首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Replacement of the signal peptide (SP) of the bacteriocins enterocin P (EntP) and hiracin JM79 (HirJM79), produced by Enterococcus faecium P13 and Enterococcus hirae DCH5, respectively, by the signal peptide of Usp45 (SP usp45 ), the major Sec-dependent protein secreted by Lactococcus lactis, permits the production, secretion, and functional expression of EntP and HirJM79 by L. lactis. Chimeric genes encoding the SP usp45 fused to either mature EntP (entP), with or without the immunity gene (entiP) or to mature HirJM79 (hirJM79), with or without the immunity gene (hiriJM79), were cloned into the expression vector pMG36c, carrying the P32 constitutive promoter, and into pNZ8048 under control of the inducible PnisA promoter. The production of EntP and HirJM79 by most of the L. lactis recombinant strains was 1.5- to 3.7-fold higher and up to 3.6-fold higher than by the E. faecium P13 and E. hirae DCH5 control strains, respectively. However, the specific antimicrobial activity of the recombinant EntP was 1.1- to 6.2-fold higher than that produced by E. faecium P13, while that of the HirJM79 was a 40% to an 89% of that produced by E. hirae DCH5. Chimeras of SP usp45 fused to mature EntP or HirJM79 drive the production and secretion of these bacteriocins in L. lactis in the absence of specific immunity and secretion proteins. The supernatants of the recombinant L. lactis NZ9000 strains, producers of EntP, showed a much higher antimicrobial activity against Listeria spp. than that of the recombinant L. lactis NZ9000 derivatives, producers of HirJM79.  相似文献   

2.
Mature sakacin A (SakA, encoded by sapA) and its cognate immunity protein (SakI, encoded by sapiA), and two SakA-derived chimeras mimicking the N-terminal end of mature enterocin P (EntP/SakA) and mature enterocin A (EntA/SakA) together with SakI, were fused to different signal peptides (SP) and cloned into the protein expression vectors pNZ8048 and pMG36c for evaluation of their production and functional expression by different lactic acid bacteria. The amount, antimicrobial activity, and specific antimicrobial activity of SakA and its chimeras produced by Lactococcus lactis subsp. cremoris NZ9000 depended on the SP and the expression vector. Only L. lactis NZ9000 (pNUPS), producing EntP/SakA, showed higher bacteriocin production and antimicrobial activity than the natural SakA-producer Lactobacillus sakei Lb706. The lower antimicrobial activity of the SakA-producer L. lactis NZ9000 (pNUS) and that of the EntA/SakA-producer L. lactis NZ9000 (pNUAS) could be ascribed to secretion of truncated bacteriocins. On the other hand, of the Lb. sakei Lb706 cultures transformed with the pMG36c-derived vectors only Lb. sakei Lb706 (pGUS) overproducing SakA showed a higher antimicrobial activity than Lb. sakei Lb706. Finally, cloning of SakA and EntP/SakA into pPICZαA and pKLAC2 permitted the production of SakA and EntP/SakA by recombinant Pichia pastoris X-33 and Kluyveromyces lactis GG799 derivatives although their antimicrobial activity was lower than expected from their production.  相似文献   

3.
Enterocin P (EntP), a sec-dependent bacteriocin from Enterococcus faecium P13, was produced by Lactococcus lactis. The EntP structural gene (entP) with or without the EntP immunity gene (entiP) was cloned in (1), plasmid pMG36c under control of the lactococcal constitutive promoter P32, (2) in plasmid pNG8048e under control of the inducible PnisA promoter, and (3) in the integration vector pINT29. Introduction of the recombinant vectors in L. lactis resulted in production of biologically active EntP in the supernatants of L. lactis subsp. lactis IL1403 and L. lactis subsp. cremoris NZ9000, and the coproduction of nisin A and EntP in L. lactis subsp. lactis DPC5598. The level of production of EntP, detected and quantified by specific anti-EntP antibodies and a noncompetitive indirect enzyme-linked immunosorbent assay, by the recombinant L. lactis strains depended on the host strain, the expression vector, and the presence of the entiP gene in the constructs of the recombinant L. lactis strains. The highest amount of EntP was produced with derivatives containing entP and entiP, for both L. lactis IL1403 and L. lactis NZ9000. These derivatives produced up to five- to six-fold more EntP than E. faecium P13. Mass spectrometry analysis revealed that EntP purified from L. lactis IL1403 (pJP214) has a molecular mass identical to that purified from E. faecium P13, suggesting that the synthesis, processing, and secretion of EntP progresses efficiently in recombinant L. lactis hosts.  相似文献   

