首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ethanol production process of a Swedish alcohol production plant was dominated by Dekkera bruxellensis and Lactobacillus vini, with a high number of lactic acid bacteria. The product quality, process productivity, and stability were high; thus, D. bruxellensis and L. vini can be regarded as commercial ethanol production organisms.  相似文献   

2.
Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields and titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. This suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum.  相似文献   

3.
A key challenge to the commercial production of commodity chemical and fuels is the toxicity of such molecules to the microbial host. While a number of studies have attempted to engineer improved tolerance for such compounds, the majority of these studies have been performed in wild-type strains and culturing conditions that differ considerably from production conditions. Here we applied the multiscalar analysis of library enrichments (SCALEs) method and performed a growth selection in an ethanol production system to quantitatively map in parallel all genes in the genome onto ethanol tolerance and production. In order to perform the selection in an ethanol-producing system, we used a previously engineered Escherichia coli ethanol production strain (LW06; ATCC BAA-2466) (Woodruff et al., in press), as the host strain for the multiscalar genomic library analysis (>106 clones for each library of 1, 2, or 4 kb overlapping genomic fragments). By testing individually selected clones, we confirmed that growth selections enriched for clones with both improved ethanol tolerance and production phenotypes. We performed combinatorial testing of the top genes identified (uspC, otsA, otsB) to investigate their ability to confer improved ethanol tolerance or ethanol production. We determined that overexpression of otsA was required for improved tolerance and productivity phenotypes, with the best performing strains showing up to 75% improvement relative to the parent production strain.  相似文献   

4.
Zymomonas mobilis is a potential candidate for fuel ethanol production because of its high ethanol productivity. A key enzyme in ethanol production is alcohol dehydrogenase (ADH). Z. mobilis possesses two isozymes, ZADH-1 and ZADH-2. To clarify their physiological roles, mutants with modified ADH were isolated by selection based on resistance to allyl alcohol. From the physiological characteristics of a ZADH-2-negative mutant, it is suggested that ZADH-1 functions as the major ADH, while ZADH-2 could become functional in the latter stages of fermentation.  相似文献   

5.
Considered to be the cleanest liquid fuel, bio-ethanol can be a reliable alternative to fossil fuels. It is produced by fermentation of sugar components of plant materials. The common onions are considered to be a favorable source of fermentation products as they have high sugar contents as well as contain various nutrients. This study focused on the effective production of ethanol from Green onion (Allium fistulosum L.) by the yeast “Saccharomyces cerevisiae” in repeated batch. The results showed that the total sugar concentration of onion juice was 68.4 g/l. The maximum rate of productivity, ethanol yield and final bio-ethanol percentage was 7 g/l/h (g ethanol per liter of onion juice per hour), 35 g/l (g ethanol per liter of onion juice) and 90 %, respectively.  相似文献   

6.
Repeated-batch fermentation by a flocculating fusant, Saccharomyces cerevisiae HA 2, was done in a molasses medium that contained 20% (w/v) total sugar, at 30°C in an automatically controlled fermentor, and the effects of ethanol concentration on the specific growth rate and the specific production rate of ethanol were studied. Both the specific growth rate and the specific production rate of ethanol fell with increase of ethanol concentration, and there was a linear correlation between each rate and the concentration of thanol. The maximum specific growth rate (μmax) and the maximum specific production rate of ethanol (qmax) were 0.12 h−1 and 0.1 g ethanol/109 cells·h, respectively. The specific growth rate and the specific production rate of ethanol fell to zero at ethanol concentration of 89 g/l and 95 g/l, respectively. The number of viable cells, calculated from the linear inhibition equation, was 1.3 × 109 cells/ml for production of 85 g/l ethanol at a dilution rate (D1) of 0.2 h−1. Based on this estimation, a laboratory-scale continuous fermentation, using two fermentors in series, was done. In the second fermentor, 85 g/l ethanol was produced at a dilution rate (D1) of 0.2 h−1 by the active feedig of the fermented mash from the first fermentor into the second fermentor by pumping (hereafter called active feeding). To maintain the number of viable cells above 109 cells/ml in the second fermentor, a active feeding ratio of more than 23% was required. Under these conditions, 81 g/l ethanol was produced in the second fermentor at a dilution rate (Dt) of 0.25 h−1, and the high ethanol productivity of 20.3 g/l·h could be achieved. A bench-scale continuous fermentation, using two fermentors in series, with a active feeding ratio of 25% was done. An ethanol concentration of 84 g/l in the second fermentor at a dilution rate (Dt) of 0.25 h−1 was achieved, just as it was in the laboratory-scale fermentation test.  相似文献   

