首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to examine the differences between hydrophobicity and packing effects in specifying the three-dimensional structure and stability of proteins when mutating hydrophobes in the hydrophobic core. In DNA-binding proteins (leucine zippers), Leu residues are conserved at positions "d," and beta-branched amino acids, Ile and Val, often occur at positions "a" in the hydrophobic core. In order to discern what effect this selective distribution of hydrophobes has on the formation and stability of two-stranded alpha-helical coiled coils/leucine zippers, three Val or three Ile residues were simultaneously substituted for Leu at either positions "a" (9, 16, and 23) or "d" (12, 19, and 26) in both chains of a model coiled coil. The stability of the resulting coiled coils was monitored by CD in the presence of Gdn.HCl. The results of the mutations of Ile to Val at either positions "a" or "d" in the reduced or oxidized coiled coils showed a significant hydrophobic effect with the additional methylene group in Ile stabilizing the coiled coil (delta delta G values range from 0.45 to 0.88 kcal/mol/mutation). The results of mutations of Leu to Ile or Val at positions "a" in the reduced or oxidized coiled coils showed a significant packing effect in stabilizing the coiled coil (delta delta G values range from 0.59 to 1.03 kcal/mol/mutation). Our results also indicate the subtle control hydrophobic packing can have not only on protein stability but on the conformation adopted by the amphipathic alpha-helices. These structural findings correlate with the observation that in DNA-binding proteins, the conserved Leu residues at positions "d" are generally less tolerant of amino acid substitutions than the hydrophobic residues at positions "a."  相似文献   

2.
Campbell KM  Lumb KJ 《Biochemistry》2002,41(22):7169-7175
The coiled coil is an attractive target for protein design. The helices of coiled coils are characterized by a heptad repeat of residues denoted a to g. Residues at positions a and d form the interhelical interface and are usually hydrophobic. An established strategy to confer structural uniqueness to two-stranded coiled coils is the use of buried polar Asn residues at position a, which imparts dimerization and conformational specificity at the expense of stability. Here we show that polar interactions involving buried position-a Lys residues that can interact favorably only with surface e' or g' Glu residues also impart structural uniqueness to a designed heterodimeric coiled coil with the nativelike properties of sigmoidal thermal and urea-induced unfolding transitions, slow hydrogen exchange and lack of ANS binding. The position-a Lys residues do not, however, confer a single preference for helix orientation, likely reflecting the ability of Lys at position a to from favorable interactions with g' or e' Glu residues in the parallel and antiparallel orientations, respectively. The Lys-Glu polar interaction is less destabilizing than the Asn-Asn a-->a' interaction, presumably reflecting a higher desolvation penalty associated with the completely buried polar position-a groups. Our results extend the range of approaches for two-stranded coiled-coil design and illustrate the role of complementing polar groups associated with buried and surface positions of proteins in protein folding and design.  相似文献   

3.
4.
The amino acid sequence that forms the alpha-helical coiled coil structure has a representative heptad repeat denoted by defgabc, according to their positions. Although the a and d positions are usually occupied by hydrophobic residues, hydrophilic residues at these positions sometimes play important roles in natural proteins. We have manipulated a few amino acids at the a and d positions of a de novo designed trimeric coiled coil to confer new functions to the peptides. The IZ peptide, which has four heptad repeats and forms a parallel triple-stranded coiled coil, has Ile at all of the a and d positions. We show three examples: (1) the substitution of one Ile at either the a or d position with Glu caused the peptide to become pH sensitive; (2) the metal ion induced alpha-helical bundles were formed by substitutions with two His residues at the d and a positions for a medium metal ion, and with one Cys residue at the a position for a soft metal ion; and (3) the AAB-type heterotrimeric alpha-helical bundle formation was accomplished by a combination of Ala and Trp residues at the a positions of different peptide chains. Furthermore, we applied these procedures to prepare an ABC-type heterotrimeric alpha-helical bundle and a metal ion-induced heterotrimeric alpha-helical bundle.  相似文献   

