首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence is presented that dephosphorylation of the three phosphorylation sites on bovine kidney pyruvate dehydrogenase by pyruvate dehydrogenase phosphatase is random. The relative rates of dephosphorylation were in the order site 2 > site 3 > site 1. Phosphorylation site 2, and possibly site 3, function, in addition to site 1, as inactivating sites. However, the presence of phosphoryl groups at sites 2 and 3 did not significantly affect the rate of dephosphorylation at site 1 or the rate of reactivation of the enzyme by the phosphatase. The rate-limiting step in the reactivation of phosphorylated pyruvate dehydrogenase is apparently the dephosphorylation at site 1.  相似文献   

2.
A novel series of dipeptidyl alpha-ketoamide derivatives with amphiphile was designed and synthesized as water-soluble calpain inhibitors. The introduction of amphiphiles at the P3 site increased water solubility without loss of membrane permeability and provided the oral available inhibitors. Extension of the ethylene glycol chain at the P3 site led to an improvement in persistence of plasma levels. In particular, introduction of a combination of a diethylene glycol methyl ether moiety at the P3 site, a phenylalanine residue at the P1 site and a cyclopropyl moiety at the P' site was the most effective modification for an increase in plasma drug exposure.  相似文献   

3.
Processing of the yeast pre-rRNA at sites A(2) and A(3) is linked.   总被引:8,自引:1,他引:8       下载免费PDF全文
Cleavage of the yeast pre-rRNA at site A(2) in internal transcribed spacer 1 (ITS1) requires multiple snoRNP species, whereas cleavage at site A(3),located 72 nt 3' in ITS1, requires Rnase MRP. Analyses of mutations in the pre- rRNA have revealed an unexpected link between processing at A(2) and A(3). Small substitution mutations in the 3' flanking sequence at A(2) inhibit processing at site A(3), whereas a small deletion at A(3) has been shown to delay processing at site A(2). Moreover, the combination of mutations in cis at both A(2) and A(3) leads to the synthesis of pre-rRNA species with 5' ends within the mature 18S rRNA sequence, at sites between + 482 and + 496. The simultaneous interference with an snoRNP processing complex at site A(2) and an Rnase MPRP complex at site A(3) may activate a pre-rRNA breakdown pathway. The same aberantpre-rRNA species are observed in strains with mutations in the RNA component of Rnase MRP, consistent with interactions between the processing complexes. Furthermore, genetic depletion of the snoRNA, snR30, has been shown to affect the coupling between cleavage by Rnase MRP and subsequent exonuclease digestion.We conclude that an sno-RNP-dependent processing complex that is required for A(2) cleavage and that recognizes the 3' flanking sequence at A(2), interacts with the RNase MRP complex bound to the pre-rRNA around site A(3).  相似文献   

4.
Yuan Zhuang  Alan M. Weiner 《Gene》1990,90(2):263-269
We have previously used site-directed mutagenesis to introduce an additional branch site into the first intron of the human β-globin gene at nt −24 between the natural branch site (nt−37) and the normal 3′ splice site (nt−1). We found that either the upstream or downstream branch site could be used during in vitro splicing, depending on which site best matched the mammalian branch site consensus YURAC (R = purine; Y = pyrimidine). Here we show that introduction of an additional AG dinucleotide at nt −20 between the downstream branch site and the normal 3′ splice site results in alternative 3′ splicing. Splicing to the new AG uses the upstream branch site exclusively, presumably because the downstream branch site is only 4 nt from this 3′ splice site. We were surprised, however, to find that the presence of the new AG also prevents the use of the upstream branch site for splicing to the normal 3′ splice site. Analysis of additional mutants confirmed earlier work [Krainer et al.: Mechanisms of human β-globin pre-mRNA splicing. In Berg, P. (Ed.), The Robert A. Welch Foundation Conferences on Chemical Research XXIX. Genetic Chemistry: The Molecular Basis of Heredity. Welch Foundation, Houston, TX, 1985, pp. 353–382] that the new AG cannot function by itself as a complete 3′ splice site; rather, it appears that alternative 3′ splicing initiates at the normal 3′ splices site but then searches, once the reaction is underway, for the first AG downstream from the chosen branch site. Taken together, our data suggest that the conserved AG dinucleotide at the 3′ splice site may be recognized twice during mammalian mRNA splicing in vitro.  相似文献   

