首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The purpose of this study is to develop a system capable of performing calculation of temporal gait parameters using two low-cost wireless accelerometers and artificial intelligence-based techniques as part of a larger research project for conducting human gait analysis. Ten healthy subjects of different ages participated in this study and performed controlled walking tests. Two wireless accelerometers were placed on their ankles. Raw acceleration signals were processed in order to obtain gait patterns from characteristic peaks related to steps. A Bayesian model was implemented to classify the characteristic peaks into steps or nonsteps. The acceleration signals were segmented based on gait events, such as heel strike and toe-off, of actual steps. Temporal gait parameters, such as cadence, ambulation time, step time, gait cycle time, stance and swing phase time, simple and double support time, were estimated from segmented acceleration signals. Gait data-sets were divided into two groups of ages to test Bayesian models in order to classify the characteristic peaks. The mean error obtained from calculating the temporal gait parameters was 4.6%. Bayesian models are useful techniques that can be applied to classification of gait data of subjects at different ages with promising results  相似文献   

2.
ABSTRACT. Individual stick insects were studied walking on a tread-wheel. When a leg caught hold of a small fixed rod beside the wheel it: (a) applied a rhythmically modulated backward directed force (with the modulation frequency identical to the stepping frequency of the other legs); or (b) regularly lifted off the stick during the phase of minimum force, and then returned to the stick; or (c) it stepped onto the wheel. If the wheel was stopped, the applied force increased. It is deduced that this behaviour is driven by central rhythmicity of unknown origin. All the known sensory inputs to this behaviour are superimposed on this central oscillation. A hypothesis is discussed which qualitatively fits all the experimental results on the effect of these sensory influences on the timing of an individual leg's movements in stick insects.  相似文献   

3.
Several studies have shown that humans track a moving visual target with their eyes better if the movement of this target is directly controlled by the observer's hand. The improvement in performance has been attributed to coordination control between the arm motor system and the smooth pursuit (SP) system. In such a task, the SP system shows characteristics that differ from those observed during eye-alone tracking: latency (between the target-arm and the eye motion onsets) is shorter, maximum SP velocity is higher and the maximum target motion frequency at which the SP can function effectively is also higher. The aim of this article is to qualitatively evaluate the behavior of a dynamical model simulating the oculomotor system and the arm motor system when both are involved in tracking visual targets. The evaluation is essentially based on a comparison of the behavior of the model with the behavior of human subjects tracking visual targets under different conditions. The model has been introduced and quantitatively evaluated in a companion paper. The model is based on an exchange of internal information between the two sensorimotor systems, mediated by sensory signals (vision, arm muscle proprioception) and motor signals (arm motor command copy). The exchange is achieved by a specialized structure of the central nervous system, previously identified as a part of the cerebellum. Computer simulation of the model yielded results that fit the behavior of human subjects observed during previously reported experiments, both qualitatively and quantitatively. The parallelism between physiology and human behavior on the one hand, and structure and simulation of the model on the other hand, is discussed. Received: 6 March 1997 / Accepted in revised form: 15 July 1997  相似文献   

4.
In this paper, an experimental analysis of overcoming obstacle in human walking is carried out by means of a motion capture system. In the experiment, the lower body of an adult human is divided into seven segments, and three markers are pasted to each segment with the aim to obtain moving trajectory and to calculate joint variation during walking. Moreover, kinematic data in terms of displacement, velocity and acceleration are acquired as well. In addition, ground reaction forces are measured using force sensors. Based on the experimental results, features of overcoming obstacle in human walking are ana- lyzed. Experimental results show that the reason which leads to smooth walking can be identified as that the human has slight movement in the vertical direction during walking; the reason that human locomotion uses gravity effectively can be identified as that feet rotate around the toe joints during toe-off phase aiming at using gravitational potential energy to provide propulsion for swing phase. Furthermore, both normal walking gait and obstacle overcoming gait are characterized in a form that can provide necessary knowledge and useful databases for the implementation of motion planning and gait planning towards overcoming obstacle for humanoid robots.  相似文献   

