首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rhizobial symbiosis provides the nitrogen for the leguminous plant through fixation of the gaseous nitrogen component of air. For the bacteria in the plant root-hair wall, carboxymethylcellulase (CM-cellulase, EC 3.2.1.4) may be the key enzyme in this symbiotic process, with polygalacturonase (pectinase, EC 3.2.1.15) another critical enzyme involved early in the mechanism of nitrogen supply. The precise cytosolic location, function and expression of CM-cellulase are still uncertain, however. To detect the relevant enzyme activity in Sinorhizobium fredii CCRC15769, various assay methods were used including double-layer plate assay and quantitation of reducing sugar products. After sonication of the cell pellet, ammonium sulphate precipitation, gel filtration, and ion-exchange chromatography are the preferred methods for derivation of the purified protein, with CM-cellulase characterized as follows: purification ratio, 33.35; recovery, 10.8%; and specific activity, 0.053 U mg–1. The endoglucanase in the purified samples was resolved using native and sodium dodecyl sulphate-polyacrylamide-gel electrophoresis; it was then assayed with an ultrathin CM-cellulose overlay stained with Congo Red. Two CM-cellulase isozymes were determined by native activity stain assay, with gel-filtration revealing molecular weights of approximately 196 and 30 kD; the SDS-PAGE activity gel resolved four enzyme subunits of 94, 67, 37, and 30 kD. It is suggested that the CM-cellulase in S.fredii CCRC15769 is a two-isozyme form, one a trimer of 196 kD (94, 67 and 37 kD), and the other a 30 kD monomer.  相似文献   

3.
We report here the isolation of a methionine and cobalamin mutant strain (SVQ336) of Sinorhizobium fredii HH103 obtained by Tn5-lacZ mutagenesis. Sequence analysis showed that the transposon was inserted into a gene homologous to cobO. This gene codes for a cobalamin adenosyltransferase which is involved in the biosynthesis of vitamin B12. Another HH103 cobO mutant (strain SVQ524), was constructed by the insertion of Ω interposon. Both cobO mutants required the addition of methionine because cobalamin acts as a cofactor of the enzyme MetH, which catalyses the last step of the methionine biosynthesis. Mutant SVQ524 failed to nodulate on Vigna radiate but was able to nodulate on Glycine max cvs. Williams and Peking and Cajanus cajan, although the total number of nodules formed was highly reduced in comparison with that of plants inoculated with the wild-type strain HH103. The roots of these plants did not seem to secrete enough cobalamin and/or methionine to support growth of cobalamin/methionine auxotrophs in the rhizosphere. In all cases, the phenotype of SVQ524 was nearly overcome by the addition of methionine or cobalamin to the plant growth media or by the presence of a copy of the cobO gene in cosmid pMUS756. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
李友国  周俊初 《遗传学报》2002,29(2):181-188
以pTR102为载体构建重组质粒pHN307,其上克隆有来自昔蓿中华根瘤菌(Sinorthizobium meliloti)的四碳二羧酸转移酶基因dctABD、来自肺炎克氏杆菌(Klebsiella pneumoniae)的nifA基因和来自pDB30所含的发光酶基因lux-AB。经三亲本接合转移,将pHN307导入费氏中华根瘤菌(S.fredii)NH01、YC4和GR3,并考察了转移接合子中pHN307在传代培养和共生条件下的稳定性。与出发菌相比较的植物盆栽试验结果表明,在与大豆黑农33共生时,导入pHN307后的转移接合子均可显著提高结瘤植株的瘤重、地上部分干重和地上部分总氮量。在与大豆川早一号共生时,转移接合子HN01(pHN307)可显著提高结瘤植株的瘤数和瘤重;GR3(pHN307)可显著提高结瘤植株的瘤数、瘤重、地上部分干重和地上部分总氮量;导入pHN307的YC4却呈现出负作用。本研究表明,导入dctABD可提高固氮效率  相似文献   

5.
Two DNA fragments, a 730-bp and a 900-bp fragment, one homologous to host cultivar specificity genes nolBT of Sinorhizobium fredii and the other one homologous to RSalpha, an insertion-like sequence present in Bradyrhizobium japonicum, were generated by polymerase chain reaction (PCR) with two pairs of primers. The amount of each fragment generated by the multiplex PCR was proportional to the amount of template DNA present. The amplification of the 900-bp RSalpha fragment was more sensitive, since it was amplified from a smaller amount of template DNA than the 730-bp nolBT fragment. By running the multiplex reaction in the presence of template DNA isolated from different sources, we confirmed that the reaction can discriminate between S. fredii, Bradyrhizobium japonicum and Sinorhizobium xinjiangensis.  相似文献   

