首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary To identify precisely the structural and functional cell type in the collecting duct of the rat kidney expressing binding sites for Dolichos biflorus agglutinin (DBA), we stained serial paraffin sections of kidney with horseradish peroxidase-labeled DBA and with immunocytochemical methods for localizing (Na++K+)-ATPase and carbonic anhydrase II (CA II), enzymes found preferentially in principal and intercalated cells, respectively. Most principal cells expressing a strong basolateral staining for (Na+ + K+)-ATPase showed binding sites for DBA at their luminal surfaces. However, a minority of cells rich in CA II and showing morphologic characteristics of intercalated cells also expressed DBA binding sites at their luminal surface and apical cytoplasm. These data suggest that DBA cytochemistrycan provide a useful tool for studying the functional polarity of the main cell types of the collecting duct of the rat kidney.  相似文献   

2.
Summary Regulation of urea transport by vasopressin in inner medullary collecting duct (IMCD) cells is thought to be important for the urinary concentrating mechanism. Isolated tubule perfusion studies suggest the existence of a saturable urea carrier. We have measured14C-urea efflux in IMCD cells which were freshly isolated and grown in primary culture. Cells were isolated from rat papilla by collagenase digestion and hypotonic shock. In suspended cells,14C-urea efflux (J urea from loaded cells was exponential with time constant 59±3 sec (sem,n=6, 23°C).J urea had an activation energy of 4.1 kcal/mole and was inhibited 42±7% by 0.25mm phloretin and 30–40% by the high affinity urea analogues dimethylurea and phenylurea.J urea was increased 40–60% by addition of vasopressin (10–8 m) or 8-bromo-cAMP (1mm); stimulatedJ urea was inhibited 55±8% by the kinase A inhibitor H-8. Phorbol esters and epidermal growth factor did not alterJ urea. IMCD cells grown in primary culture were homogeneous in appearance with>fivefold stimulation of cAMP by vasopressin. The exponential time constant for urea efflux was 610±20 sec (n=3).J urea was not altered by vasopressin, cAMP or phloretin. Another function of in vivo IMCD cells, vasopressin-dependent formation of endosomes containing water channels, was absent in the cultured cells. These results demonstrate presence of a urea transporter on suspended IMCD cells which is activated by cAMP and inhibited by phloretin and urea analogues. The urea transporter and its regulation by cAMP, and cAMP-dependent apical membrane endocytosis, are lost after growth in primary culture.  相似文献   

3.
Summary The tight junctions along the medullary collecting duct in the kidneys of the rat and the rabbit were studied with freeze-fracture electron microscopy and quantitated according to the number of strands and the apico-basal depth (nm) of the junctions.The most elaborate tight junctions were found in the inner stripe of the outer medulla; rat: 10.6±0.8 strands and 205±24nm; rabbit: 11.6±2.4 strands and 291±55 nm.The elaboration of the tight junctions decreased continuously towards the papillary tip. Inner zone I; rat: 9.3±2.6 strands and 186±38nm, rabbit: 9.5±2.3 strands and 247±59nm. Inner zone II; rat: 7.1±2.2 strands and 129±32nm, rabbit: 8.5±1.4 strands and 199±26nm. Inner zone III; rat: 6.0±1.6 strands and 111 + 19 nm, rabbit: 7.0±1.5 strands and 183±43 nm. In the inner zone III comprising the papillary tip tight junctions with only 1–3 strands were not infrequently seen. Preliminary findings in the kidney of the golden hamster indicate a similar decline of junctional tightness along the collecting duct.These morphological observations suggest that the permeability of the paracellular pathway of the medullary collecting duct increases towards the tip of the papilla, especially in the rat. The functional implications for the medullary recycling of urea and electrolytes, and for the urinary concentrating mechanism are discussed.In addition, the tight junctions of the papillary epithelium are described.  相似文献   