5.
U-rich tracts enhance 3' splice site recognition in plant nuclei   总被引:5,自引:1,他引:4  
The process of 5' and 3' splice site definition in plant pre-mRNA splicing differs from that in mammals and yeast. In mammals, splice sites are chosen by their complementarity to U1 snRNA surrounding the /GU at the 5' splice site and by the strength of the pyrimidine tract preceding the AG/ at the 3' splice site; in plants, the 3' intron boundary is defined in a position-dependent manner relative to AU-rich elements within the intron. To determine if uridines are utilized to any extent in plant 3' splice site recognition, uridines in the region preceding the normal (−1) 3' splice site of pea rbcS3A intron 1 were replaced with adenosines. This mutant activates two cryptic 3' splice sites (+62, +95) in the downstream exon, indicating that the uridines in the region immediately preceding the normal (−1) site are essential for recognition. Placement of different length uridine tracts upstream from the cryptic +62 site indicated that a cryptic exonic 3' splice site containing 14 or 10 uridine tracts with a G at −4 can effectively outcompete the normal 3' splice site containing an eight uridine tract with a U at −4. Substitutions at the −4 position demonstrated that the identity of the nucleotide at this position greatly affects 3' splice site selection. It has been concluded that several factors affect competition between these 3' splice sites. These factors include the position of the AU transition point, the strength of the uridine tract immediately preceding the 3' terminal CAG/ and the identity of nucleotide −4.  相似文献   

6.
Intron sequences involved in lariat formation during pre-mRNA splicing   总被引:114,自引:0,他引:114  
R Reed  T Maniatis 《Cell》1985,41(1):95-105
We have shown that lariat formation during in vitro splicing of several RNA precursors, from Drosophila to man, occurs at a unique and identifiable but weakly conserved site, 18 to 37 nucleotides proximal to the 3' splice site. Lariat formation within an artificial intron lacking a normal branch-point sequence occurs at a cryptic site a conserved distance (approximately 23 nucleotides) from the 3' splice site. Analysis of beta-thalassemia splicing mutations revealed that lariat formation in the first intron of the human beta-globin gene occurs at the same site in normal and mutant precursors, even though alternate 5' and 3' splice sites are utilized in the mutants. Remarkably, cleavage at the 5' splice site and lariat formation do not occur when the precursor contains a beta-thalassemia deletion removing the polypyrimidine stretch and AG dinucleotide at the 3' splice site. In contrast, a single base substitution in the AG dinucleotide blocks cleavage at the 3' splice site but not at the 5' site.  相似文献   

7.
Predicted single-stranded structure at the 3' splice site is a conserved feature among intervening sequences (IVSs) in eukaryotic nuclear tRNA precursors. The role of 3' splice site structure in splicing was examined through hexanucleotide insertions at a central intron position in the Saccharomyces cerevisiae tRNA gene. These insertions were designed to alter the structure at the splice site without changing its sequence. Endonuclease cleavage of pre-tRNA substrates was then measured in vitro, and suppressor activity was examined in vivo. A precursor with fully double-stranded structure at the 3' splice site was not cleaved by endonuclease. The introduction of one unpaired nucleotide at the 3' splice site was sufficient to restore cleavage, although at a reduced rate. We have also observed that guanosine at the antepenultimate position provides a second consensus feature among IVSs in tRNA precursors. Point mutations at this position were found to affect splicing although there was no specific requirement for guanosine. These and previous results suggest that elements of secondary and/or tertiary structure at the 3' end of IVSs are primary determinants in pre-tRNA splice site utilization whereas specific sequence requirements are limited.  相似文献   

