首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To produce human monoclonal antibodies in bacteria, a gene repertoire of IgM variable regions was isolated from human peripheral B lymphocytes by the polymerase chain reaction. Alternatively, synthetic antibody genes with random hypervariable regions are being generated that may provide libraries of even higher complexity. For the selection of specific monoclonal antibodies from these libraries, we have developed twoE. coli vector systems that facilitate the surface display of an antibody physically linked to its own gene. The phagemid pSEX encodes a fusion protein of an antigen binding domain (Fv-antibody) with the docking protein (pIII) of filamentous phages. Specific antibody genes can therefore be enriched by antigen affinity chromatography. The plasmid pAP1 encodes a fusion protein of an Fv-antibody with a bacterial cell-wall protein. Bacteria carrying this plasmid express functional Fv-antibodies tightly bound to their surface. This should enable the selection of single cells with a fluorescence-assisted cell sorter (FACS) using labeled antigen or by adsorption to immobilized antigen. These vectors permit three major principles of the antibody response to be mimicked inE. coli:
  1. Generation of a highly complex antibody repertoire;
  2. Clonal selection procedures for library screening; and
  3. The possibility of increasing a given affinity by repeated rounds of mutation and selection.
  相似文献   

2.
Phage display technology has been applied in many fields of biological and medical sciences to study molecular interactions and especially in the generation of monoclonal antibodies of human origin. However, extremely low display level of antibody molecules on the surface of phage is an intrinsic problem of a phagemid-based display system resulting in low success rate of isolating specific binding molecules. We show here that display of single-chain antibody fragment (scFv) generated with pIGT3 phagemid can be increased dramatically by using a genetically modified Ex-phage. Ex-phage has a mutant pIII gene that produces a functional wild-type pIII in suppressing Escherichia coli strains but does not make any pIII in non-suppressing E.coli strains. Packaging phagemids encoding antibody-pIII fusion in F+ non-suppressing E.coli strains with Ex-phage enhanced the display level of antibody fragments on the surfaces of recombinant phage particles resulting in an increase of antigen-binding reactivity >100-fold compared to packaging with M13KO7 helper phage. Thus, the Ex-phage and pIGT3 phagemid vector provides a system for the efficient enrichment of specific binding antibodies from a phage display library and, thereby, increases the chance of obtaining more diverse antibodies specific for target antigens.  相似文献   

3.
Human hybridomas secreting monoclonal antibodies in a stable manner are difficult to develop. The main difficulties are the restricted techniques for B-cell immortalization, the low number of sensitized B cells in peripheral blood, and the impossibility, for ethical reasons, to immunize humans with most antigens. Phage display has proved to be a powerful method for the generation of recombinant antibody fragments. This technology relies on the construction of recombinant Fab or scFv libraries and their display on phage M13. In order to rescue unstable B-cell clones secreting human antibodies we set up a method for the selection by phage display of human IgG fragments from Epstein-Barr virus (EBV)-transformed clones and applied it to the selection by phage display of Fabs directed against HIV-1 gp120, using a seropositive blood sample. The approach combines B-cell transformation by EBV of peripheral blood lymphocytes from a seropositive donor, preselection of specific IgG anti-gp120 producing clones, and the construction of a targeted human antibody library. In this library the percentage of heavy and light chain coding sequences expressed in Escherichia coli, amplified by a set of specific 5′ primers for different antibody germ lines, was similar to that observed with the original untransformed B-cell sample. One round of panning was sufficient for the rescue of three Fabs specific for HIV-1 gp120 protein, which proves the efficiency of this technique.  相似文献   