4.
Summary A membrane protein that is immunochemically similar to the red cell anion exchange protein, band 3, has been identified on the basolateral face of the outer medullary collecting duct (MCD) cells in rabbit kidney. In freshly prepared separated rabbit MCD cells, M.L. Zeidel, P. Silva and J.L. Seifter (J. Clin. Invest. 77:1682–1688, 1986) found that Cl/HCO 3 - exchange was inhibited by the stilbene anion exchange inhibitor, DIDS (4,4-diisothiocyano-2,2-disulfonic stilbene), with aK 1 similar to that for the red cell. We have measured the binding affinities of a fluorescent stilbene inhibitor, DBDS (4,4-dibenzamido-2,2-disulfonic stilbene), to MCD cells in 28.5 mM citrate and have characterized both a high-affinity site (K 1 s =93±24 mM) and a lower affinity site (K 2 s =430±260 nM), which are closely similar to values for the red cell of 110±51 nM for the high-affinity site and 980±200 nM for the lower affinity site (A.S. Verkman, J.A. Dix & A.K. Solomon,J. Gen. Physiol. 81:421–449, 1983). When Cl replaces citrate in the buffer, the two sites collapse into a single one withK 1 s =1500±400 nM, similar to the singleK 1 s =1200±200 nM in the red cell (J.A. Dix, A.S. Verkman & A.K. Solomon,J. Membrane Biol. 89:211–223, 1986). The kinetics of DBDS binding to MCD cells at 0.25 M–1 are characterized by a fast process, =0.14±0.03 sec, similar to =0.12±0.03 sec in the red cell. These similarities show that the physical chemical characteristics of stilbene inhibitor binding to MCD cell band 3 closely resemble those for red cell band 3, which suggests that the molecular structure is highly conserved.  相似文献   

5.
The Madin-Darby canine kidney (MDCK) cell line has been proposed as a model for studying intercalated (IC) cells of the renal cortical collecting duct. The IC cells are characterized by peanut lectin (PNA) binding capacity, carbonic anhydrase (CA) activity and Cl-–HCO 3 - exchange mediated by a band 3-related protein. It has been suggested that these properties are also expressed in MDCK cells. So far however, the nature of the specific protein involved in Cl-–HCO 3 - exchange, the type of CA isozyme and the relationship between these two characteristics and PNA binding, have not been investigated in MDCK cells by immunocytochemical methods. Using two antibodies raised against human erythrocyte band 3 protein and two against human erythrocyte CA I and II isozymes, our study provides evidence that a protein related to band 3 is expressed in about 5% of cultured MDCK cells; these band 3-positive cells do not bind PNA and are not reactive for CAI or CAII. About 30% of the MDCK cells bind PNA, two-thirds of which are also CAII-positive. A majority (about 65%) of MDCK cells is not reactive for the three markers used; their density is increased after incubation with aldosterone. These data indicate (i) that the Cl-–HCO 3 - exchanger of the MDCK cells could be related to human erythrocyte band 3, (ii) that the CA activity of the MDCK cell line bears antigenic identity with the erythrocyte CA II isozyme and (iii) that the latter is always co-localized with PNA binding. These results provide immunocytochemical evidence for the heterogeneity of the MDCK cell line, which might reflect the cellular heterogeneity encountered in the renal cortical collecting duct. Our data also indicate that clonal selection will be required for future functional studies of the MDCK cells.  相似文献   

6.
7.
Summary A primary culture from rat renal IMCD cells was established to investigate the permeability characteristics of the luminal and contraluminal plasma membranes of the papillary collecting duct in vitro. Freshly isolated IMCD cells were grown on filters in a special “epithelial cell” medium. Confluency was proved with an epithelial volt/ohm meter. After 7 d of culture the transepithelial resistance reached more than 1000 Ω×cm2. A polarization of the cells with regard to a basolateral localization of a lactate efflux system, and an l-alanine transport system was achieved. The hypotonicity-activated release systems for the organic osmolytes sorbitol and betaine were also located basolaterally, whereas taurine, glycerophosphorylcholine, and myo-inositol left the cells at both cell poles but with different capacity. Morphological observations revealed also that the monolayer was well differentiated. Thus, a model of a renal collecting duct epithelium was established which can be used to analyze polarized and differentiated transport processes across the epithelial cells and their plasma membranes.  相似文献   