7.
The average ethanol content in sake is 14 wt%; continuous production of such a high ethanol content was found not to be stably maintained in a packed-bed bioreactor with immobilized yeast cells, used normally for production of an ethanol content of up to 10 wt%. However, use of repeated-batch ethanol fermentation incorporating a membrane filter for product separation enabled a high ethanol content and improved productivity to be achieved. In this bioreactor, the yeast cells were retained within the bioreactor and a high yeast concentration was possible. A filtrate containing 14 wt% ethanol was obtained steadily after each batchwise operation. At a yeast concentration of 110 g/l, an ethanol productivity of 3.5 g/l/h was attained, which is 9 times higher than that in conventional batch fermentation. A mathematical model is proposed for assessment of the repeated-batch fermentation process. The estimated results agreed well with the observed ones. With a view to the application of this system to sake production, the aroma components of the filtrate were assayed and compared with those of a commercial-grade sake.  相似文献   

8.
To produce ethanol more economically than in a conventional process, it is necessary to attain high productivity and low production cost. To this end, a continuous ethanol production from sago starch using immobilized amylogucosidase (AMG) and Zymomonas mobilis cells was studied. Chitin was used for immobilization of AMG and Z. mobilis cells were immobilized in the form of sodium alginate beads. Ethanol was produced continuously in an simultaneous saccharification and ethanol fermentation (SSF) mode in a pacekd bed reactor. The maximum ethanol productivity based on the void volume, Vv, was 37 g/l/h with ethanol yield, Yp/s, 0.43 g/g (84% of the theoretical ethanol yield) in this system. The steady-state concentration of ethanol (46 g/l could be maintained in a stable manner over two weeks at the dilution rate of 0.46 h.  相似文献   

9.
Microbial production of ethanol might be a potential route to replace oil and chemical feedstocks. Bioethanol is by far the most common biofuel in use worldwide. Lignocellulosic biomass is the most promising renewable resource for fuel bioethanol production. Bioconversion of lignocellulosics to ethanol consists of four major unit operations: pretreatment, hydrolysis, fermentation, and product separation/distillation. Conventional bioethanol processes for lignocellulosics apply commercial fungal cellulase enzymes for biomass hydrolysis, followed by yeast fermentation of resulting glucose to ethanol. The fungus Neurospora crassa has been used extensively for genetic, biochemical, and molecular studies as a model organism. However, the strain's potential in biotechnological applications has not been widely investigated and discussed. The fungus N. crassa has the ability to synthesize and secrete all three enzyme types involved in cellulose hydrolysis as well as various enzymes for hemicellulose degradation. In addition, N. crassa has been reported to convert to ethanol hexose and pentose sugars, cellulose polymers, and agro-industrial residues. The combination of these characteristics makes N. crassa a promising alternative candidate for biotechnological production of ethanol from renewable resources. This review consists of an overview of the ethanol process from lignocellulosic biomass, followed by cellulases and hemicellulases production, ethanol fermentations of sugars and lignocellulosics, and industrial application potential of N. crassa.  相似文献   

10.
Using the recombinant flocculating Angel yeast F6, long-term repeated batch fermentation for ethanol production was performed and a high volumetric productivity resulted from half cells not washed and the optimum opportunity of residual glucose 20 g l−1 of last medium. The obtained highest productivity was 2.07 g l−1 h−1, which was improved by 75.4% compared with that of 1.18 g l−1 h−1 in the first batch fermentation. The ethanol concentration reached 8.4% corresponding to the yield of 0.46 g g−1. These results will contribute greatly to the industrial production of fuel ethanol using the commercial method with the flocculating yeast.  相似文献   

11.
Sun ZY  Tang YQ  Iwanaga T  Sho T  Kida K 《Bioresource technology》2011,102(23):10929-10935
An efficient process for the production of fuel ethanol from bamboo that consisted of hydrolysis with concentrated sulfuric acid, removal of color compounds, separation of acid and sugar, hydrolysis of oligosaccharides and subsequent continuous ethanol fermentation was developed. The highest sugar recovery efficiency was 81.6% when concentrated sulfuric acid hydrolysis was carried out under the optimum conditions. Continuous separation of acid from the saccharified liquid after removal of color compounds with activated carbon was conducted using an improved simulated moving bed (ISMB) system, and 98.4% of sugar and 90.5% of acid were recovered. After oligosaccharide hydrolysis and pH adjustment, the unsterilized saccharified liquid was subjected to continuous ethanol fermentation using Saccharomycescerevisiae strain KF-7. The ethanol concentration, the fermentation yield based on glucose and the ethanol productivity were approximately 27.2 g/l, 92.0% and 8.2 g/l/h, respectively. These results suggest that the process is effective for production of fuel ethanol from bamboo.  相似文献   