5.
Recent studies with model peptides and statistical analyses of the crystal structures of membrane proteins have shown that buried polar interactions contribute significantly to the stabilization of the three-dimensional structures of membrane proteins. Here, we probe how the location of these polar groups along the transmembrane helices affect their free energies of interaction. Asn residues were placed singly and in pairs at three positions within a model transmembrane helix, which had previously been shown to support the formation of trimers in micelles. The model helix was designed to form a transmembrane coiled coil, with Val side chains at the "a" positions of the heptad repeat. Variants of this peptide were prepared in which an Asn residue was introduced at one or more of the "a" positions, and their free energies of association were determined by analytical ultracentrifugation. When placed near the middle of the transmembrane helix, the formation of trimers was stabilized by at least -2.0 kcal/mol per Asn side chain. When the Asn was placed at the interface between the hydrophobic and polar regions of the peptide, the substitution was neither stabilizing nor destabilizing (0.0 +/- 0.5 kcal/mol of monomer). Finally, it has previously been shown that a Val-for-Asn mutation in a water-soluble coiled coil destabilizes the structure by approximately 1.5 kcal/mol of monomer [Acharya, A., et al. (2002) Biochemistry 41, 14122-14131]. Thus, the headgroup region of a micelle appears to have a conformational impact intermediate between that of bulk water and the apolar region of micelle. A similarly large dependence on the location of the polar residues was found in a statistical survey of helical transmembrane proteins. The tendency of different types of residues to be buried in the interiors versus being exposed to lipids was analyzed. Asn and Gln show a very strong tendency to be buried when they are located near the middle of a transmembrane helix. However, when placed near the ends of transmembrane helices, they show little preference for the surface versus the interior of the protein. These data show that Asn side chains within the apolar region of the transmembrane helix provide a significantly larger driving force for association than Asn residues near the apolar/polar interface. Thus, although polar interactions are able to strongly stabilize the folding of membrane proteins, the energetics of association depend on their location within the hydrophobic region of a transmembrane helix.  相似文献   

6.
Akey DL  Malashkevich VN  Kim PS 《Biochemistry》2001,40(21):6352-6360
Coiled coils, estimated to constitute 3-5% of the encoded residues in most genomes, are characterized by a heptad repeat, (abcdefg)(n), where the buried a and d positions form the interface between multiple alpha-helices. Although generally hydrophobic, a substantial fraction ( approximately 20%) of these a- and d-position residues are polar or charged. We constructed variants of the well-characterized coiled coil GCN4-p1 with a single polar residue (Asn, Gln, Ser, or Thr) at either an a or a d position. The stability and oligomeric specificity of each variant were measured, and crystal structures of coiled-coil trimers with threonine or serine at either an a or a d position were determined. The structures show how single polar residues in the interface affect not only local packing, but also overall coiled-coil geometry as seen by changes in the Crick supercoil parameters and core cavity volumes.  相似文献   

7.
Ji H  Bracken C  Lu M 《Biochemistry》2000,39(4):676-685
For human (HIV) and simian (SIV) immunodeficiency viruses, the gp41 envelope protein undergoes a receptor-activated conformational change from a labile native structure to an energetically more stable fusogenic conformation, which then mediates viral-cell membrane fusion. The core structure of fusion-active gp41 is a six-helix bundle in which three antiparallel carboxyl-terminal helices are packed against an amino-terminal trimeric coiled coil. Here we show that a recombinant model of the SIV gp41 core, designated N36(L6)C34, forms an alpha-helical trimer that exhibits a cooperative two-state folding-unfolding transition. We investigate the importance of buried polar interactions in determining the overall fold of the gp41 core. We have replaced each of four polar amino acids at the heptad a and d positions of the coiled coil in N36(L6)C34 with a representative hydrophobic amino acid, isoleucine. The Q565I, T582I, and T586I variants form six-helix bundle structures that are significantly more stable than that of the wild-type peptide, whereas the Q575I variant misfolds into an insoluble aggregate under physiological conditions. Thus, the buried polar residues within the amino-terminal heptad repeat are important determinants of the structural specificity and stability of the gp41 core. We suggest that these conserved buried polar interactions play a role in governing the conformational state of the gp41 molecule.  相似文献   