4.
Most therapeutic antibodies (Abs) target cell surface proteins on tumor and immune cells. Cloning of Ab gene libraries in E. coli and their display on bacteriophages is commonly used to select novel therapeutic Abs binding target antigens, either purified or expressed on cells. However, the sticky nature of bacteriophages renders phage display selections on cells challenging. We previously reported an E. coli display system for expression of VHHs (i.e., nanobodies, Nbs) on the surface of bacteria and selection of high-affinity clones by magnetic cell sorting (MACS). Here, we demonstrate that E. coli display is also an attractive method for isolation of Nbs against cell surface antigens, such as the epidermal growth factor receptor (EGFR), upon direct selection and screening of Ab libraries on live cells. We employ a whole cell-based strategy using a VHH library obtained by immunization with human tumor cells over-expressing EGFR (i.e., A431), and selection of bacterial clones bound to murine fibroblast NIH-3T3 cells transfected with human EGFR, after depletion of non-specific clones on untransfected cells. This strategy resulted in the isolation of high-affinity Nbs binding distinct epitopes of EGFR, including Nbs competing with the ligand, EGF, as characterized by flow cytometry of bacteria displaying the Nbs and binding assays with purified Nbs using surface plasmon resonance. Hence, our study demonstrates that E. coli display of VHH libraries and selection on cells enables efficient isolation and characterization of high-affinity Nbs against cell surface antigens.  相似文献   

5.
High throughput screenings of single chain Fv (scFv) antibody phage display libraries are currently done as soluble scFvs produced in E.coli. Due to endotoxin contaminations from bacterial cells these preparations cannot be reliably used in mammalian cell based assays. The monovalent nature and lack of Fc in soluble scFvs prevent functional assays that are dependent on target cross linking and/or Fc functions. A convenient approach is to convert scFvs into scFv.Fc fusion proteins and express them in mammalian cell lines for screening. This approach is low throughput and is only taken after primary screening of monovalent scFvs that are expressed in bacteria. There is no platform at present that combines the benefits of both bacterial and mammalian expression system for screening phage library output. We have, therefore, developed a novel dual expression vector, called pSplice, which can be used to express scFv.Fc fusion proteins both in E.coli and mammalian cell lines. The hallmark of the vector is an engineered intron which houses the bacterial promoter and signal peptide for expression and secretion of scFv.Fc in E.coli. When the vector is transfected into a mammalian cell line, the intron is efficiently spliced out resulting in a functional operon for expression and secretion of the scFv.Fc fusion protein into the culture medium. By applying basic knowledge of mammalian introns and splisosome, we designed this vector to enable screening of phage libraries in a product like format. Like IgG, the scFv.Fc fusion protein is bi-valent for the antigen and possesses Fc effector functions. Expression in E.coli maintains the speed of the bacterial expression platform and is used to triage clones based on binding and other assays that are not sensitive to endotoxin. Triaged clones are then expressed in a mammalian cell line without the need for any additional cloning steps. Conditioned media from the mammalian cell line containing the fusion proteins are then used for different types of cell based assays. Thus this system retains the speed of the current screening system for phage libraries and adds additional functionality to it.  相似文献   

6.
Antibody library technology represents a powerful tool for the discovery and design of antibodies with high affinity and specificity for their targets. To extend the technique to the expression and selection of antibody libraries in an eukaryotic environment, we provide here a proof of concept that retroviruses can be engineered for the display and selection of variable single-chain fragment (scFv) libraries. A retroviral library displaying the repertoire obtained after a single round of selection of a human synthetic scFv phage display library on laminin was generated. For selection, antigen-bound virus was efficiently recovered by an overlay with cells permissive for infection. This approach allowed more than 103-fold enrichment of antigen binders in a single selection cycle. After three selection cycles, several scFvs were recovered showing similar laminin-binding activities but improved expression levels in mammalian cells as compared with a laminin-specific scFv selected by the conventional phage display approach. Thus, translational problems that occur when phage-selected antibodies have to be transferred onto mammalian expression systems to exert their therapeutic potential can be avoided by the use of retroviral display libraries.  相似文献   