4.
The presence of bacteriocin structural genes (entA, entB, entP, entQ, entAS-48, entL50A/B, bac31, and cylL) encoding different bacteriocins (enterocin A, enterocin B, enterocin P, enterocin Q, enterocin AS-48, enterocin L50A/B, bacteriocin 31 and cytolysin L, respectively), and the production of bacteriocin activity were analysed in 139 E. faecalis and 41 E. faecium clinical isolates of Tunisia. Forty-eight of 139 E. faecalis isolates (34%) and 7 of 41 of E. faecium isolates (17%) were bacteriocin producers. Sixty-two per cent of the bacteriocin-producing enterococci showed inhibitory activity against L. monocytogenes. Different combinations of entA, entB, entP, and entL50A/B genes were detected among the seven bacteriocin-producer E. faecium isolates, and more that one gene were identified in all the isolates. The entA gene was associated in most of the cases with entB gene in E. faecium isolates. Cyl LS were the unique genes detected among E. faecalis (in 24 of 48 bacteriocin-producer isolates, 50%). A β-hemolytic activity was demonstrated in 19 of the 24 cyl LS -positive E. faecalis isolates (79%), this activity being negative in the remaining five isolates. The presence of different bacteriocin structural genes and the production of antimicrobial activities seems to be a common trait of clinical enterococci.  相似文献   

5.
The use of synthetic genes may constitute a successful approach for the heterologous production and functional expression of bacterial antimicrobial peptides (bacteriocins) by recombinant yeasts. In this work, synthetic genes with adapted codon usage designed from the mature amino acid sequence of the bacteriocin enterocin A (EntA), produced by Enterococcus faecium T136, and the mature bacteriocin E 50-52 (BacE50-52), produced by E. faecium NRRL B-32746, were synthesized. The synthetic entA and bacE50-52 were cloned into the protein expression vectors pPICZαA and pKLAC2 for transformation of derived vectors into Pichia pastoris X-33 and Kluyveromyces lactis GG799, respectively. The recombinant vectors were linearized and transformed into competent cells selecting for P. pastoris X-33EAS (entA), P. pastoris X-33BE50-52S (bacE50-52), K. lactis GG799EAS (entA), and K. lactis GG799BE50-52S (bacE50-52). P. pastoris X-33EAS and K. lactis GG799EAS, but not P. pastoris X-33BE50-52S and K. lactis GG799BE50-52S, showed antimicrobial activity in their supernatants. However, purification of the supernatants of the producer yeasts permitted recovery of the bacteriocins EntA and BacE50-52. Both purified bacteriocins were active against Gram-positive bacteria such as Listeria monocytogenes but not against Gram-negative bacteria, including Campylobacter jejuni.  相似文献   