8.
9.
10.
The three-dimensional structure of the 29-residue designed coiled coil having the amino acid sequence acetyl-E VEALEKK VAALESK VQALEKK VEALEHG-amide has been determined and refined to a crystallographic R-factor of 21.4% for all data from 10-A to 2.1-A resolution. This molecule is called coil-VaLd because it contains valine in the a heptad positions and leucine in the d heptad positions. In the trigonal crystal, three molecules, related by a crystallographic threefold axis, form a parallel three-helix bundle. The bundles are stacked head-to-tail to form a continuous coiled coil along the c-direction of the crystal. The contacts among the three helices within the coiled coil are mainly hydrophobic: four layers of valine residues alternate with four layers of leucine residues to form the core of the bundle. In contrast, mostly hydrophilic contacts mediate the interaction between trimers: here a total of two direct protein--protein hydrogen bonds are found. Based on the structure, we propose a scheme for designing crystals of peptides containing continuous two-, three-, and four-stranded coiled coils.  相似文献   

11.
12.
13.
The short coiled coil protein (SCOC) forms a complex with fasciculation and elongation protein zeta 1 (FEZ1). This complex is involved in autophagy regulation. We determined the crystal structure of the coiled coil domain of human SCOC at 2.7 Å resolution. SCOC forms a parallel left handed coiled coil dimer. We observed two distinct dimers in the crystal structure, which shows that SCOC is conformationally flexible. This plasticity is due to the high incidence of polar and charged residues at the core a/d-heptad positions. We prepared two double mutants, where these core residues were mutated to either leucines or valines (E93V/K97L and N125L/N132V). These mutations led to a dramatic increase in stability and change of oligomerisation state. The oligomerisation state of the mutants was characterized by multi-angle laser light scattering and native mass spectrometry measurements. The E93V/K97 mutant forms a trimer and the N125L/N132V mutant is a tetramer. We further demonstrate that SCOC forms a stable homogeneous complex with the coiled coil domain of FEZ1. SCOC dimerization and the SCOC surface residue R117 are important for this interaction.  相似文献   

14.
Membrane-spanning proteins contain both aqueous and membrane-spanning regions, both of which contribute to folding and stability. To explore the interplay between these two domains we have designed and studied the assembly of coiled-coil peptides that span from the membrane into the aqueous phase. The membrane-spanning segment is based on MS1, a transmembrane coiled coil that contains a single Asn at a buried a position of a central heptad in its sequence. This Asn has been shown to drive assembly of the monomeric peptide in a membrane environment to a mixture of dimers and trimers. The coiled coil has now been extended into the aqueous phase by addition of water-soluble helical extensions. Although too short to fold in isolation, these helical extensions were expected to interact synergistically with the transmembrane domain and modulate its stability as well as its conformational specificity for forming dimers versus trimers. One design contains Asn at a position of the aqueous helical extension, which was expected to specify a dimeric state; a second peptide, which contains Val at this position, was expected to form trimers. The thermodynamics of assembly of the hybrid peptides were studied in micelles by sedimentation equilibrium ultracentrifugation. The aqueous helical extensions indeed conferred additional stability and conformational specificity to MS1 in the expected manner. These studies highlight the delicate interplay between membrane-spanning and water-soluble regions of proteins, and demonstrate how these different environments define the thermodynamics of a given specific interaction. In this case, an Asn in the transmembrane domain provided a strong driving force for folding but failed to specify a unique oligomerization state, while an Asn in the water-soluble domain was able to define specificity for a specific aggregation state as well as modulate stability.  相似文献   