12.
Continuous ethanol production in a one-stage continuous stirred tank fermentor without recycle was carried out using a yeast strain Saccharomyces cerevisiae. Different dilution rates were used. Cell and ethanol concentrations in the culture medium decreased with increasing dilution rates, and the maximum value of 3.0 g l−1h−1was found at a dilution rate of 0.340 h−1. Specific ethanol productivities increased as dilution rates were increased, and the highest value appeared at about the same dilution rate as that for the maximum fermentor productivity. A material balance equation, which relates total amount of spent medium to cell synsthesis, ethanol production, and overall maintenance, was introduced. The cellular yield and overall maintenance coefficients increased with increasing dilution rates. The fraction of limiting substrate utilized for overall maintenance, which includes the limiting substrate spent for purposes other than cell synthesis and ethanol production, decreased with increasing dilution rates. The non-product associated substrate utilization can be minimized if correct dilution rate is chosen.  相似文献   

13.
Ethanol production from Jerusalem artichoke tubers through a consolidated bioprocessing (CBP) strategy using the inulinase-producing yeast Kluyveromyces marxianus is an economical and competitive than that from a grainbased feedstock. However, poor inulinase production under ethanol fermentation conditions significantly prolongs the fermentation time and compromises ethanol productivity. Improvement of inulinase activity appears to be promising for increasing ethanol production from Jerusalem artichoke tubers by CBP. In the present study, expression of the inulinase gene INU with its own promoter in K. marxianus (K/INU2) was explored using the integrative cassette. Overexpression of INU was explored using chromosome integration via the HO locus of the yeast. Inulinase activity and ethanol were determined from inulin and Jerusalem artichoke tubers under fed-batch operation. Inulinase activity was 114.9 U/mL under aerobic conditions for K/INU2, compared with 52.3 U/mL produced by the wild type strain. Importantly, inulinase production was enhanced in K/INU2 under ethanol fermentation conditions. When using 230 g/L inulin and 220 g/L Jerusalem artichoke tubers as substrates, inulinase activities of 3.7 and 6.8 U/mL, respectively, were measured using K/INU2, comparing favorably with 2.4 and 3.1 U/mL, respectively, using the wide type strain. Ethanol concentration and productivity for inulin were improved by the recombinant yeast to 96.2 g/L and 1.34 g/L/h, respectively, vs 93.7 g/L and 1.12 g/L/h, respectively, by the wild type strain. Ethanol concentration and productivity improvements for Jerusalem artichoke tubers were 69 g/L and 1.44 g/L/h, respectively, from the recombinant strain vs 62 g/L and 1.29 g/L/h, respectively, from the wild type strain.  相似文献   

14.
The co-production of xylitol and ethanol from agricultural straw has more economic advantages than the production of ethanol only. Saccharomyces cerevisiae, the most widely used ethanol-producing yeast, can be genetically engineered to ferment xylose to xylitol. In the present study, the effects of xylose-specificity, cofactor preference, and the gene copy number of xylose reductase (XR; encoding by XYL1 gene) on xylitol production of S. cerevisiae were investigated. The results showed that overexpression of XYL1 gene with a lower xylose-specificity and a higher NADPH preference favored the xylitol production. The copy number of XYL1 had a positive correlation with the XR activity but did not show a good correlation with the xylitol productivity. The overexpression of XYL1 from Candida tropicalis (CtXYL1) achieved a xylitol productivity of 0.83 g/L/h and a yield of 0.99 g/g-consumed xylose during batch fermentation with 43.5 g/L xylose and 17.0 g/L glucose. During simultaneous saccharification and fermentation (SSF) of pretreated corn stover, the strain overexpressing CtXYL1 produced 45.41 g/L xylitol and 50.19 g/L ethanol, suggesting its application potential for xylitol and ethanol co-production from straw feedstocks.  相似文献   

15.
Chemostat cultures and other continuous cultures, where the feed to the bioreactor was divided in pulses while maintaining the overall dilutions rate by the increased flow in the pulses, were studied by cultivations with Saccharomyces cerevisiae JG176 and by simulations with two computer models, Yeast model SG176 and Yeast model MC176. All three systems gave interesting response surfaces. Deviations from an ideal chemostat may have significant effects on volumetric productivity, which for production of the recombinant protein, proteinase A by Saccharomyces cerevisiae JG176 was positive, while the productivity of biomass and ethanol decreased. In simulations with both models pulsing caused lower production of biomass and ethanol. In simulations with one of the models the effects of pulsing on productivity of a protein were also negative, whereas simulations with the other model suggested clear positive effects of pulsing on a production of a protein though with a somewhat different response surface than with the experiments with Saccharomyces cerevisiae JG176.  相似文献   