8.
Summary The fine structure of the glomerular basement membrane (GBM) of the rat kidney was studied by means of high resolution scanning electron microscopy. Specimens were taken from kidneys perfused with paraformaldehyde, freeze-fractured and then processed with conductive staining. The fractured surface of glomerular tufts exhibited the inner and outer surface of the GBM uncovered by endothelial and epithelial cells. The lamina densa was composed of densely packed granular material together with scattered fibrils. The laminae rarae interna and externa were composed of a meshwork that showed some structural heterogeneities. The meshwork composing the lamina rara interna contained 5-to 9-nm-thick fibrils, had pores 11–30 nm wide, and was associated with granular material except in those places that corresponded with endothelial fenestrae. The meshwork of the lamina rara externa was made up of 6- to 11-nm-thick fibrils, and had smaller pores under the foot processes (10–24 nm wide) than those near the filtration slits (16–32 nm wide). In addition to the meshwork, the lamina rara interna contained microfibrils that were arranged differently depending on the topography of the capillary wall: scattered fibrils had no predominant orientation at the convex side, circumferential bundles lay at the concave side of the peripheral capillary wall, and had a circumferential arrangement in the paramesangial wall.  相似文献   

9.
Summary This report describes the immunolocalization of three monoclonal antibodies along the collecting duct system in rabbit kidney. The antibodies were raised against antigens derived from a membrane fraction of homogenized papillary tissue. Western Blot analysis demonstrated that each of the antibodies recognized a single band of about 190000 (PCD1), 210000 (PCD2) and 50000 (PCD3) daltons. In renal tissue, the antibodies bound specifically to the epithelia of the connecting tubule (CNT), the collecting duct (CD) and the papillary surface epithelium. Differences in the binding patterns of the antisera were limited to the cortex. pCD1 labeled only a few scattered cells in the CNT, and exhibited a heterogeneous binding along the cortical collecting duct (CCD). PCD2 and PCD3 binding patterns were similar. In the CNT, these antibodies bound to the intercalated cells (IC-cells) but not to the CNT-cells proper. In the CCD, both IC-cells and principal cells were labeled. The binding to the medullary collecting duct by all three antisera was identical. The ureter was labeled only by PCD2 and PCD3, and none of the antisera bound to the bladder epithelium.The antibody binding patterns provide information concerning tubular axial heterogeneity and embryogenetic aspects of the CNT and the CCD. These antibodies may be used as differentiation markers in studies of the developing kidney and of renal tissue culture systems.These studies were supported by Deutsche Forschungsgemeinschaft, Forschergruppe Niere, Kr 546/5-1  相似文献   

10.
Summary The peripolar cell is a unique cell type in the mammalian glomerulus. Peripolar cells are said to be identifiable during light microscopy by their cytoplasmic granules and by their position at the vascular pole; and during scanning electron microscopy by their distinctive surface morphology. We used both techniques to count peripolar cells in 6 normal rat kidneys. Scanning microscopy revealed that 55(±5)% of glomeruli contained at least one peripolar cell whereas light microscopy revealed granulated peripolar cells in only 4(±2)% of glomeruli. Vascular poles which contained peripolar cells previously identified by scanning were then examined by light and by transmission electron microscopy. Serial sections through these peripolar cells demonstrated the absence of cytoplasmic granules. Our observations suggest that the majority of peripolar cells in the rat contain no granules.  相似文献   

11.
Summary A stable epithelial cell line has been established from the kidneys of a normal Sprague-Dawley rat. This line, termed RK-L, has a high proliferative capacity (minimal doubling time 12.3 h) and can be grown in medium containing 1% fetal bovine serum. Thus far, the line has been carried through more than 60 serial passages. The RK-L cells were found to display similarities with kidney tubule cells. Using light microscopy, confluent cultures were seen as pavement-like monolayers forming domes, which are thought to result from transepithelial fluid transport. Electron microscopy revealed polarized cells that had microvilli on the apical surface, junction complexes in the apical part of the lateral cell membrane, and a basal lamina-like layer. Pinocytotic activity was indicated by infoldings of the apical plasma membrane and the formation of vesicles. The RK-L line should prove useful for investigations of kidney tubule transport mechanisms.  相似文献   

