABA, except at high concentrations. The IC50 values for inhibition of K+-evoked release of [14C]-GABA were 4.7 × 10?5, 7 × 10?5, 28 × 10?5 and 7.9 × 10?4M for diazepam, clonazepam, phenytoin and phenobarbitone respectively. Trifluoperazine also caused a similar and complete inhibition of [14C]-GABA release with an IC50 of 1 × 10?5M. The effect of diazepam and trifluoperazine were additive. The inhibition by trifluoperazine could be overcome by addition of exogenous calmodulin, whereas that of diazepam, phenytoin or phenobarbitone was not overcome. It is proposed that the anticonvulsants tested inhibit calcium-dependent transmitter release at a site distal to the formation of a calcium-calmodulin complex, which is presumably activated by this complex. Trifluoperazine, on the other hand, acts by reducing the availability of calmodulin.  相似文献   

19.
Oscillatory interactions between sensorimotor cortex and the periphery   总被引:1,自引:0,他引:1  
Field potential recordings from motor cortex show oscillations in the beta-band (approximately 20 Hz), which are coherent with similar oscillations in the activity of contralateral contracting muscles. Recent findings have revised concepts of how this activity might be generated in the cortex, suggesting it could achieve useful computation. Other evidence shows that these oscillations engage not just motor structures, but also return from muscle to the central nervous system via feedback afferent pathways. Somatosensory cortex has strong beta-band oscillations, which are synchronised with those in motor cortex, allowing oscillatory sensory reafference to be interpreted in the context of the oscillatory motor command which produced it.  相似文献   

20.
Since the discovery of the close association between rapid eye movement (REM) sleep and dreaming, much effort has been devoted to link physiological signatures of REM sleep to the contents of associated dreams [1-4]. Due to the impossibility of experimentally controlling spontaneous dream activity, however, a direct demonstration of dream contents by neuroimaging methods is lacking. By combining brain imaging with polysomnography and exploiting the state of "lucid dreaming," we show here that a predefined motor task performed during dreaming elicits neuronal activation in the sensorimotor cortex. In lucid dreams, the subject is aware of the dreaming state and capable of performing predefined actions while all standard polysomnographic criteria of REM sleep are fulfilled [5, 6]. Using eye signals as temporal markers, neural activity measured by functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) was related to dreamed hand movements during lucid REM sleep. Though preliminary, we provide first evidence that specific contents of REM-associated dreaming can be visualized by neuroimaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号