6.
Hiracin JM79 (HirJM79), a Sec-dependent bacteriocin produced by Enterococcus hirae DCH5, was cloned and produced in Lactococcus lactis, Lactobacillus sakei, Enterococcus faecium, Enterococcus faecalis, and Pichia pastoris. For heterologous production of HirJM79 in lactic acid bacteria (LAB), the HirJM79 structural gene (hirJM79), with or without the HirJM79 immunity gene (hiriJM79), was cloned into the plasmid pMG36c under the control of the constitutive promoter P(32) and into the plasmid pNZ8048 under the control of the inducible P(NisA) promoter. For the production of HirJM79 in P. pastoris, the gene encoding the mature HirJM79 protein was cloned into the pPICZalphaA expression vector. The recombinant plasmids permitted the production of biologically active HirJM79 in the supernatants of L. lactis IL1403, L. lactis NZ9000, L. sakei Lb790, E. faecalis JH2-2, and P. pastoris X-33, the coproduction of HirJM79 and nisin A in L. lactis DPC5598, and the coproduction of HirJM79 and enterocin P in E. faecium L50/14-2. All recombinant LAB produced larger quantities of HirJM79 than E. hirae DCH5, although the antimicrobial activities of most transformants were lower than that predicted from their production of HirJM79. The synthesis, processing, and secretion of HirJM79 proceed efficiently in recombinant LAB strains and P. pastoris.  相似文献   

7.
8.
Plasmid pSEUDO and derivatives were used to show that llmg_pseudo_10 in Lactococcus lactis MG1363 and its homologous locus in L. lactis IL1403 are suitable for chromosomal integrations. L. lactis MG1363 and IL1403 nisin-induced controlled expression (NICE) system derivatives (JP9000 and IL9000) and two general stress reporter strains (NZ9000::PhrcA-GFP and NZ9000::PgroES-GFP) enabling in vivo noninvasive monitoring of cellular fitness were constructed.  相似文献   

9.
The bacteriocin enterocin A (EntA) produced by Enterococcus faecium T136 has been successfully cloned and produced by the yeasts Pichia pastoris X-33EA, Kluyveromyces lactis GG799EA, Hansenula polymorpha KL8-1EA, and Arxula adeninivorans G1212EA. Moreover, P. pastoris X-33EA and K. lactis GG799EA produced EntA in larger amounts and with higher antimicrobial and specific antimicrobial activities than the EntA produced by E. faecium T136.  相似文献   

10.
Acid accumulation caused by carbon metabolism severely affects the fermentation performance of microbial cells. Here, different sources of the recT gene involved in homologous recombination were functionally overexpressed in Lactococcus lactis NZ9000 and Escherichia coli BL21, and their acid-stress tolerances were investigated. Our results showed that L. lactis NZ9000 (ERecT and LRecT) strains showed 1.4- and 10.4-fold higher survival rates against lactic acid (pH 4.0), respectively, and that E. coli BL21 (ERecT) showed 16.7- and 9.4-fold higher survival rates than the control strain against lactic acid (pH 3.8) for 40 and 60 min, respectively. Additionally, we found that recT overexpression in L. lactis NZ9000 improved their growth under acid-stress conditions, as well as increased salt- and ethanol-stress tolerance and intracellular ATP concentrations in L. lactis NZ9000. These findings demonstrated the efficacy of recT overexpression for enhancing acid-stress tolerance and provided a promising strategy for insertion of anti-acid components in different hosts.  相似文献   

11.
Enterocin A is a small, heat-stable, antilisterial bacteriocin produced by Enterococcus faecium DPC1146. The sequence of a 10,879-bp chromosomal region containing at least 12 open reading frames (ORFs), 7 of which are predicted to play a role in enterocin biosynthesis, is presented. The genes entA, entI, and entF encode the enterocin A prepeptide, the putative immunity protein, and the induction factor prepeptide, respectively. The deduced proteins EntK and EntR resemble the histidine kinase and response regulator proteins of two-component signal transducing systems of the AgrC-AgrA type. The predicted proteins EntT and EntD are homologous to ABC (ATP-binding cassette) transporters and accessory factors, respectively, of several other bacteriocin systems and to proteins implicated in the signal-sequence-independent export of Escherichia coli hemolysin A. Immediately downstream of the entT and entD genes are two ORFs, the product of one of which, ORF4, is very similar to the product of the yteI gene of Bacillus subtilis and to E. coli protease IV, a signal peptide peptidase known to be involved in outer membrane lipoprotein export. Another potential bacteriocin is encoded in the opposite direction to the other genes in the enterocin cluster. This putative bacteriocin-like peptide is similar to LafX, one of the components of the lactacin F complex. A deletion which included one of two direct repeats upstream of the entA gene abolished enterocin A activity, immunity, and ability to induce bacteriocin production. Transposon insertion upstream of the entF gene also had the same effect, but this mutant could be complemented by exogenously supplied induction factor. The putative EntI peptide was shown to be involved in the immunity to enterocin A. Cloning of a 10.5-kb amplicon comprising all predicted ORFs and regulatory regions resulted in heterologous production of enterocin A and induction factor in Enterococcus faecalis, while a four-gene construct (entAITD) under the control of a constitutive promoter resulted in heterologous enterocin A production in both E. faecalis and Lactococcus lactis.  相似文献   