8.
Gd3+ binding sites on the purified Ca(2+)-ATPase of sarcoplasmic reticulum were characterized at 2 and 6 degrees C and pH 7.0 under conditions in which 45Ca2+ and 54Mn2+ specifically labeled the calcium transport site and the catalytic site of the enzyme, respectively. We detected several classes of Gd3+ binding sites that affected enzyme function: (a) Gd3+ exchanged with 54Mn2+ of the 54MnATP complex bound at the catalytic site. This permitted slow phosphorylation of the enzyme when two Ca2+ ions were bound at the transport site. The Gd3+ ion bound at the catalytic site inhibited decomposition of the ADP-sensitive phosphoenzyme. (b) High-affinity binding of Gd3+ to site(s) distinct from both the transport site and the catalytic site inhibited the decomposition of the ADP-sensitive phosphoenzyme. (c) Gd3+ enhanced 4-nitro-2,1,3-benzoxadiazole (NBD) fluorescence in NBD-modified enzyme by probably binding to the Mg2+ site that is distinct from both the transport site and the catalytic site. (d) Gd3+ inhibited high-affinity binding of 45Ca2+ to the transport site not by directly competing with Ca2+ for the transport site but by occupying site(s) other than the transport site. This conclusion was based mainly on the result of kinetic analysis of displacement of the enzyme-bound 45Ca2+ ions by Gd3+ and vice versa, and the inability of Gd3+ to phosphorylate the enzyme under conditions in which GdATP served as a substrate. These results strongly suggest that Ln3+ ions cannot be used as probes to structurally and functionally characterize the calcium transport site on the Ca(2+)-ATPase.  相似文献   

9.
D C Harris 《Biochemistry》1977,16(3):560-564
Transferrin, the serum serum iron-transport protein which can bind two metal ions at physiologic pH, binds just one Fe3+, VO2+, or Cr3+ ion at pH 6.0. Fe3+ and VO2+ appear to be bound at the same site, designated A, based on electron paramagnetic resonance (EPR) spectra of VO2+-transferrin and (Fe3+)1(VO2+)1-transferrin. The EPR spectra of (Cr3+)1(VO2+)1-transferrin and of (Cr3+), (FE3+)1-transferrin indicate that that Cr3+ is bound to site B at pH 6.0. Transferrin was labeled at site A with 59Fe at pH 6.0 and at site B with 55Fe at pH 7.5. When the pH of the resulting preparation was lowered to 6.3 and the dissociated iron was separated by gel filtration, about ten times as much 55Fe as 59Fe was lost. The same EPR and isotopic-labeling experiments showed that Fe3+ added to transferrin at pH 7.5 binds to site A with about 90% selectivity.  相似文献   

10.
Clamp loaders assemble sliding clamps onto 3′ primed sites for DNA polymerases. Clamp loaders are thought to be specific for a 3′ primed site, and unable to bind a 5′ site. We demonstrate here that the Escherichia coli γ complex clamp loader can load the β clamp onto a 5′ primed site, although with at least 20-fold reduced efficiency relative to loading at a 3′ primed site. Preferential clamp loading at a 3′ site does not appear to be due to DNA binding, as the clamp loader forms an avid complex with β at a 5′ site. Preferential loading at a 3′ versus a 5′ site occurs at the ATP hydrolysis step, needed to close the ring around DNA. We also address DNA structural features that are recognized for preferential loading at a 3′ site. Although the single-stranded template strand extends in opposite directions from 3′ and 5′ primed sites, thus making it a favorite candidate for distinguishing between 3′ and 5′ sites, the single-strand polarity at a primed template junction does not determine 3′ site selection for clamp loading. Instead, we find that clamp loader recognition of a 3′ site lies in the duplex portion of the primed site, not the single-strand portion. We present evidence that the β clamp facilitates its own loading specificity for a 3′ primed site. Implications to eukaryotic clamp loader complexes are proposed.  相似文献   