12.
Renal epithelial cells release ATP constitutively under basal conditions and release higher quantities of purine nucleotide in response to stimuli. ATP filtered at the glomerulus, secreted by epithelial cells along the nephron, and released serosally by macula densa cells for feedback signaling to afferent arterioles within the glomerulus has important physiological signaling roles within kidneys. In autosomal recessive polycystic kidney disease (ARPKD) mice and humans, collecting duct epithelial cells lack an apical central cilium or express dysfunctional proteins within that monocilium. Collecting duct principal cells derived from an Oak Ridge polycystic kidney (orpk ( Tg737 ) ) mouse model of ARPKD lack a well-formed apical central cilium, thought to be a sensory organelle. We compared these cells grown as polarized cell monolayers on permeable supports to the same cells where the apical monocilium was genetically rescued with the wild-type Tg737 gene that encodes Polaris, a protein essential to cilia formation. Constitutive ATP release under basal conditions was low and not different in mutant versus rescued monolayers. However, genetically rescued principal cell monolayers released ATP three- to fivefold more robustly in response to ionomycin. Principal cell monolayers with fully formed apical monocilia responded three- to fivefold greater to hypotonicity than mutant monolayers lacking monocilia. In support of the idea that monocilia are sensory organelles, intentionally harsh pipetting of medium directly onto the center of the monolayer induced ATP release in genetically rescued monolayers that possessed apical monocilia. Mechanical stimulation was much less effective, however, on mutant orpk collecting duct principal cell monolayers that lacked apical central monocilia. Our data also show that an increase in cytosolic free Ca(2+) primes the ATP pool that is released in response to mechanical stimuli. It also appears that hypotonic cell swelling and mechanical pipetting stimuli trigger release of a common ATP pool. Cilium-competent monolayers responded to flow with an increase in cell Ca(2+) derived from both extracellular and intracellular stores. This flow-induced Ca(2+) signal was less robust in cilium-deficient monolayers. Flow-induced Ca(2+) signals in both preparations were attenuated by extracellular gadolinium and by extracellular apyrase, an ATPase/ADPase. Taken together, these data suggest that apical monocilia are sensory organelles and that their presence in the apical membrane facilitates the formation of a mature ATP secretion apparatus responsive to chemical, osmotic, and mechanical stimuli. The cilium and autocrine ATP signaling appear to work in concert to control cell Ca(2+). Loss of a cilium-dedicated autocrine purinergic signaling system may be a critical underlying etiology for ARPKD and may lead to disinhibition and/or upregulation of multiple sodium (Na(+)) absorptive mechanisms and a resultant severe hypertensive phenotype in ARPKD and, possibly, other diseases.  相似文献   

13.
Summary An antiserum against conjugated histamine and two oligonucleotide probes that detect the mRNA encoding L-histidine decarboxylase (HDC) involved in histamine synthesis were used to study the appearance of histamine and its location in the kidneys of fetal, newborn and young postnatal rats and in the kidneys of pregnant rats. On embryonic days 16 and 18 (E16 and E18), some HA-immunoreactive (HA-ir) cells were found within the largest S-shaped bodies. Histamine was found to appear rapidly between the 18th and 20th embryonic days in the convoluted tubules of the kidneys. On postnatal day 0 (P0), the distal convoluted tubules and collecting ducts exhibited bright fluorescence, the intensity of which decreased quickly so that it was faint on day P4 and absent at later stages. In kidneys of pregnant rats HA-ir was found in the epithelium of both the Bowman's capsule, collecting ducts and in a few cells within the tubules. Nonuniform HA-ir was also detected within glomeruli. No evidence for the presence of L-histidine decarboxylase mRNA in kidneys of fetuses or pregnant rats was seen. It is concluded that distinct structures in the developing rat kidney contain histamine during a period around birth from day E20 to day P4. In the pregnant rat, the epithelium that is in direct contact with the urine flow is immunoreactive for histamine from day 16 to 20 of pregnancy. The results suggest that histamine is not synthesized locally in the kidneys but rather originates from other tissues.  相似文献   