12.
Previously we showed that glutathione (GSH) can protect Lactococcus lactis against oxidative stress (Y. Li et al., Appl. Environ. Microbiol. 69:5739-5745, 2003). In the present study, we show that the GSH imported by L. lactis subsp. cremoris SK11 or produced by engineered L. lactis subsp. cremoris NZ9000 can protect both strains against a long-term mild acid challenge (pH 4.0) and a short-term severe acid challenge (pH 2.5). This shows for the first time that GSH can protect a gram-positive bacterium against acid stress. During acid challenge, strain SK11 containing imported GSH and strain NZ9000 containing self-produced GSH exhibited significantly higher intracellular pHs than the control. Furthermore, strain SK11 containing imported GSH had a significantly higher activity of glyceraldehyde-3-phosphate dehydrogenase than the control. These results suggest that the acid stress resistance of starter culture can be improved by selecting L. lactis strains capable of producing or importing GSH.  相似文献   

13.
Aims: To functionally express the recombinant mouse insulin‐like growth factor‐I (rtmIGF‐I) in Lactococcus lactis NZ9000 with a food‐grade vector. Methods and Results: The rtmIGF‐I encoding sequence was inserted into secreted food‐grade vector pLEB688 and transformed into L. lactis NZ9000. The expression of the recombinant protein rtmIGF‐I was confirmed by tricine‐SDS‐PAGE analysis and Western blot. The concentration of this recombinant protein was 3 mg l?1 in the medium fraction. Further experiment demonstrated that the recombinant protein was biologically active and promoted NIH3T3 cell proliferation in a concentration‐dependent manner. Conclusions: The rtmIGF‐I was expressed in L. lactis and located into the medium fraction. The optimal final concentration which could promote NIH3T3 cell proliferation after incubation was 100 ng ml?1. Significance and Impact of the Study: The rtmIGF‐I was functionally expressed in L. lactis NZ9000 with a food‐grade vector. Thus, the recombinant L. lactis NZ9000 could act as a host for the production of rtmIGF‐I for further study. The recombinant strain could serve as an IGF‐I delivery system.  相似文献   

14.
A strain named as HJ35 was isolated from the skin of sixty-five men and fourteen women for acne therapy, in order to find an effective antimicrobial agent againstPropionibacterium acnes. Isolate HJ35 was identified asEnterococcus faecium based on 16 rDNA sequence and produced enterocin HJ35 having antimicrobial activities against most lactic acid bacteria,Enterococcus spp.,Staphylococcus aureus, S. epidermidis, Clostridium perfringens, some bacilli,Micrococcus flavus, Listeria monocytogenes, L. ivanovii, Escherichia coli, Pseudomonas fluorescens andPropionibacterium acnes, in the modified well diffusion method. Especially, enterocin HJ35 showed a bactericidal activity againstPropionibacterium acnes P1. The antimicrobial activity of enterocin HJ35 was disappeared completely with the use of protease XIV. But enterocin HJ35 activity is very stable at high temperature (up to 100°C for 30 min), in wide range of pH 3.0∼9.0), and by treatment with organic solvents. The apparent molecular mass of enterocin HJ35 was estimated to be approximately 4∼4.5 kDa on detection of its bactericidal activity after SDS-PAGE. In batch fermentation ofE. faecium HJ35, enterocin HJ35 was produced at the midlog growth phase, and its maximum production was obtained up to 2,300 AU/mL at the late stationary phase. By employing fed-batch fermentation, the enhanced production of enterocin HJ35 was achieved up to 12,800 AU/mL by feeding with 10 g/L glucose or 6 g/L lactate.  相似文献   