5.
Current definitions of horse personality traits are rather vague, lacking clear, universally accepted guidelines for evaluation in performance tests. Therefore, the aim of the present study was to screen behavioural and physiological measurements taken during riding for potential links with scores the same horses received in the official stallion performance test for rideability and personality traits. Behaviour, heart rate (HR) and HR variability from thirty-six stallions participating in a performance test were recorded repeatedly during their performance test training. Using the coefficient of determination, regression analysis revealed that about 1/3 of variation (ranging between r = 0.26 (“constitution” (i.e. fitness, health)) and r = 0.46 (rideability)) in the personality trait scores could be explained by selecting the three most influential behaviour patterns per trait. These behaviour patterns included stumbling (with all traits except character), head-tossing (temperament, rideability), tail-swishing (willingness to work), involuntary change in gait (character) and the rider's use of her/his hands (constitution, rideability), voice (temperament) or whip (constitution). Subsequent mixed model analysis revealed a significant (P < 0.05) influence of the behaviour pattern “horse-induced change in gait” on character (−0.98 ± 0.31 scores per additional occurrence of change in gaits), of head-tossing (−0.25 ± 0.08 scores) and rider's use of voice (−0.51 ± 0.25; P = 0.0594) on temperament, and of stumbling on each of the following: willingness to work (−2.5 ± 1.2), constitution (−2.5 ± 1.2 scores; P = 0.0516) and rideability scores (−3.3 ± 1.4). In addition, constitution scores tended (P = 0.0889) to increase with higher low frequency/high frequency heart rate variation ratios (LF/HF), indicating a shift towards sympathetic dominance and thus a higher stress load in horses with higher scores for constitution. Rideability scores from the training phase were also significantly influenced by head-tossing (−0.5 ± 0.1), and in addition rideability scores from the final test were influenced by the training rider, ranging between average estimated rideability scores of 6.8 ± 0.4 for one training rider and 8.36 ± 0.3 scores for another training rider. Horses ridden with their nose-line predominantly behind the vertical received higher scores for rideability (8.3 ± 0.3) than horses ridden with their nose-line at the vertical (7.7 ± 0.2). These findings indicate that either judges perceive horses to have a better rideability when they readily offer a more extreme poll flexion, or that riders make use of horses’ better rideability by imposing a more extreme poll flexion. Several of the above described associations, but also of the non-existing links (e.g. no association between shying or heart rate and temperament) between behaviour patterns and scores for personality traits are rather surprising, warranting further investigation regarding the underlying causes of these relationships. Some of these behaviour patterns should be considered when redesigning the current guidelines for evaluation of personality traits during breeding horse performance tests, ultimately leading to improved genetic selection for equine personality traits. However, ethical implication of defining aversive behaviour such as head-tossing as an indicator of, for example, poor temperament, should not be neglected when devising new guidelines: such aversive behaviour may in fact be an indication of inadequate training techniques rather than poor horse personality.  相似文献   

6.
Central pattern generators and the control of rhythmic movements.   总被引:18,自引:0,他引:18  
E Marder  D Bucher 《Current biology : CB》2001,11(23):R986-R996
Central pattern generators are neuronal circuits that when activated can produce rhythmic motor patterns such as walking, breathing, flying, and swimming in the absence of sensory or descending inputs that carry specific timing information. General principles of the organization of these circuits and their control by higher brain centers have come from the study of smaller circuits found in invertebrates. Recent work on vertebrates highlights the importance of neuro-modulatory control pathways in enabling spinal cord and brain stem circuits to generate meaningful motor patterns. Because rhythmic motor patterns are easily quantified and studied, central pattern generators will provide important testing grounds for understanding the effects of numerous genetic mutations on behavior. Moreover, further understanding of the modulation of spinal cord circuitry used in rhythmic behaviors should facilitate the development of new treatments to enhance recovery after spinal cord damage.  相似文献   

7.
Development toward independence during the early years of baboon life is reflected in the infant's transition from riding on its mother to walking on its own during progressions from one location to another. This transition was studied during the first year of life in 55 infants from two differently sized troops living in Mikumi National Park, Tanzania. There was a nearly linear transition in the first year from almost 100% ventral riding to almost 100% walking. The amount of dorsal riding started near zero, reached a plateau lasting from about the 15th to the 26th wk of life, and then gradually declined to zero. Dorsal riding did not replace ventral; rather, dorsal riding increased in frequency until it occurred about as often as ventral riding. Prolonged ventral riding by infants of the smaller of the two troops may have been due to spacing differences or to greater nervousness among members of the smaller troop. There were no significant differences in riding or walking associated with the time of day or the infant's sex. The rate of transition from riding to walking was greatest from about the fifth to the seventh months, which may be especially significant time in the early development of independence.  相似文献   