14.
Summary In separated outer medullary collecting duct (MCD) cells, the time course of binding of the fluorescent stilbene anion exchange inhibitor, DBDS (4,4-dibenzamido-2,2-stilbene disulfonate), to the MCD cell analog of band 3, the red blood cell (rbc) anion exchange protein, can be measured by the stopped-flow method and the reaction time constant, DBDS, can be used to report on the conformational state of the band 3 analog. In order to validate the method we have now shown that the ID50,DBDS,MCD (0.5±0.1 m) for the H2-DIDS (4,4-diisothiocyano-2,2-dihydrostilbene disulfonate) inhibition of DBDS is in agreement with the ID50,Cl ,MCD (0.94±0.07 m) for H2-DIDS inhibition of MCD cell Cl flux, thus relating DBDS directly to anion exchange. The specific cardiac glycoside cation transport inhibitor, ouabain, not only modulates DBDS binding kinetics, but also increases the time constant for Cl exchange by a factor of two, from Cl=0.30±0.02 sec to 0.56±0.06 sec (30mm NaHCO3). The ID50,DBDS,MCD for the ouabain effect on DBDS binding kinetics is 0.003±0.001 m, so that binding is about an order of magnitude tighter than that for inhibition of rbc K+ flux (K I,K +,rbc=0.017 m). These experiments indicate that the Na+,K-ATPase, required to maintain cation gradients across the MCD cell membrane, is close enough to the band 3 analog that conformational information can be exchanged. Cytochalasin E (CE), which binds to the spectrin/actin complex in rbc and other cells, modulates DBDS binding kinetics with a physiological ID50,DBDS,MCD (0.076±0.005 m); 2 m CE also more than doubles the Cl exchange time constant from 0.20±0.04 sec to 0.50±0.08 sec (30mm NaHCO3). These experiments indicate that conformational information can also be exchanged between the MCD cell band 3 analog and the MCD cell cytoskeleton.  相似文献   

15.
Summary In an effort to investigate the functional relationship between cell-specific work and intracellular degradative processes, the effect of furosemide on cellular autophagy was investigated in two different portions of the nephron, namely, the thick ascending limb of Henle's loop (TAL), which is a main target of this drug, and the proximal convoluted tubule (PCT) as a reference structure. Eight male adult rats were treated with furosemide (60 mg/kg body weight, s.c.). Eight control animals received physiological saline. 1 to 4 h after the injections the animals were killed by perfusion fixation. Small specimens of kidney tissue from the inner stripe of the outer medulla and from the outer cortex were processed for electron microscopy; they were investigated morphometrically for volume fraction and numerical density of autophagic vacuoles (AVs). A significant increase of both parameters (volume fraction: 0.42 × 10-4 to 1.09 × 10-4; numerical density: 4.2 × 105/mm3 to 15.5 × 105/mm3) was seen under the influence of furosemide in TAL cells, whereas PCT cells did not show a significant increase in volume fraction or any increase in numerical density of AVs. These data suggest that the functional unloading of TAL, via blocking of the Na+- 2Cl- — K+ co-transport by furosemide, results in adaptative structural unloading, i.e., an increased sequestration of cytoplasmic components into AVs, within a short-time interval.  相似文献   

16.
Summary The ability of duct cells of the rat parotid gland to internalize bovine serum albumin (BSA) and several glycosylated albumins (glucosamide, galactosamide, fucosamide, lactosyl, p-aminophenyl-N-acetyl-D-glucosamide, p-aminophenyl-N-acetyl-D-mannopyranoside, p-aminophenyl-N-acetyl-D-galactosamide) was investigated. The various BSA preparations were infused into the gland via the main excretory duct, after which the tissues were fixed and prepared for light and electron microscopy. Immunolocalization of native BSA, as well as the glycosylated BSAs, was performed on thin sections, using an unlabeled antibody to BSA followed by protein A-colloidal gold. Gold particles were present over the lumina of both intercalated ducts and striated ducts, and over small endocytic structures and large vacuoles in the apical cytoplasm of both duct cell types. Endocytosis of the glycosylated BSAs by duct cells was greater than native BSA. Fucosylamide-BSA and mannopyranoside-BSA were taken up to a greater extent than the other glycosylated BSAs. Uptake by intercalated duct cells was greater than by striated duct cells, was independent of the concentration of the glycosylated BSA, and was reduced by an excess of the corresponding sugar. Striated duct cells showed some damage by the glycosylated BSAs that was concentration-dependent, and which was reduced in the presence of an excess of the corresponding sugar. These results suggest that endocytosis by salivary gland duct cells may involve specific recognition of carbohydrate residues and that the endocytosis of acinar secretory proteins observed in certain conditions may be due to increased and/or altered protein glycosylation.  相似文献   

