首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Two independent quorum-sensing systems control the expression of bioluminescence (lux) in the marine bacterium Vibrio harveyi. Each system is composed of an autoinducer (AI-1 or AI-2) and its cognate sensor (LuxN or LuxQ). The sensors are two-component hybrid kinases, containing both sensor kinase domains and response regulator domains. Sensory information from the two systems is relayed by a phosphotransfer mechanism to a shared integrator protein called LuxO. LuxO is a member of the response regulator class of the two-component family of signal transduction proteins, and LuxO acts negatively to control luminescence. In this report, missense and in frame deletion mutations were constructed in luxO that encoded proteins mimicking either the phosphorylated or the unphosphorylated form, and these mutations were introduced into the V. harveyi chromosome at the luxO locus. Phenotypical analyses of the resulting mutant V. harveyi strains indicate that the phosphorylated form of LuxO is the repressor, and that the unphosphorylated form of the protein is inactive. Analysis of the lux phenotypes of V. harveyi strains containing single and double luxN and luxQ mutations indicate that LuxN and LuxQ have two activities on LuxO. They act as LuxO protein kinases at low cell density in the absence of autoinducers, and they switch to LuxO protein phosphatases at high cell density in the presence of autoinducers. Furthermore, the timing and potency of inputs from the two systems into regulation of quorum sensing are different.  相似文献   

3.
4.
5.
6.
We previously proposed that the function of the lux operon is to produce a halotolerant flavodoxin, FP390 or P-flavin binding protein, and not to produce light. A crucial basis of this hypothesis is that almost all species of luminous bacteria emit light in culture media containing over 2% NaCl. However, Vibrio albensis (Vibrio cholerae biovar albensis) NCIMB 41 emits light in freshwater and this appears to be in direct conflict with our hypothesis. To determine why this exceptional freshwater bioluminescence is emitted, we studied the lux operon and the regulatory system of the operon in this strain, and found that expression of the operon is regulated by a system involving a derivative of 4,5-dihydroxy 2,3-pentanedione, DPD, as an inducer, and the repressor gene for the lux operon, luxO, is damaged by deletion of two nucleotides. Furthermore, to study the effect of damage to the luxO gene, pUC18 derivatives containing the damaged and repaired luxO sequences were prepared. Cells transfected with the damaged luxO sequence emitted light like the parental strain, whereas ones transfected with the repaired one did so only sparingly. Here we show that the light emission in freshwater by this strain is not in conflict with our hypothesis.  相似文献   

7.
8.
9.
Regulation of quorum sensing in Vibrio harveyi by LuxO and sigma-54   总被引:3,自引:0,他引:3  
The bioluminescent marine bacterium Vibrio harveyi controls light production (lux) by an elaborate quorum-sensing circuit. V. harveyi produces and responds to two different autoinducer signals (AI-1 and AI-2) to modulate the luciferase structural operon (luxCDABEGH) in response to changes in cell-population density. Unlike all other Gram-negative quorum-sensing organisms, V. harveyi regulates quorum sensing using a two-component phosphorylation-dephosphorylation cascade. Each autoinducer is recognized by a cognate hybrid sensor kinase (called LuxN and LuxQ). Both sensors transduce information to a shared phosphorelay protein called LuxU, which in turn conveys the signal to the response regulator protein LuxO. Phospho-LuxO is responsible for repression of luxCDABEGH expression at low cell density. In the present study, we demonstrate that LuxO functions as an activator protein via interaction with the alternative sigma factor, sigma54 (encoded by rpoN). Our results suggest that LuxO, together with sigma54, activates the expression of a negative regulator of luminescence. We also show that phenotypes other than lux are regulated by LuxO and sigma54, demonstrating that in Vibrio harveyi, quorum sensing controls multiple processes.  相似文献   

10.
Past work has shown that transformed Escherichia coli is not a suitable vehicle for studying the expression and regulation of the cloned luminescence (lux) genes of Vibrio harveyi. Therefore, we have used a conjugative system to transfer lux genes cloned into E. coli back into V. harveyi, where they can be studied in the parental organism. To do this, lux DNA was inserted into a broad-spectrum vector, pKT230, cloned in E. coli, and then mobilized into V. harveyi by mating aided by the conjugative plasmid pRK2013, also contained in E. coli. Transfer of the wild-type luxD gene into the V. harveyi M17 mutant by this means resulted in complementation of the luxD mutation and full restoration of luminescence in the mutant; expression of transferase activity was induced if DNA upstream of luxC preceded the luxD gene on the plasmid, indicating the presence of a strong inducible promoter. To extend the usefulness of the transfer system, the gene for chloramphenicol acetyltransferase was inserted into the pKT230 vector as a reporter. The promoter upstream of luxC was verified to be cell density regulated and, in addition, glucose repressible. It is suggested that this promoter may be the primary autoregulated promoter of the V. harveyi luminescence system. Strong termination signals on both DNA strands were recognized and are located downstream from luxE at a point complementary to the longest mRNA from the lux operon. Structural lux genes transferred back into V. harveyi under control of the luxC promoter are expressed at very high levels in V. harveyi as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis: the gene transfer system is thus useful for expression of proteins as well as for studying the regulation of lux genes in their native environment.  相似文献   