7.
In the post-genomic era, validation of candidate gene targets frequently requires proteinbased strategies. Phage display is a powerful tool to define protein-protein interactions by generating peptide binders against target antigens. Epitope phage display libraries have the potential to enrich coding exon sequences from human genomic loci. We evaluated genomic and cDNA phage display strategies to identify genes in the 5q31 Interleukin gene cluster and to enrich cell surface receptor tyrosine kinase genes from a breast cancer cDNA library. A genomic display library containing 2 x 106 clones with exon-sized inserts was selected with antibodies specific for human Interleukin-4 (IL-4) and Interleukin-13. The library was enriched significantly after two selection rounds and DNA sequencing revealed unique clones. One clone matched a cognate IL-4 epitope; however, the majority of clone insert sequences corresponded to E. coli genomic DNA. These bacterial sequences act as 'mimotopes' (mimetic sequences of the true epitope), correspond to open reading frames, generate displayed peptides, and compete for binding during phage selection. The specificity of these mimotopes for IL-4 was confirmed by competition ELISA. Other E. coli mimotopes were generated using additional antibodies. Mimotopes for a receptor tyrosine kinase gene were also selected using a breast cancer SKBR-3 cDNA phage display library, screened against an anti-erbB2 monoclonal antibody. Identification of mimotopes in genomic and cDNA phage libraries is essential for phage display-based protein validation assays and two-hybrid phage approaches that examine protein-protein interactions. The predominance of E. coli mimotopes suggests that the E. coli genome may be useful to generate peptide diversity biased towards protein coding sequences.ABBREVIATIONS USED: IL, interleukin; ELISA, enzyme linked immunoabsorbant assay; PBS, phospho-buffered saline; cfu, colony forming units.  相似文献   

8.
Non-immune (na?ve) phage antibody libraries have become an important source of antibodies for reagent, diagnostic, and therapeutic use. To date, reported na?ve libraries have been constructed in phagemid vectors as fusions to pIII, yielding primarily single copy (monovalent) display of antibody fragments. For this work, we subcloned the single chain Fv (scFv) gene repertoire from a na?ve phagemid antibody library into a true phage vector to create a multivalently displayed scFv phage library. Compared to monovalently displayed scFv, multivalent phage display resulted in improved efficiency of display as well as antibody selection. A greater number of antibodies were obtained and at earlier rounds of selection. Such increased efficiency allows the screening for binding antibodies after a single round of selection, greatly facilitating automation. Expression levels of antigen-binding scFv were also higher than from the phagemid library. In contrast, the affinities of scFv from the phage library were lower than from the phagemid library. This could be overcome by utilizing the scFv in a multivalent format, by affinity maturation, or by converting the library to monovalent display after the first round of selection.  相似文献   

9.
The protozoan parasite Cryptosporidium parvum is regarded as a major public health problem world-wide, especially for immunocompromised individuals. Although no effective therapy is presently available, specific immune responses prevent or terminate cryptosporidiosis and passively administered antibodies have been found to reduce the severity of infection. Therefore, as an immunotherapeutic approach against cryptosporidiosis, we set out to develop C. parvum-specific polyclonal antibody libraries, standardised, perpetual mixtures of polyclonal antibodies, for which the genes are available. A combinatorial Fab phage display library was generated from the antibody variable region gene repertoire of mice immunised with C. parvum surface and apical complex glycoproteins which are believed to be involved in mediating C. parvum attachment and invasion. The variable region genes used to construct this starting library were shown to be diverse by nucleotide sequencing. The library was subjected to one round of antigen selection on C. parvum glycoproteins or a C. parvum oocyst/sporozoite preparation. The two selected libraries showed specific reactivity to the glycoproteins as well as to the oocyst/sporozoite preparation, with 50-73% antigen-reactive members. Fingerprint analysis of individual clones from the two antigen-selected libraries showed high diversity, confirming the polyclonality of the selected libraries. Furthermore, immunoblot analysis on the oocyst/sporozoite and glycoprotein preparations with selected library phage showed reactivity to multiple bands, indicating diversity at the antigen level. These C. parvum-specific polyclonal Fab phage display libraries will be converted to libraries of polyclonal full-length antibodies by mass transfer of the selected heavy and light chain variable region gene pairs to a mammalian expression vector. Such polyclonal antibody libraries would be expected to mediate effector functions and provide optimal passive immunity against cryptosporidiosis.  相似文献   