17.
Diamine oxidase (EC 1.4.3.6) activity, measured as [14C]Δ1-pyrroline formation from [14C] putrescine, was studied in homogenates of rat kidney during compensatory hypertrophy after unilateral nephrectomy. Acetaldehyde and to a lesser degree phenobarbital, at concentrations which did not modify the activity of a preparation of hog kidney diamine oxidase, increased Δ1-pyrroline formation in kidney homogenate, which suggests that aldehyde-metabolizing enzymes present in this tissue may interfere with yield of Δ1-pyrroline and that the use of acetaldehyde may give better information on kidney diamine oxidase activity. Other inhibitors of aldehyde-metabolizing enzymes such as chloral hydrate, disulfiram, and pyrazole cannot be used for diamine oxidase determination since they stimulated or depressed this enzyme activity. In rat kidney undergoing compensatory hypertrophy the levels of putrescine, spermidine, and spermine increased rapidly and were followed by an increase in diamine oxidase activity that presented a first peak on day 2 and a second peak on day 6. The administration of cycloheximide or actinomycin D to nephrectomized rats prevented the increase in diamine oxidase activity. The study of the turnover rate of diamine oxidase with cycloheximide demonstrated that the half-life of this enzyme was about 14 h in normal and hypertrophic kidney. These results suggest that the increase in diamine oxidase activity in renal hypertrophy was due to the synthesis of new enzyme rather than to a slowing of its degradation.  相似文献   

18.
Coordinated cell proliferation and ability to form intercellular seals are essential features of epithelial tissue function. Tight junctions (TJs) classically act as paracellular diffusion barriers. More recently, their role in regulating epithelial cell proliferation in conjunction with scaffolding zonula occludens (ZO) proteins has come to light. The kidney collecting duct (CD) is a model of tight epithelium that displays intense proliferation during embryogenesis followed by very low cell turnover in the adult kidney. Here, we examined the influence of each ZO protein (ZO-1, -2 and -3) on CD cell proliferation. We show that all 3 ZO proteins are strongly expressed in native CD and are present at both intercellular junctions and nuclei of cultured CD principal cells (mCCDcl1). Suppression of either ZO-1 or ZO-2 resulted in increased G0/G1 retention in mCCDcl1 cells. ZO-2 suppression decreased cyclin D1 abundance while ZO-1 suppression was accompanied by increased nuclear p21 localization, the depletion of which restored cell cycle progression. Contrary to ZO-1 and ZO-2, ZO-3 expression at intercellular junctions dramatically increased with cell density and relied on the presence of ZO-1. ZO-3 depletion did not affect cell cycle progression but increased cell detachment. This latter event partly relied on increased nuclear cyclin D1 abundance and was associated with altered β1-integrin subcellular distribution and decreased occludin expression at intercellular junctions. These data reveal diverging, but interconnected, roles for each ZO protein in mCCDcl1 proliferation. While ZO-1 and ZO-2 participate in cell cycle progression, ZO-3 is an important component of cell adhesion.  相似文献   

19.
Summary The three-dimensional cytoarchitecture and ultrastructure of the smooth muscle cells in the wall of the rat thoracic duct were investigated by scanning and transmission electron microscopy. The muscle layer basically consists of a single layer of circularly arranged cells. The smooth muscle cell is fusiform or ribbon-like in shape, as in veins or venules with a similar or smaller diameter. Connections by spinous processes are observed between adjacent muscle cells along their length. Spot-like membrane contacts frequently occur in areas where facing membranes are closely apposed. These are thought to be gap junctions and may be responsible for electrical coupling and mechanical attachment. Large invaginations arranged regularly in rows on the surface of the smooth muscle cells can be observed. These invaginations are closely associated with a flattened sarcoplasmic reticulum, and caveolae tend to open into the invaginations.  相似文献   

20.
Summary The morphology of the uterine microvasculature during early placentation was investigated by light microscopy, scanning electron microscopy of microvascular corrosion casts and transmission electron microscopy in rats 26 and 50 h after initiation of implantation. Increased vascular permeability at implantation sites was observed as a positive blue-dye test, spacing of vessels, and as localized extravasations of resin from postcapillary venules in the center of the endometrium. The subepithelial capillary plexus in the primary decidual zone adjacent to the blastocyst was shut down 50 h after initiation of implantation, most probably due to swelling of the metabolically activated endothelium and volume expansion of the decidual cells. This phenomenon coincided with the mesometrial orientation of the inner cell mass of the blastocyst; it may be a uterine mechanism to direct the ectoplacental cone toward the patent vessels in the mesometrial portion of the uterus. The remaining vessels at implantation sites were generally fewer, larger in diameter, more irregular in caliber, and more uniformly oriented along the implantation axis than their counterparts at inter-implantation sites. No vascular sprouts were observed during the interval studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号