16.
Direct ethanol production from raw starch was performed continuously using a combination of a reversibly soluble-autoprecipitating amylase (D-AS) in which Dabiase K-27 was immobilized covalently on an enteric coating polymer (hydroxypropyl methylcellulose acetate succinate, AS) as a carrier, and a flocculating yeast. Continuous production was carried out using a reactor equipped with a mixing vessel and a separation vessel. D-AS and the yeast were separated continuously from the product solution by self-sedimentation in the separation vessel and they were utilized repeatedly. In the continuous saccharification of raw starch by D-AS alone, the glucose productivity was about 3.6 g/l/h at a dilution rate (D) of 0.1 h−1. In the continuous ethanol production from raw starch by a combination of D-AS and flocculating yeast cells, high ethanol productivity up to 2.0 g/l/h was achieved at D=0.1 h−1. Although the enzymatic activity of D-AS is inactivated due to insolubilization of the enzyme by the accumulation of NaCl produced in controlling the pH in the reactor, it is possible to recover the D-AS enzymatic activity by removing the NaCl. This continuous fermentation system suggests a potential for effective ethanol production from raw starch, and it may be widely applicable in heterogeneous culture systems using solid substrates other than raw starch.  相似文献   

17.
Previous assessments of the economic feasibility and large-scale productivity of microalgae biofuels have not considered the impacts of land and carbon dioxide (CO2) availability on the scalability of microalgae-based biofuels production. To accurately assess the near-term productivity potential of large-scale microalgae biofuel in the USA, a geographically realized growth model was used to simulate microalgae lipid yields based on meteorological data. The resulting lipid productivity potential of Nannochloropsis under large-scale cultivation is combined with land and CO2 resource availability illustrating current geographically feasible production sites and corresponding productivity in the USA. Baseline results show that CO2 transport constraints will limit US microalgae-based bio-oil production to 4 % of the 2030 Department of Energy (DOE) alternative fuel goal. The discussion focuses on synthesis of this large-scale productivity potential results including a sensitivity analysis to land and CO2 resource assumptions, an evaluation of previous modeling efforts, and their assumptions regarding the transportation of CO2, the feasibility of microalgae to meet DOE 2030 alternative fuel goals, and a comparison of the productivity potential in several key regions of the USA.  相似文献   

18.
Gas fermentation using acetogenic bacteria such as Clostridium autoethanogenum offers an attractive route for production of fuel ethanol from industrial waste gases. Acetate reduction to acetaldehyde and further to ethanol via an aldehyde: ferredoxin oxidoreductase (AOR) and alcohol dehydrogenase has been postulated alongside the classic pathway of ethanol formation via a bi-functional aldehyde/alcohol dehydrogenase (AdhE). Here we demonstrate that AOR is critical to ethanol formation in acetogens and inactivation of AdhE led to consistently enhanced autotrophic ethanol production (up to 180%). Using ClosTron and allelic exchange mutagenesis, which was demonstrated for the first time in an acetogen, we generated single mutants as well as double mutants for both aor and adhE isoforms to confirm the role of each gene. The aor1+2 double knockout strain lost the ability to convert exogenous acetate, propionate and butyrate into the corresponding alcohols, further highlighting the role of these enzymes in catalyzing the thermodynamically unfavourable reduction of carboxylic acids into alcohols.  相似文献   

19.
In cellulosic ethanol production, pretreatment of a biomass to facilitate enzymatic hydrolysis inevitably yields fermentation inhibitors such as organic acids, furans, and phenols. With representative inhibitors included in the medium at various concentrations, individually or in various combinations, ethanol production by Corynebacterium glutamicum R under growth-arrested conditions was investigated. In the presence of various inhibitors, the 62 to 100% ethanol productivity retained by the C. glutamicum R-dependent method far exceeded that retained by previously reported methods.  相似文献   

20.
Papain was modified with the anhydrides of various monocarboxylic (acetic or propionic) and dicarboxylic (citraconic, maleic or succinic) acids. 7–10 of the 11 primary amino groups of the enzyme were modified. The organic solvent tolerances of the modified enzyme forms were increased (especially in the concentration range of 10–60%) in comparison with the unmodified enzyme. Acylation enhanced the catalytic activity and stability of papain both in buffer and in aqueous organic solvents (ethanol and acetonitrile). Decrease of the positive charges on the surface of papain resulted in a higher enzyme stability than when they were replaced by negative charges. The kinetic parameters revealed that in aqueous ethanol the maximum rates (Vmax) and Michaelis constants (KM) of the modified papain forms were increased, and higher catalytic efficiencies (kcat/KM) were detected as compared with the native enzyme. The results of near-UV circular dichroism and tryptophan fluorescence spectroscopic studies suggested that the modifications caused only local changes around the aromatic residues. The modified enzyme forms led to higher N-acetyl-l-tyrosine ethyl ester synthesis conversions in aqueous ethanol; acetyl and propionyl papain furnishing the highest productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号