15.
M G Mateu  A R Fersht 《The EMBO journal》1998,17(10):2748-2758
The contribution of almost each amino acid side chain to the thermodynamic stability of the tetramerization domain (residues 326-353) of human p53 has been quantitated using 25 mutants with single-residue truncations to alanine (or glycine). Truncation of either Leu344 or Leu348 buried at the tetramer interface, but not of any other residue, led to the formation of dimers of moderate stability (8-9 kcal/mol of dimer) instead of tetramers. One-third of the substitutions were moderately destabilizing (<3.9 kcal/mol of tetramer). Truncations of Arg333, Asn345 or Glu349 involved in intermonomer hydrogen bonds, Ala347 at the tetramer interface or Thr329 were more destabilizing (4.1-5.7 kcal/mol). Strongly destabilizing (8.8- 11.7 kcal/mol) substitutions included those of Met340 at the tetramer interface and Phe328, Arg337 and Phe338 involved peripherally in the hydrophobic core. Truncation of any of the three residues involved centrally in the hydrophobic core of each primary dimer either prevented folding (Ile332) or allowed folding only at high protein concentration or low temperature (Leu330 and Phe341). Nine hydrophobic residues per monomer constitute critical determinants for the stability and oligomerization status of this p53 domain.  相似文献   

16.
Thomas ST  Makhatadze GI 《Biochemistry》2000,39(33):10275-10283
The contribution of the hydrophobic contact in the C-capping motif of the alpha-helix to the thermodynamic stability of the ubiquitin molecule has been analyzed. For this, 16 variants of ubiquitin containing the full combinatorial set of four nonpolar residues Val, Ile, Leu, and Phe at C4 (Ile30) and C' ' (Ile36) positions were generated. The secondary structure content as estimated using far-UV circular dichroism (CD) spectroscopy of all but Phe variants at position 30 did not show notable changes upon substitutions. The thermodynamic stability of these ubiquitin variants was measured using differential scanning calorimetry, and it was shown that all variants have lower stability as measured by decreases in the Gibbs energy. Since in some cases the decrease in stability was so dramatic that it rendered an unfolded protein, it was therefore concluded that, despite apparent preservation of the secondary structure, the 30/36 hydrophobic contact is essential for the stability of the ubiquitin molecule. The decrease in the Gibbs energy in many cases was found to be accompanied by a large (up to 25%) decrease in the enthalpy of unfolding, particularly significant in the variants containing Ile to Leu substitutions. This decrease in enthalpy of unfolding is proposed to be primarily the result of the perturbed packing interactions in the native state of the Ile --> Leu variants. The analysis of these data and comparison with effects of similar amino acid substitutions on the stability of other model systems suggest that Ile --> Leu substitutions cannot be isoenergetic at the buried site.  相似文献   

17.
We describe the de novo design and biophysical characterization of a model coiled-coil protein in which we have systematically substituted 20 different amino acid residues in the central "d" position. The model protein consists of two identical 38 residue polypeptide chains covalently linked at their N termini via a disulfide bridge. The hydrophobic core contained Val and Ile residues at positions "a" and Leu residues at positions "d". This core allowed for the formation of both two-stranded and three-stranded coiled-coils in benign buffer, depending on the substitution at position "d". The structure of each analog was analyzed by CD spectroscopy and their relative stability determined by chemical denaturation using GdnHCI (all analogs denatured from the two-stranded state). The oligomeric state(s) was determined by high-performance size-exclusion chromatography and sedimentation equilibrium analysis in benign medium. Our results showed a thermodynamic stability order (in order of decreasing stability) of: Leu, Met, Ile, Tyr, Phe, Val, Gln, Ala, Trp, Asn, His, Thr, Lys, Ser, Asp, Glu, Arg, Orn, and Gly. The Pro analog prevented coiled-coil formation. The overall stability range was 7.4 kcal/mol from the lowest to the highest analog, indicating the importance of the hydrophobic core and the dramatic effect a single substitution in the core can have upon the stability of the protein fold. In general, the side-chain contribution to the level of stability correlated with side-chain hydrophobicity. Molecular modelling studies, however, showed that packing effects could explain deviations from a direct correlation. In regards to oligomerization state, eight analogs demonstrated the ability to populate exclusively one oligomerization state in benign buffer (0.1 M KCl, 0.05 M K(2)PO(4)(pH 7)). Ile and Val (the beta-branched residues) induced the three-stranded oligomerization state, whereas Tyr, Lys, Arg, Orn, Glu and Asp induced the two-stranded state. Asn, Gln, Ser, Ala, Gly, Phe, Leu, Met and Trp analogs were indiscriminate and populated two-stranded and three-stranded states. Comparison of these results with similar substitutions in position "a" highlights the positional effects of individual residues in defining the stability and numbers of polypeptide chains occurring in a coiled-coil structure. Overall, these results in conjunction with other work now generate a relative thermodynamic stability scale for 19 naturally occurring amino acid residues in either an "a" or "d" position of a two-stranded coiled-coil. Thus, these results will aid in the de novo design of new coiled-coil structures, a better understanding of their structure/function relationships and the design of algorithms to predict the presence of coiled-coils within native protein sequences.  相似文献   