11.
12.
Outer membrane phospholipase A (OMPLA) is an integral membrane enzyme that catalyses the hydrolysis of phospholipids. Enzymatic activity is regulated by reversible dimerisation and calcium-binding. We have investigated the role of calcium by X-ray crystallography. In monomeric OMPLA, one calcium ion binds between two external loops (L3L4 site) at 10 A from the active site. After dimerisation, a new calcium-binding site (catalytic site) is formed at the dimer interface in the active site of each molecule at 6 A from the L3L4 calcium site. The close spacing and the difference in calcium affinity of both sites suggests that the L3L4 site may function as a storage site for a calcium ion, which relocates to the catalytic site upon dimerisation. A sequence alignment demonstrates conservation of the catalytic calcium site but evolutionary variation of the L3L4 site. The residues in the dimer interface are conserved as well, suggesting that all outer membrane phospholipases require dimerisation and calcium in the catalytic site for activity. For this family of phospholipases, we have characterised a consensus sequence motif (YTQ-X(n)-G-X(2)-H-X-SNG) that contains conserved residues involved in dimerisation and catalysis.  相似文献   

13.
14.
Trypanosoma brucei pre-rRNA processing commences by cleavage near the 5' end of 5.8 S sequences. The 5' external transcribed spacer (5'ETS) is removed from pre-small subunit (SSU) rRNAs by sequential cleavages at internal A' and A0 sites, and A1 at the 5' end of SSU rRNA. The A' and A0 sites positionally resemble the U3 small nucleolar RNA-dependent, primary pre-rRNA cleavages of vertebrates and yeast, respectively. Uniquely in T. brucei, two U3-crosslinkable 5'ETS sites are essential for SSU rRNA production: site1b is novel in its 3' location to the A' site, and site3 lies upstream of A0 in a position analogous to the yeast U3-binding site. Here, in vivo analysis of mutated 5'ETS sequences shows that sequences 5' to the A' site are not needed for A' cleavage or SSU rRNA production. A' cleavage is linked to, but is not sufficient to trigger, downstream pre-SSU rRNA processing events. These events require an intact 11 nt sequence, 3'-adjacent to A', which directs efficient and accurate A' cleavage. Neither the A' nearby site1b nor the site3 U3-binding elements affect A' processing, yet each is required for A0 and A1 cleavage, and SSU rRNA production. The same U3 3' hinge bases evidently bind a core element, UGUu/gGGU, within site1a and site3; the U3-site1b interaction is less reliant on base-pairing than the U3-site3 interaction. As yeast U3 5' hinge bases pair to 5'ETS sequences, it is clear that distinct U3 hinge regions can interact at both novel and related 5'ETS sites to promote 3'-proximal 5'ETS processing events in diverse organisms. The T. brucei data fit a model wherein processing factors assemble at the 5'ETS site1a to affect A' cleavage and stabilize a U3-site1b complex, which may work in concert with the downstream U3-site3 complex to assist processing events leading to ribosomal SSU production.  相似文献   

15.
Hudson DM  Weis M  Eyre DR 《PloS one》2011,6(5):e19336
Recessive mutations that prevent 3-hydroxyproline formation in type I collagen have been shown to cause forms of osteogenesis imperfecta. In mammals, all A-clade collagen chains with a GPP sequence at the A1 site (P986), except α1(III), have 3Hyp at residue P986. Available avian, amphibian and reptilian type III collagen sequences from the genomic database (Ensembl) all differ in sequence motif from mammals at the A1 site. This suggests a potential evolutionary distinction in prolyl 3-hydroxylation between mammals and earlier vertebrates. Using peptide mass spectrometry, we confirmed that this 3Hyp site is fully occupied in α1(III) from an amphibian, Xenopus laevis, as it is in chicken. A thorough characterization of all predicted 3Hyp sites in collagen types I, II, III and V from chicken and xenopus revealed further differences in the pattern of occupancy of the A3 site (P707). In mammals only α2(I) and α2(V) chains had any 3Hyp at the A3 site, whereas in chicken all α-chains except α1(III) had A3 at least partially 3-hydroxylated. The A3 site was also partially 3-hydroxylated in xenopus α1(I). Minor differences in covalent cross-linking between chicken, xenopus and mammal type I and III collagens were also found as a potential index of evolving functional differences. The function of 3Hyp is still unknown but observed differences in site occupancy during vertebrate evolution are likely to give important clues.  相似文献   