8.
The Mongol horse stems from ancient stock, similar to the first horses ridden on the Central Asian grassland steppe. Mongol horses subsequently migrated with their human counterparts throughout Eurasia, as far to the east as Japan. During archery festivals in Japan, horses gallop along a narrow runway within a temple complex in the heavily populated city of Kyoto. In Mongolia, with the recent re‐emergence of the ancient practice, horse and rider still gallop across the expansive grassland steppe. The euphoria one feels in riding fast on horseback with the wind against one's face can be symbolised by the concept of khii mor’ in Mongolia, which is connected with the vitality between human and horse in the practice of horse archery. Through sensory ethnography, in combination with multi‐species ethnography, this article explores embodiment between horse and rider in two quite different socio‐ecological contexts.  相似文献   

9.
Although the compliant bipedal model could reproduce qualitative ground reaction force (GRF) of human walking, the model with a fixed pivot showed overestimations in stance leg rotation and the ratio of horizontal to vertical GRF. The human walking data showed a continuous forward progression of the center of pressure (CoP) during the stance phase and the suspension of the CoP near the forefoot before the onset of step transition. To better describe human gait dynamics with a minimal expense of model complexity, we proposed a compliant bipedal model with the accelerated pivot which associated the CoP excursion with the oscillatory behavior of the center of mass (CoM) with the existing simulation parameter and leg stiffness. Owing to the pivot acceleration defined to emulate human CoP profile, the arrival of the CoP at the limit of the stance foot over the single stance duration initiated the step-to-step transition. The proposed model showed an improved match of walking data. As the forward motion of CoM during single stance was partly accounted by forward pivot translation, the previously overestimated rotation of the stance leg was reduced and the corresponding horizontal GRF became closer to human data. The walking solutions of the model ranged over higher speed ranges (~1.7 m/s) than those of the fixed pivoted compliant bipedal model (~1.5 m/s) and exhibited other gait parameters, such as touchdown angle, step length and step frequency, comparable to the experimental observations. The good matches between the model and experimental GRF data imply that the continuous pivot acceleration associated with CoM oscillatory behavior could serve as a useful framework of bipedal model.  相似文献   

10.
The influence of hair color on the trace elemental status in horse's hair has been studied. A current analytical technique such as particle-induced X-ray emission (PIXE) used in this study has provided reliable, rapid, easy, and relatively inexpensive diagnostic methods. Twenty-eight elements (Al, Br, Ca, Cl, Co, Cu, Cr, Fe, Ga, Hg, K, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Se, Si, Sr, Ti, V, Y, and Zn) in mane hair were detected by the PIXE method. The gray hair contains significantly greter amounts of Cu, Ti, and Zn, and lower amounts of Br, Ca, Se, and Sr than those in other colored horse hairs (p<0.05). Those results measured in the horse's hair were similar to those found in human and dog hair. When interpreting a result, it should be kept in mind that hair color, especially gray hair, influences the concentrations of some elements in horse hair.  相似文献   

11.
Skimming flow was induced in a field flow-through flume with model and live horse mussels as roughness elements. A growth experiment was conducted in the flume with locally available seawater and natural seston. Horse mussel population growth was compared in turbulent isolated element (control) and skimming flow (treatment) and with regulated natural seston levels, indicated by C = bulk flow seston concentration, C1 = seston concentration in the benthic boundary layer, near the inhalant, which just meets the maintenance ration of the mussel population. We were able to control the bulk seston within the range: 1.2 to 5 times of C1 during the growth experiment. No significant difference between control and skimming flow treatments was found in: tissue growth, RNA-DNA ratios, or condition factor. Extrapolating from the experimental results we predict that under minimum growth enhancing seston concentrations at a high horse mussel density (71 m2), skimming flow does not reduce population growth.  相似文献   

12.
Accelerometry-based gait analysis is widely recognised as a promising tool in healthcare and clinical settings since it is unobtrusive, inexpensive and capable of providing insightful information on human gait characteristics. In order to expand the application of this technology in daily environments, it is desirable to develop reliable gait measures and their extraction methods from the acceleration signal that can differentiate between normal and atypical gait. Important examples of such measures are gait cycle and gait-induced acceleration magnitude, which are known to be closely related to each other depending on each individual's physical condition. In this study, we derive a model equation with two parameters which captures the essential relationships between gait cycle and gait acceleration based on experiments and physical modelling. We also introduce as a new gait parameter a set of indexes to evaluate the synchronisation behaviour of gait timing. The function and utility of the proposed parameters are examined in 11 healthy subjects during walking under various selected conditions.  相似文献   