10.
Phage display antibody (PDA) libraries, allows the rapid isolation and characterization of high specificity monoclonal antibodies for therapeutic and diagnostic applications. However, selection of positive binding clones from synthetic and semi-synthetic libraries has an inherent bias towards clones containing randomly generated amber stop codons, complicating the identification of high affinity binding antibodies. We screened Tomlinson I and J library against receptor binding domain (RBD) of SARS CoV2, eight clones which showed positive binding in phage ELISA, contained one or more amber stop codons in their single-chain antibody fragment (scFv) gene sequences. The presence of amber stop codons within the antibody sequence causes the premature termination of soluble form of scFv expression in nonsuppressor Escherichia coli strain. In the present study, we have used a novel strategy that allows soluble expression of scFvs having amber stop codon in their gene sequences (without phage PIII protein fusion), in the suppressor strain. This strategy of introduction of Ochre (TAA) codon at the junction of scFv and PIII gene, speeds up the initial screening process which is critical for selecting the right scFvs for further studies. Present strategy leads to the identification of a scFv, B8 that binds specifically with nanomolar affinity toward SARS CoV 2 RBD, which otherwise lost in terms of traditional methodology.  相似文献   

11.
Antibodies have been used efficiently for the treatment and diagnosis of many diseases. Recombinant antibody technology allows the generation of fully human antibodies. Phage display is the gold standard for the production of human antibodies in vitro. To generate monoclonal antibodies by phage display, the generation of antibody libraries is crucial. Antibody libraries are classified according to the source where the antibody gene sequences were obtained. The most useful library for infectious diseases is the immunized library. Immunized libraries would allow better and selective enrichment of antibodies against disease antigens. The antibodies generated from these libraries can be translated for both diagnostic and therapeutic applications. This review focuses on the generation of immunized antibody libraries and the potential applications of the antibodies derived from these libraries.  相似文献   

12.
Filamentous phage was the first display platform employed to isolate antibodies in vitro and is still the most broadly used. The success of phage display is due to its robustness, ease of use, and comprehensive technology development, as well as a broad range of selection methods developed during the last two decades. We report here the first combinatorial synthetic Fab libraries displayed on pIX, a fusion partner different from the widely used pIII. The libraries were constructed on four VL and three VH domains encoded by IGV and IGJ germ-line genes frequently used in human antibodies, which were diversified to mirror the variability observed in the germ-line genes and antibodies isolated from natural sources. Two sets of libraries were built, one with diversity focused on VH by keeping VL in the germ-line gene configuration and the other with diversity in both V domains. After selection on a diverse panel of proteins, numerous specific Fabs with affinities ranging from 0.2 nM to 20 nM were isolated. VH diversity was sufficient for isolating Fabs to most antigens, whereas variability in VL was required for isolation of antibodies to some targets. After the application of an integrated maturation process consisting of reshuffling VL diversity, the affinity of selected antibodies was improved up to 100-fold to the low picomolar range, suitable for in vivo studies. The results demonstrate the feasibility of displaying complex Fab libraries as pIX fusion proteins for antibody discovery and optimization and lay the foundation for studies on the structure-function relationships of antibodies.  相似文献   

13.
Pavoni E  Monteriù G  Cianfriglia M  Minenkova O 《Gene》2007,391(1-2):120-129
We report the development of a novel phagemid vector, pKM19, for display of recombinant antibodies in single-chain format (scFv) on the surface of filamentous phage. This new vector improves efficacy of selection and reduces the biological bias against antibodies that can be harmful to host bacteria. It is useful for generation of large new antibody libraries, and for the subsequent maturation of antibody fragments. In comparison with commonly used plasmids, this vector is designed to have relatively low expression levels of cloned scFv antibodies due to the amber codon positioned in a sequence encoding for the PhoA leader peptide. Moreover, fusion of antibodies to the carboxy terminal part only of the gene III protein improves display of scFv on bacteriophage surface in this system. Despite the lower antibody expression, the functional test performed with a new scFv library derived from human peripheral blood lymphocytes demonstrates that specific antibodies can be easily isolated from the library, even after the second selection round. The use of the pKM19 vector for maturation of an anti-CEA antibody significantly improves the final results. In our previous work, an analogous selection through the use of a phagemid vector, with antibody expression under the control of a lacP promoter, led to isolation of anti-CEA phage antibodies with improved affinities, which were not producible in soluble form. Probably due to the toxicity for E. coli of that particular anti-CEA antibody, 70% of maturated clones contained suppressed stop codons, acquired during various selection/amplification rounds. The pKM19 plasmid facilitates an efficient maturation process, resulting in selection of antibodies with improved affinity without any stop codons.  相似文献   