16.
Neurotensin (NT) is now classified as a brain-gut peptide in the central nervous system and gastrointestinal tract. In the present study, we characterized the NT receptors on the rat liver plasma membranes. The specific binding of [3H]NT was time dependent, reversible, and saturable. Scatchard analysis of the specific binding data yielded two classes of binding sites, a high affinity site and a low affinity site. The average maximum number of binding sites (Bmax) amounted to 13.3 +/- 1.1 fmol/mg protein at high affinity site and 122.3 +/- 21.5 fmol/mg protein at low affinity site, respectively. The dissociation constant (Kd) had values of 0.39 +/- 0.01 nM at high affinity site and 8.1 +/- 1.1 nM at low affinity site, respectively. The amount of specifically bound [3H]NT was significantly reduced in the presence of mono and divalent cations, EDTA, EGTA and a peptidase inhibitor bacitracin, NT1-13 competed with [3H]NT for its binding site with an IC50 of 0.19 nM at high affinity site (0.2 nM concentration of [3H]NT) and 0.7 nM at low affinity site (4.0 nM concentration of [3H]NT). Xenopsin, a NT analogue separated from the skin of Xenopus laevis, was equipotent (IC50 0.75 nM) with NT1-13 at 4.0 nM concentration of [3H]NT. C-terminal sequence of NT contains the structure necessary for interaction with NT binding sites whereas N-terminal sequence had no binding activity. Since NT has a hyperglysemic and a hypercholesterolemic effects in rats, these NT receptors on the rat liver plasma membranes may be involved in the hyperglycemia and/or hypercholesteroremia induced by NT.  相似文献   

17.
为了解人类LDL受体基因内含子15的遗传背景,利用长链PCR和锚定PCR分离了LDL受体基因外显子15-内含子15-外显子16和内含子15的3‘末端片段。利用Dynalbeads固相单链分离PCR产物直接测序法测定了内含子15 3’末端1222个碱基序列。序列显示:3‘末端含有由16个碱基组成的典型3’末端剪接位点;3‘端上游第31个碱基处含有经典分支位点,除了经典分支位点外,在3’末端上游第20  相似文献   

18.
19.
20.
Amino acid insertions or substitutions were introduced into the poliovirus P1 capsid precursor at locations proximal to the two known Q-G cleavage sites to examine the role of the P4 residue in substrate processing by proteinase 3CD. Analysis of the processing profile of P1 precursors containing four-amino-acid insertions into the carboxy terminus of VP3 or a single-amino-acid substitution at the P4 position of the VP3-VP1 cleavage site demonstrates that substitution of the alanine residue in the P4 position of the VP3-VP1 cleavage site significantly affects cleavage at that site by proteinase 3CD. A single-amino-acid substitution at the P4 position of the VP0-VP3 cleavage site, on the other hand, has only a slight effect on 3CD-mediated processing at this cleavage site. Finally, analysis of six amino acid insertion mutations containing Q-G amino acid pairs demonstrates that the in vitro and in vivo selection of a cleavage site from two adjacent Q-G amino acid pairs depends on the presence of an alanine in the P4 position of the cleaved site. Our data provide genetic and biochemical evidence that the alanine residue in the P4 position of the VP3-VP1 cleavage site is a required substrate determinant for the recognition and cleavage of that site by proteinase 3CD and suggest that the P4 alanine residue may be specifically recognized by proteinase 3CD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号