13.
Breathing strategy of the adult horse (Equus caballus) at rest   总被引:1,自引:0,他引:1  
To investigate the mechanism underlying the polyphasic airflow pattern of the equine species, we recorded airflow, tidal volum, rib cage and abdominal motion, and the sequence of activation of the diaphragm, intercostal, and abdominal muscles during quiet breathing in nine adult horses standing at rest. In addition, esophageal, abdominal, and transdiaphragmatic pressures were simultaneously recorded using balloon-tipped catheters. Analysis of tidal flow-volume loops showed that, unlike humans, the horse at rest breathes around, rather than from, the relaxed volume of the respiratory system (Vrx). Analysis of the pattern of electromyographic activities and changes in generated pressures during the breathing cycle indicate that the first part of expiration is passive, as in humans, with deflation toward Vrx, but subsequent abdominal activity is responsible for a second phase of expiration: active deflation to below Vrx. From this end-expiratory volume, passive inflation occurs toward Vrx, followed by a second phase of inspiration: active inflation to above Vrx, brought about by inspiratory muscle contraction. Under these conditions the abdominal muscles appear to share the principal pumping duties with the diaphragm. Adoption of this breathing strategy by the horse may relate to its peculiar thoracoabdominal anatomic arrangement and to its very low passive chest wall compliance. We conclude that there is a passive and active phase to both inspiration and expiration due to the coordinated action of the respiratory pump muscles responsible for the resting adult horse's biphasic inspiratory and expiratory airflow pattern. This unique breathing pattern perhaps represents a strategy of minimizing the high elastic work of breathing in this species, at least at resting breathing frequencies.  相似文献   

14.
C. Nagel  J. Aurich 《Theriogenology》2010,73(7):973-595
Heart rate is an important parameter of fetal well-being. We have analyzed fetal heart rate (HR) and heart rate variability (HRV) by fetomaternal electrocardiography (ECG) in the horse (Equus caballus) from midpregnancy to foaling. It was the aim of the study to detect changes in the regulation of fetal cardiac activity over time and to establish normal values in undisturbed pregnancies. A total of 22 mares were available for the study. Fetomaternal electrocardiography was a reliable technique to detect cardiac signals in fetuses between Day 173 of gestation and foaling. Fetal HR decreased from 115 ± 4 beats/min (Days 170 to 240 of gestation) to 83 ± 3 beats/min (Day 320) to 79 ± 1 beats/min (1 d before foaling; P < 0.001). Mean beat to beat (RR) interval and standard deviation of the RR interval (SDRR) increased (P < 0.001). Gestational age thus affects RR interval and HR in the equine fetus. From Days 270 to 340 of gestation, SDRR increased from 11.4 ± 1.3 msec on Day 270 to 27.8 ± 3.6 msec on Day 340 (P < 0.05), and the root mean square of successive RR differences (RMSSD) tended to increase (P = 0.07), indicating maturation of the fetal autonomous nervous system. For the last 10 d before foaling, fetal HR and HRV remained constant and did not allow predicting the onset of parturition in the horse. Only during the last 30 min before the foal was born, in 4 of 5 fetuses, HR decreased and RR interval increased. Accelerations and decelerations in HR were detectable at all times, but neither their number nor duration changed over time.  相似文献   

15.
Lesion and stimulation experiments suggest that the suboesophageal ganglion (SOG) plays a special role in the control of insect behaviour: in bilateral coordination and by maintaining ongoing motor activity. Anatomical observations indicate that there are descending interneurones (DINs) originating in the SOG in addition to those from the brain. An SOG preparation for sampling both types of DIN intracellularly in walking locusts is described. Forty-three units showing activity changes during leg movements and walking were recorded. Using dye injection six were shown to be through-running axons; one was an SOG ascending interneurone; and eight were SOG DINs, 7 contralateral, one ipsilateral. All fired before or during movements and received various sensory inputs. Many gave complex responses to different modalities, several showing directional preferences. Some SOG neurones showed spontaneous changes in activity; activity outlasting movements; or responses to passive as well as active movements. These preliminary results suggest neuronal substrates for the special functions of the SOG in behaviour. They also indicate that DINs, rather than being simple relays, are part of a dynamic network which includes the motor centres. Regulation of complex and subtle aspects of behaviour may be achieved by dynamic and sequential patterns of activity in groups of DINs, some of which may be multifunctional.  相似文献   