14.
Activated forms of Bacillus thuringiensis insecticidal toxins have consistently been found to form insoluble and inactive precipitates when they are expressed in Escherichia coli. Genetic engineering of these proteins to improve their effectiveness as biological pesticides would be greatly facilitated by the ability to express them in E. coli, since the molecular biology tools available for Bacillus are limited. To this end, we show that activated B. thuringiensis toxin (Cry1Ac) can be expressed in E. coli as a translational fusion with the minor phage coat protein of filamentous phage. Phage particles displaying this fusion protein were viable, infectious, and as lethal as pure toxin on a molar basis when the phage particles were fed to insects susceptible to native Cry1Ac. Enzyme-linked immunosorbent assay and Western blot analysis showed the fusion protein to be antigenically equivalent to native toxin, and micropanning with anti-Cry1Ac antibody was positive for the toxin-expressing phage. Phage display of B. thuringiensis toxins has many advantages over previous expression systems for these proteins and should make it possible to construct large libraries of toxin variants for screening or biopanning.  相似文献   

15.
The rapidly increasing number of therapeutic antibodies in clinical development and on the market requires corresponding detection reagents for monitoring the concentration of these drugs in patient samples and as positive controls for measurement of anti-drug antibodies. Phage display of large recombinant antibody libraries has been shown to enable the rapid development of fully human anti-idiotypic antibodies binding specifically to antibody drugs, since the in vitro panning approach allows for incorporation of suitable blockers to drive selection toward the paratope of the drug. A typical bottleneck in antibody generation projects is ranking of the many candidates obtained after panning on the basis of antibody binding strength. Ideally, such method will work without prior labeling of antigens and with crude bacterial lysates. We developed an off-rate screening method of crude Escherichia coli lysates containing monovalent Fab fragments obtained after phage display of the HuCAL PLATINUM® antibody library. We used the antibody drugs trastuzumab and cetuximab as antigen examples. Using the Octet® RED384 label-free sensor instrument we show that antibody off rates can be reliably determined in crude bacterial lysates with high throughput. We also demonstrate that the method can be applied to screening for high-affinity antibodies typically obtained after affinity maturation.  相似文献   

16.
Human monoclonal antibodies (mAbs) can routinely be isolated from phage display libraries against virtually any protein available in sufficient purity and quantity, but library design can influence epitope coverage on the target antigen. Here we describe the construction of a novel synthetic human antibody phage display library that incorporates hydrophilic or charged residues at position 52 of the CDR2 loop of the variable heavy chain domain, instead of the serine residue found in the corresponding germline gene. The novel library was used to isolate human mAbs to various antigens, including the alternatively-spliced EDA domain of fibronectin, a marker of tumor angiogenesis. In particular, the mAb 2H7 was proven to bind to a novel epitope on EDA, which does not overlap with the one recognized by the clinical-stage F8 antibody. F8 and 2H7 were used for the construction of chelating recombinant antibodies (CRAbs), whose tumor-targeting properties were assessed in vivo in biodistribution studies in mice bearing F9 teratocarcinoma, revealing a preferential accumulation at the tumor site.Key words: human antibody library, phage display, oncofetal fibronectin, vascular tumor targeting, scFv antibody fragments, chelating recombinant antibody (CRAb)  相似文献   