15.
The locations of the genetic determinants for enterocin L50 (EntL50A and EntL50B), enterocin Q (EntQ), and enterocin P (EntP) in the multiple bacteriocin producer Enterococcus faecium strain L50 were determined. These bacteriocin genes occur at different locations; entL50AB (encoding EntL50A and EntL50B) are on the 50-kb plasmid pCIZ1, entqA (encoding EntQ) is on the 7.4-kb plasmid pCIZ2, and entP (encoding EntP) is on the chromosome. The complete nucleotide sequence of pCIZ2 was determined to be 7,383 bp long and contains 10 putative open reading frames (ORFs) organized in three distinct regions. The first region contains three ORFs: entqA preceded by two divergently oriented genes, entqB and entqC. EntqB shows high levels of similarity to bacterial ATP-binding cassette (ABC) transporters, while EntqC displays no significant similarity to any known protein. The second region encompasses four ORFs (orf4 to orf7), and ORF4 and ORF5 display high levels of similarity to mobilization proteins from E. faecium and Enterococcus faecalis. In addition, features resembling a transfer origin region (oriT) were found in the promoter area of orf4. The third region contains three ORFs (orf8 to orf10), and ORF8 and ORF9 exhibit similarity to the replication initiator protein RepE from E. faecalis and to RepB proteins, respectively. To clarify the minimum requirement for EntQ synthesis, we subcloned and heterologously expressed a 2,371-bp fragment from pCIZ2 that encompasses only the entqA, entqB, and entqC genes in Lactobacillus sakei, and we demonstrated that this fragment is sufficient for EntQ production. Moreover, we also obtained experimental results indicating that EntqB is involved in ABC transporter-mediated EntQ secretion, while EntqC confers immunity to this bacteriocin.  相似文献   

16.
Lactic acid bacteria are food-grade microorganisms that are potentially good candidates for production of heterologous proteins of therapeutical or technological interest. We developed a model for heterologous protein secretion in Lactococcus lactis using the staphylococcal nuclease (Nuc). The effects on protein secretion of alterations in either (i) signal peptide or (ii) propeptide sequences were examined. (i) Replacement of the native Nuc signal peptide (SPNuc) by that of L. lactis protein Usp45 (SPUsp) resulted in greatly improved secretion efficiency (SE). Pulse-chase experiments showed that Nuc secretion kinetics was better when directed by SPUsp than when directed by SPNuc. This SPUsp effect on Nuc secretion is not due to a better antifolding activity, since SPUsp:Nuc precursor proteins display enzymatic activity in vitro, while SPNuc:Nuc precursor proteins do not. (ii) Deletion of the native Nuc propeptide dramatically reduces Nuc SE, regardless of which SP is used. We previously reported that a synthetic propeptide, LEISSTCDA, could efficiently replace the native Nuc propeptide to promote heterologous protein secretion in L. lactis (Y. Le Loir, A. Gruss, S. D. Ehrlich, and P. Langella, J. Bacteriol. 180:1895–1903, 1998). To determine whether the LEISSTCDA effect is due to its acidic residues, specific substitutions were introduced, resulting in neutral or basic propeptides. Effects of these two new propeptides and of a different acidic synthetic propeptide were tested. Acidic and neutral propeptides were equally effective in enhancing Nuc SE and also increased Nuc yields. In contrast, the basic propeptide strongly reduced both SE and the quantity of secreted Nuc. We have shown that the combination of the native SPUsp and a neutral or acidic synthetic propeptide leads to a significant improvement in SE and in the quantity of synthesized Nuc. These observations will be valuable in the production of heterologous proteins in L. lactis.  相似文献   