16.
摘要 目的:观察手足温针灸联合步行阶梯训练对老年糖尿病周围神经病变(DPN)患者步态异常、血流动力学和感觉及运动神经传导的影响。方法:按照随机数字表法将上海市第六人民医院2020年3月~2022年1月期间收治的119例老年DPN患者分为对照组(n=59,步行阶梯训练)和研究组(n=60,手足温针灸联合步行阶梯训练)。对比两组疗效、步态异常、血流动力学、临床症状改善情况和感觉及运动神经传导变化情况。结果:研究组91.67%的临床总有效率高于对照组72.88%(P<0.05)。研究组干预后的密歇根糖尿病神经病变评分(MDNS)和多伦多临床评分系统(TCSS)评分低于对照组(P<0.05)。研究组干预后的腓总神经及胫神经的感觉神经传导速度(SNCV)、运动神经传导速度(MNCV)高于对照组(P<0.05)。研究组干预后的全血黏度、血浆比黏度、纤维蛋白原低于对照组(P<0.05)。研究组足底压力中心轨迹(COP)曲线异常、全足平衡性曲线异常、全足压力变化曲线异常例数少于对照组(P<0.05)。结论:手足温针灸联合步行阶梯训练可促进老年DPN患者步态异常、血流动力学和感觉及运动神经传导恢复,疗效较好。  相似文献   

17.
Cooperation between rider and horse is of major importance in equitation. A balanced team of horse and rider improves (sport) performances and welfare aspects by decreasing stress, frustration, risks of injuries, and accidents. Important features affecting the cooperation are the physical skills, knowledge, and personality of the rider on one hand and the temperament, experience, and physical abilities of the horse on the other. A study with 16 riders and 16 warm-blood riding horses tested the effect of personality of riders and temperament of horses on cooperation between riders and horses. More emotionally reactive horses showed more evasive behavior during riding. Riders preferred to ride those horses who were assessed by the riders as being attentive to the rider's aid. The frequency of evasive behaviors during riding--as assessed by riders, in contrast to the assessments made by an external judge--influenced the cooperation between rider and horse. On average, a rider's personality did not affect the cooperation between rider and horse; however, it is suggested that a rider's personality does affect the cooperation with more emotionally reactive horses.  相似文献   

18.
Developing efficient walking gaits for quadruped robots has intrigued investigators for years. Trot gait, as a fast locomotion gait, has been widely used in robot control. This paper follows the idea of the six determinants of gait and designs a trot gait for a parallel-leg quadruped robot, Baby Elephant. The walking period and step length are set as constants to maintain a relatively fast speed while changing different foot trajectories to test walking quality. Experiments show that kicking leg back improves body stability. Then, a steady and smooth trot gait is designed. Furthermore, inspired by Central Pattern Generators (CPG), a series CPG model is proposed to achieve robust and dynamic trot gait. It is generally believed that CPG is capable of producing rhythmic movements, such as swimming, walking, and flying, even when isolated from brain and sensory inputs. The proposed CPG model, inspired by the series concept, can automatically learn the previous well-designed trot gait and reproduce it, and has the ability to change its walking frequency online as well. Experiments are done in real world to verify this method.  相似文献   

19.
Based on cortisol release, a variety of situations to which domestic horses are exposed have been classified as stressors but studies on the stress during equestrian training are limited. In the present study, Warmblood stallions (n = 9) and mares (n = 7) were followed through a 9 respective 12-week initial training program in order to determine potentially stressful training steps. Salivary cortisol concentrations, beat-to-beat (RR) interval and heart rate variability (HRV) were determined. The HRV variables standard deviation of the RR interval (SDRR), RMSSD (root mean square of successive RR differences) and the geometric means standard deviation 1 (SD1) and 2 (SD2) were calculated. Nearly each training unit was associated with an increase in salivary cortisol concentrations (p < 0.01). Cortisol release varied between training units and occasionally was more pronounced in mares than in stallions (p < 0.05). The RR interval decreased slightly in response to lunging before mounting of the rider. A pronounced decrease occurred when the rider was mounting, but before the horse showed physical activity (p < 0.001). The HRV variables SDRR, RMSSD and SD1 decreased in response to training and lowest values were reached during mounting of a rider (p < 0.001). Thereafter RR interval and HRV variables increased again. In contrast, SD2 increased with the beginning of lunging (p < 0.05) and no changes in response to mounting were detectable. In conclusion, initial training is a stressor for horses. The most pronounced reaction occurred in response to mounting by a rider, a situation resembling a potentially lethal threat under natural conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号