11.
Presence of the quorum-sensing regulation system in Vibrio mimicus was investigated. The culture supernatants of V. mimicus strains were found to possess AI-2 autoinducer like activity, and the strains were found to harbor the genes which are homologous to luxS, luxO, and luxR of V. harveyi. These genes of V. harveyi have been shown to be important components of V. harveyi-like quorum-sensing system. The luxO gene homologue known to encode LuxO, the central component of the regulation system, was disrupted, and effects on protease and hemolysin activity were studied. Disruption of luxO gene resulted in the increased protease activity, but the hemolysin activity did not vary considerably.  相似文献   

12.
The 5' and 3' ends of the lux mRNA of Vibrio harveyi, which extends over 8 kilobases, have been mapped, and two new genes, luxG and luxH, were identified at the 3' end of the lux operon. Both S1 nuclease and primer extension mapping demonstrated that the start site for the lux mRNA was 26 bases before the initiation codon of the first gene, luxC. The promoter region contained a typical -10 but not a recognizable -35 consensus sequence. By using S1 nuclease mapping the mRNA was found to be induced in a cell density- and arginine-dependent manner. The DNA downstream of the five known V. harveyi lux genes, luxCDABE, was sequenced and found to contain coding regions for two new genes, designated luxG and luxH, followed by a classical rho-independent termination signal for RNA polymerase. luxG codes for a protein of 233 amino acids with a molecular weight of 26,108, and luxH codes for a protein of 230 amino acids with a molecular weight of 25,326. The termination signal is active in vivo as demonstrated by 3' S1 nuclease mapping, confirming that the two genes are part of the V. harveyi lux operon. Comparison of the luxG amino acid sequence with coding regions immediately downstream from luxE in other luminescent bacteria has demonstrated that this gene may be a common component of the luminescent systems in different marine bacteria.  相似文献   

13.
Quorum sensing (QS) refers to the ability of bacterial populations to read out the local environment for cell density and to collectively activate gene expression. Vibrio harveyi , one of the best characterized model organisms in QS, was used to address the question how single cells behave within a QS-activated community in a homogeneous environment. Analysis of the QS-regulated bioluminescence of a wild type strain revealed that even at high cell densities only 69% of the cells of the population produced bioluminescence, 25% remained dark and 6% were dead. Moreover, light intensities greatly varied from cell to cell at high population density. Addition of autoinducer to a bright liquid culture of V. harveyi increased the percentage of luminescent cells up to 98%, suggesting that V. harveyi produces and/or keeps the autoinducers at non-saturating concentrations. In contrast, all living cells of a constitutive QS-active mutant (Δ luxO ) produced light. We also found that QS affects biofilm formation in V. harveyi . Our data provide first evidence that a heterogeneous population produces more biofilm than a homogeneous one. It is suggested that even a QS-committed population of V. harveyi takes advantage of heterogeneity, which extends the current view of QS-regulated uniformity.  相似文献   

14.
Three pleiotropic, quorum sensing-defective Vibrio harveyi mutants were observed to precipitate soluble Pb2+ as an insoluble compound. The compound was purified and subjected to X-ray diffraction and elemental analyses. These assays identified the precipitated compound as Pb9(PO4)6, an unusual and complex lead phosphate salt that is produced synthetically at temperatures of ca. 200 degrees C. Regulation of the precipitation phenotype was also examined. Introduction of a luxO::kan allele into one of the mutants abolished lead precipitation, indicating that the well-characterized autoinducer 1 (AI1)-AI2 quorum-sensing system can block lead precipitation in dense cell populations. Interestingly, the V. harveyi D1 mutant, a strain defective for secretion of both AI1 and AI2, was shown to be an effective trans inhibitor of lead precipitation. This suggests that a previously undescribed V. harveyi autoinducer, referred to as AI3, can also negatively regulate lead precipitation. Experiments with heterologous bacterial populations demonstrated that many different species are capable of trans regulating the V. harveyi lead precipitation phenotype. Moreover, one of the V. harveyi mutants in this study exhibited little or no response to intercellular signals from other V. harveyi inocula but was quite responsive to some of the heterologous bacteria. Based on these observations, we propose that V. harveyi carries at least one quorum sensor that is specifically dedicated to receiving cross-species communication.  相似文献   