17.
A collection of 57 enterococcal isolates from different origin (including river, treatment plant, spring and garbage water, soil, animal, and vegetables from Aydın) was screened for the production of bacteriocins. Enterococci were identified at species levels as Enterococcus faecium (34), E. hirae (6), E. casseliflavus (4), E. durans (4), E. faecalis (4), E. mundtii (3) and E. avium (2). Of the 57 isolates 40 of them inhibited the growth of at least one indicator bacterium. Based on our PCR results 54 strains possesed enterocin genes. The genes of entA and entB were the most frequently detected structural genes among the PCR positive strains (54 and 53 strains, respectively) and the entB gene was always associated with entA gene. The highest combination of enterocin genes (24 of 54 strains) detected was entA, entB, entP and entL50A/B. The enterocins AS-48 and CylLLS genes were not found. Three enterococcal isolates, 2 E. faecium and 1 E. hirae were not harbour any of tested enterocin genes. No correlation between the presence of enterocin structural genes and the origin of the strain was detected, also no relationship seemed to exist between the tested enterocin genes and the activity spectra of isolates. Genes encoding bacteriocins are widely disseminated among enterocci from different origin and more studies should be done for evaluate industrial potential of bacteriocins.  相似文献   

18.
Enterococci are often identified as constituents of the indigenous microflora from raw milk artisanal cheeses and are believed to contribute to the unique organoleptic qualities of these products. Many strains of enterococci are also known to produce antimicrobial peptides, enterocins, which may prevent the growth of certain food-born pathogens. In this study 33 enterococcal isolates from Hispanic-style cheeses were screened for the production of bacteriocins. Of the 33 isolates, 5 Enterococcus faecium and 1 Enterococcus durans isolates inhibited the growth of Listeria spp. The antilisterial activity was lost after treatment with pepsin, trypsin, pronase, proteinase K and α-chymotrypsin suggesting the active component was a protein or peptide. The active compounds were heat stable and had molecular weights between 4 and 8 kDa, which is characteristic of Class II enterocins. A PCR screen showed that four E. faecium isolates contained nucleic acid sequences for multiple enterocins. Isolate H41K contained entA and entP; and isolates H51Ca, H51Cb and H41B contained entA, entP and entL50AB, with H41B also containing entB. All PCR tests performed were negative for E. faecium isolate H41D, suggesting the production of a novel enterocin. The isolates were also screened for susceptibility to antibiotics, with only two showing low-level resistance to vancomycin (8 μg ml−l). However, three isolates were highly resistant to both tetracycline and kanamycin, with two of the isolates also showing high resistance to erythromycin. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.  相似文献   

19.
Lactic acid bacteria (LAB) resistant to erythromycin were isolated from different food samples on selective media. The isolates were identified as Enterococcus durans, Enterococcus faecium, Enterococcus lactis, Enterococcus casseliflavus, Lactobacillus salivarius, Lactobacillus reuteri, Lactobacillus plantarum, Lactobacillus fermentum, Pediococcus pentosaceus and Leuconostoc mesenteroides. Of the total 60 isolates, 88 % harbored the ermB gene. The efflux gene msrA was identified in E. faecium, E. durans, E. lactis, E. casseliflavus, P. pentosaceus and L. fermentum. Further analysis of the msrA gene by sequencing suggested its homology to msrC. Resistance to tetracycline due to the genes tetM, tetW, tetO, tetK and tetL, alone or in combination, were identified in Lactobacillus species. The tetracycline efflux genes tetK and tetL occurred in P. pentosaceus and Enterococcus species. Since it appeared that LAB had acquired these genes, fermented foods may be a source of antibiotic resistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号