6.
Leguminous trees play an important role in agroforestry in Ethiopia, but studies of their rhizobial symbionts are scarce. In earlier studies, we surveyed natural nodulation of native leguminous trees growing in different agro-ecological zones in Southern Ethiopia, isolated 400 rhizobia, and characterized them based on different phenotypic and genotypic methods. In the present study we characterized 18 strains belonging to the genus Mesorhizobium, isolated from nodules of Acacia abyssinica, A. senegal, A. tortilis and Sesbania sesban. Phylogenetic analysis of nearly full-length 16S rRNA gene grouped the test strains into three distinct clades separated from all currently recognized Mesorhizobium species. Three divergent strains formed separate branches while the other 15 strains formed three distinct groups, genospecies I-III. Grouping of the isolates under study based on the house-keeping genes recA, gyrB, rpoB and gltA were consistent and in agreement with that of 16S rRNA. Similarly phylogenetic relationships based on the symbiosis-related genes nodC, nodA and nifH were generally similar to those shown by the core genes, suggesting that these Acacia and Sesbania symbionts have a long history of separate evolution within Mesorhizobium. Cross inoculation experiments demonstrated a large variation in the ability of the test strains to elicit effective nodules. The Sesbania isolates, occupying a distinct clade in the nodC phylogenetic tree, formed effective nodules only with this host legume. The study strongly suggests that this collection of Mesorhizobium strains comprises several new species, and also indicates the role of the symbiotic genes in determining the host range of these bacteria.  相似文献   

7.
Summary R-prime plasmids were formed between the plasmid of Rhizobium fredii strain USDA191 containing nodulation and nitrogen-fixation genes, pRjaUSDA191c, and pRL180, and RP1 derivative. R. fredii USDA191 contains four HindIII fragments that hybridize with an 8.7 kb EcoRI fragment that contains nodulation genes from R. meliloti. These four fragments are on pRjaUSDA191c and are 15.5 kb, 12.5 kb, 6.8 kb, and 5.2 kb in size. A series of R-primes generated in E. coli of pRjaUSDA191c were transferred into a Nod- Nif- derivative of strain USDA191 to determine which nodulation region is necessary for nodule formation. Transconjugants containing the 12.5 kb and the 6.8 kb HindIII fragments on segments of pRjaUSDA191c produced nodules on soybean plants. However, transconjugants containing the 12.5 kb HindIII fragment alone were unable to form nodules, suggesting that the 6.8 kb HindIII fragment or the 6.8 kb and the 12.5 kb HindIII fragments together were needed for nodule formation. The 6.8 kb HindIII fragment was subcloned into the vector pVK102 and transferred into transconjugants containing no sequences homologous to R. meliloti nodulation DNA or to transconjugants containing only the 12.5 kb HindIII fragment. Nodules were formed on soybeans only when both the 12.5 kb and the 6.8 kb HindIII fragments were present in R. frediistrain USDA191.  相似文献   

8.
The addition of xanthan to high water retention capacity peat (HWRC) inoculants did not show differences on the survival of Bradyrhizobium japonicum E109. In low water retention capacity peats (LWRC) however, xanthan increased the survival of B.japonicum significantly. Xanthan showed the best effect at 0.1 g/l for B. japonicum, in contrast to Sinorhizobium fredii USDA205 where the concentrations evaluated (0–1.0 g/l) did not affected significantly its survival. Nevertheless, when the symbiotic performance on soybean was evaluated, the presence of 0.1 g xanthan/l increased the nodule number for both strains.  相似文献   

9.

Background

Amycolatopsis orientalis is the type species of the genus and its industrial strain HCCB10007, derived from ATCC 43491, has been used for large-scale production of the vital antibiotic vancomycin. However, to date, neither the complete genomic sequence of this species nor a systemic characterization of the vancomycin biosynthesis cluster (vcm) has been reported. With only the whole genome sequence of Amycolatopsis mediterranei available, additional complete genomes of other species may facilitate intra-generic comparative analysis of the genus.

Results

The complete genome of A. orientalis HCCB10007 comprises an 8,948,591-bp circular chromosome and a 33,499-bp dissociated plasmid. In total, 8,121 protein-coding sequences were predicted, and the species-specific genomic features of A. orientalis were analyzed in comparison with that of A. mediterranei. The common characteristics of Amycolatopsis genomes were revealed via intra- and inter-generic comparative genomic analyses within the domain of actinomycetes, and led directly to the development of sequence-based Amycolatopsis molecular chemotaxonomic characteristics (MCCs). The chromosomal core/quasi-core and non-core configurations of the A. orientalis and the A. mediterranei genome were analyzed reciprocally, with respect to further understanding both the discriminable criteria and the evolutionary implementation. In addition, 26 gene clusters related to secondary metabolism, including the 64-kb vcm cluster, were identified in the genome. Employing a customized PCR-targeting-based mutagenesis system along with the biochemical identification of vancomycin variants produced by the mutants, we were able to experimentally characterize a halogenase, a methyltransferase and two glycosyltransferases encoded in the vcm cluster. The broad substrate spectra characteristics of these modification enzymes were inferred.