17.
To produce human monoclonal antibodies in bacteria, a gene repertoire of IgM variable regions was isolated from human peripheral B lymphocytes by the polymerase chain reaction. Alternatively, synthetic antibody genes with random hypervariable regions are being generated that may provide libraries of even higher complexity. For the selection of specific monoclonal antibodies from these libraries, we have developed two E. coli vector systems that facilitate the surface display of an antibody physically linked to its own gene. The phagemid pSEX encodes a fusion protein of an antigen binding domain (Fv-antibody) with the docking protein (pIII) of filamentous phages. Specific antibody genes can therefore be enriched by antigen affinity chromatography. The plasmid pAP1 encodes a fusion protein of an Fv-antibody with a bacterial cell-wall protein. Bacteria carrying this plasmid express functional Fv-antibodies tightly bound to their surface. This should enable the selection of single cells with a fluorescence-assisted cell sorter (FACS) using labeled antigen or by adsorption to immobilized antigen. These vectors permit three major principles of the antibody response to be mimicked in E. coli: 1. Generation of a highly complex antibody repertoire; 2. Clonal selection procedures for library screening; and 3. The possibility of increasing a given affinity by repeated rounds of mutation and selection.  相似文献   

18.
噬菌体抗体库技术是获得治疗性抗体的一条重要途径。以20份健康人外周血为样本,通过提取淋巴细胞、逆转录-PCR(RT PCR)、抗体可变区基因的扩增、重叠PCR获得单链抗体(ScFv)基因,将ScFv克隆入噬粒载体,通过近300次的电转化获得了库容量为1.3×109的全人源天然ScFv噬菌体抗体库。通过随机挑克隆测序和用5种不同抗原筛选对抗体库进行了初步验证。随机测序表明抗体库具有较好的多样性,用5种不同抗原对其进行筛选,均获得了特异性噬菌体抗体的不同富集,表明成功构建了一个多样性良好的人源天然ScFv噬菌体抗体库。  相似文献   

19.
Zinc transporter 8(ZnT8) is a major autoantigen and a predictive marker in type 1 diabetes(T1D). To investigate ZnT8-specific antibodies, a phage display library from T1 D was constructed and single-chain antibodies against ZnT 8 were screened and identified. Human T1 D single-chain variable fragment(sc Fv) phage display library consists of approximately 1í10~8 clones. After four rounds of bio-panning, seven unique clones were positive by phage ELISA. Among them, C27 and C22, which demonstrated the highest affinity to ZnT8, were expressed in Escherichia coli Top10F' and then purified by affinity chromatography. C27 and C22 specifically bound ZnT8 N/C fusion protein and ZnT8 C terminal dimer with one Arg325 Trp mutation. The specificity to human islet cells of these sc Fvs were further confirmed by immunohistochemistry. In conclusion, we have successfully constructed a T1 D phage display antibody library and identified two ZnT8-specific sc Fv clones, C27 and C22. These ZnT8-specific sc Fvs are potential agents in immunodiagnostic and immunotherapy of T1 D.  相似文献   

20.
《Gene》1999,227(1):49-54
Phage display technology permits the display of libraries of random combinations of light (LC) and heavy chain (HC) antibody genes. Maximizing the size of these libraries would enable the isolation of antibodies with high affinity and specificity. In this study, the loxP/Cre system of in-vivo recombination has been employed to construct an improved vector system for the display of antibodies. In this system, the chloramphenicol acetyl transferase (CAT) gene is linked to a HC library in a donor plasmid, pUX. This CAT gene is `silent' before recombination but active after recombination. A second acceptor phagemid, pMOX, is used for cloning the LC repertoire. Following infection with a Cre producing phage, pMOX accepts the CAT/HC library from pUX via site-specific recombination at the loxP sites. Recombinants can then be selected via chloramphenicol resistance. Using this vector system, we have generated libraries of 4×109 recombinants. Restriction analysis and Fab expression confirmed that 100% of the colonies in the library were recombinants. This system provides a stable selectable mechanism for the generation of large libraries and avoids the isolation of non-recombinants encountered with earlier in-vivo recombination systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号