15.
16.
An autoinducer required for the growth-dependent development of luminescence in Vibrio harveyi has been purified, structurally identified, and chemically synthesized. The autoinducer, which is excreted by the cells, was extracted with chloroform from conditioned media in which V. harveyi cells had been grown. The concentrated extract was separated on a silica gel column and the autoinducer activity further purified by thin layer, paper, and high performance liquid chromatography. The structure of the partially purified autoinducer was identified by 1H NMR and mass spectrometry as N-(beta-hydroxybutyryl)homoserine lactone. This compound was chemically synthesized by condensation of beta-hydroxybutyrate with alpha-amino-gamma-butyrolactone hydrobromide using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide as a carboxyl group activator. The pure synthetic autoinducer gave the characteristic NMR and mass spectra, co-migrated with the natural autoinducer on thin layer plates, and specifically stimulated induction of luminescence of V. harveyi. Light emission of a regulatory dark mutant of V. harveyi could be stimulated over 1000-fold by the addition of N-(beta-hydroxybutyryl)homoserine lactone, reaching intensities comparable to that of the native strain. The similarity in structure of the autoinducer of V. harveyi to that of Vibrio fischeri suggests that the regulation of luminescence induction in these bacteria may be related in spite of their differences in lux gene organization.  相似文献   

17.
The lux genes required for expression of luminescence have been cloned from a terrestrial bacterium, Xenorhabdus luminescens, and the nucleotide sequences of the luxA and luxB genes coding for the alpha and beta subunits of luciferase determined. The lux gene organization was closely related to that of marine bacteria from the Vibrio genus with the luxD gene being located immediately upstream and the luxE downstream of the luciferase genes, luxAB. A high degree of homology (85% identity) was found between the amino acid sequences of the alpha subunits of X. luminescens luciferase and the luciferase from a marine bacterium, Vibrio harveyi, whereas the beta subunits of the two luciferases had only 60% identity in amino acid sequence. The similarity in the sequences of the alpha subunits of the two luciferases was also reflected in the substrate specificities and turnover rates with different fatty aldehydes supporting the proposal that the alpha subunit almost exclusively controls these properties. The luciferase from X. luminescens was shown to have a remarkably high thermal stability being stable at 45 degrees C (t 1/2 greater than 3 h) whereas V. harveyi luciferase was rapidly inactivated at this temperature (t 1/2 = 5 min). These results indicate that the X. luminescens lux system may be the bacterial bioluminescent system of choice for application in coupled luminescent assays and expression of lux genes in eukaryotic systems at higher temperatures.  相似文献   

18.
19.
Disruption of quorum sensing, bacterial cell-to-cell communication by means of small signal molecules, has been suggested as a new anti-infective strategy for aquaculture. However, data about the impact of quorum sensing on the virulence of aquatic pathogens are scarce. In this study, a model system using gnotobiotically cultured Artemia franciscana was developed in order to determine the impact of mutations in the quorum sensing systems of Aeromonas hydrophila, Vibrio anguillarum and V. harveyi on their virulence. Mutations in the autoinducer 2 (AI-2) synthase gene luxS, the AI-2 receptor gene luxP or the response regulator gene luxO of the dual channel quorum sensing system of V. harveyi abolished virulence of the strain towards Artemia. Moreover, the addition of an exogenous source of AI-2 could restore the virulence of an AI-2 non-producing mutant. In contrast, none of the mutations in either the acylated homoserine lactone (AHL)-mediated component of the V. harveyi system or the quorum sensing systems of Ae. hydrophila and V. anguillarum had an impact on virulence of these bacteria towards Artemia. Our results indicate that disruption of quorum sensing could be a good alternative strategy to combat infections caused by V. harveyi.  相似文献   

20.
The induction of luminescence in Vibrio harveyi at the later stages of growth is controlled by a quorum-sensing mechanism in addition to nutritional signals. However, the mechanism of transmission of these signals directly to the lux promoters is unknown and only one regulatory protein, LuxR, has been shown to bind directly to lux promoter DNA. In this report, we have cloned and sequenced two genes, crp and metR, coding for the nutritional regulators, CRP (cAMP receptor protein) and MetR (a LysR homologue), involved in catabolite repression and methionine biosynthesis respectively. The metR gene was cloned based on a general strategy to detect lux DNA-binding proteins expressed from a genomic library, whereas the crp gene was cloned based on its complementation of an Escherichia coli crp mutant. Both CRP and MetR were shown to bind to lux promoter DNA, with CRP being dependent on the presence of cAMP. Expression studies indicated that the two regulators had opposite effects on luminescence: CRP was an activator and MetR a repressor. Disruption of crp decreased luminescence by about 1,000-fold showing that CRP is a major activator of luminescence the same as LuxR, whereas disruption of MetR resulted in activation of luminescence over 10-fold, confirming its function as a repressor. Comparison of the levels of the autoinducers involved in quorum sensing excreted by V. harveyi, and the crp and metR mutants, showed that autoinducer production was not significantly different, thus indicating that the nutritional signals do not affect luminescence by changing the levels of the signals required for quorum sensing. Indeed, the large effects of these nutritional sensors show that luminescence is controlled by multiple signals related to the environment and the cell density which must be integrated at the molecular level to control expression at the lux promoters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号