18.
The pKa values of eight glutamic acid residues in the homotrimeric coiled coil domain of chicken matrilin-1 have been determined from 2D H(CA)CO NMR spectra recorded as a function of the solution pH. The pKa values span a range between 4.0 and 4.7, close to or above those for glutamic acid residues in unstructured polypeptides. These results suggest only small favorable contributions to the stability of the coiled coil from the ionization of its acidic residues.  相似文献   

19.
N3 is the third position from the N terminus in the alpha-helix with helical backbone dihedral angles. All 20 amino acids have been placed in the N3 position of a synthetic helical peptide (CH(3)CO-[AAX AAAAKAAAAKAGY]-NH(2)) and the helix content measured by circular dichroism spectroscopy at 273 K. The dependence of peptide helicity on N3 residue identity has been used to determine a free energy scale by analysis with a modified Lifson-Roig helix coil theory that includes a parameter for the N3 energy (n3). The most stabilizing residues at N3 in rank order are Ala, Glu, Met/Ile, Leu, Lys, Ser, Gln, Thr, Tyr, Phe, Asp, His, and Trp. Free energies for the most destabilizing residues (Cys, Gly, Asn, Arg, and Pro) could not be fitted. The results correlate with N1, N2, and helix interior energies and not at all with N-cap preferences. This completes our work on studying the structural and energetic preferences of the amino acids for the N-terminal positions of the alpha-helix. These results can be used to rationally modify protein stability, help design helices, and improve prediction of helix location and stability.  相似文献   

20.
Ion pairs are ubiquitous in X-ray structures of coiled coils, and mutagenesis of charged residues can result in large stability losses. By contrast, pKa values determined by NMR in solution often predict only small contributions to stability from charge interactions. To help reconcile these results we used triple-resonance NMR to determine pKa values for all groups that ionize between pH 1 and 13 in the 33 residue leucine zipper fragment, GCN4p. In addition to the native state we also determined comprehensive pKa values for two models of the GCN4p denatured state: the protein in 6 M urea, and unfolded peptide fragments of the protein in water. Only residues that form ion pairs in multiple X-ray structures of GCN4p gave large pKa differences between the native and denatured states. Moreover, electrostatic contributions to stability were not equivalent for oppositely charged partners in ion pairs, suggesting that the interactions between a charge and its environment are as important as those within the ion pair. The pH dependence of protein stability calculated from NMR-derived pKa values agreed with the stability profile measured from equilibrium urea-unfolding experiments as a function of pH. The stability profile was also reproduced with structure-based continuum electrostatic calculations, although contributions to stability were overestimated at the extremes of pH. We consider potential sources of errors in the calculations, and how pKa predictions could be improved. Our results show that although hydrophobic packing and hydrogen bonding have dominant roles, electrostatic interactions also make significant contributions to the stability of the coiled coil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号