Conclusions

This study not only extended the genetic knowledge of the genus Amycolatopsis and the biochemical knowledge of vcm-related post-assembly tailoring enzymes, but also developed methodology useful for in vivo studies in A. orientalis, which has been widely considered as a barrier in this field.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-363) contains supplementary material, which is available to authorized users.  相似文献   

10.
Ensifer (Sinorhizobium) medicae is an effective nitrogen fixing microsymbiont of a diverse range of annual Medicago (medic) species. Strain WSM419 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from a M. murex root nodule collected in Sardinia, Italy in 1981. WSM419 was manufactured commercially in Australia as an inoculant for annual medics during 1985 to 1993 due to its nitrogen fixation, saprophytic competence and acid tolerance properties. Here we describe the basic features of this organism, together with the complete genome sequence, and annotation. This is the first report of a complete genome sequence for a microsymbiont of the group of annual medic species adapted to acid soils. We reveal that its genome size is 6,817,576 bp encoding 6,518 protein-coding genes and 81 RNA only encoding genes. The genome contains a chromosome of size 3,781,904 bp and 3 plasmids of size 1,570,951 bp, 1,245,408 bp and 219,313 bp. The smallest plasmid is a feature unique to this medic microsymbiont.  相似文献   

11.
Pseudomonas sp. VLB120 was isolated in Stuttgart, Germany, as a styrene degrading organism. The complete genome sequence includes genomic information of solvent tolerance mechanisms, metabolic pathways for various organic compounds, and the megaplasmid pSTY.  相似文献   

12.

Background

Aspergillus nomius is an opportunistic pathogen and one of the three most important producers of aflatoxins in section Flavi. This fungus has been reported to contaminate agricultural commodities, but it has also been sampled in non-agricultural areas so the host range is not well known. Having a similar mycotoxin profile as A. parasiticus, isolates of A. nomius are capable of secreting B- and G- aflatoxins.

Results

In this study we discovered that the A. nomius type strain (NRRL 13137) has a genome size of approximately 36 Mb which is comparable to other Aspergilli whose genomes have been sequenced. Its genome encompasses 11,918 predicted genes, 72 % of which were assigned GO terms using BLAST2GO. More than 1,200 of those predicted genes were identified as unique to A. nomius, and the most significantly enriched GO category among the unique genes was oxidoreducatase activity. Phylogenomic inference shows NRRL 13137 as ancestral to the other aflatoxigenic species examined from section Flavi. This strain contains a single mating-type idiomorph designated as MAT1-1.

Conclusions

This study provides a preliminary analysis of the A. nomius genome. Given the recently discovered potential for A. nomius to undergo sexual recombination, and based on our findings, this genome sequence provides an additional evolutionary reference point for studying the genetics and biology of aflatoxin production.  相似文献   

13.
Bacterial strains from Zn-Pb mine tailings were isolated by trapping with Anthyllis vulneraria, a legume-host suitable for mine substratum phytostabilisation. Sequence analysis of the 16S rRNA gene and three housekeeping genes (atpD, dnaK and recA) showed that they were related to those of the genus Aminobacter. DNA-DNA relatedness of representative isolates supported the placement of novel strains in Aminobacter as a new species. Phenotypic data emphasize their differentiation from the other related species of Aminobacter and Mesorhizobium. Aminobacter isolates exhibited nodA sequences tightly related with M. loti as the closest nodA relative. By contrast, their nodA sequences were highly divergent from those of M. metallidurans, another species associated with A. vulneraria that carries two complete copies of nodA. Therefore, the novel bacterial strains efficient on A. vulneraria represented the first occurrence of legume symbionts in the genus Aminobacter. They represent a new species for which the name Aminobacter anthyllidis sp. nov. is proposed (type strain STM4645(T)=LMG26462(T)=CFBP7437(T)).  相似文献   

14.
The Streptococcus bovis/equinus complex is a heterogeneous group within the group D streptococci with important clinical relevance regarding infective endocarditis, sepsis and colon carcinoma. The taxonomic identification of species and sub-species of this complex, by the standard methods remains difficult.In the present study, we compared the cluster analysis of 88 strains of species of the S. bovis/equinus complex by sequence analysis of the manganese-dependent superoxide dismutase gene (sodA) and by Matrix Assisted Laser Desorption/Ionization-Time Of Flight Mass Spectrometry (MALDI-TOF MS). We observed a high congruence of strain grouping by MALDI-TOF MS in comparison with sodA sequence analyses, demonstrating the accuracy and reliability of MALDI-TOF MS in comparison to DNA sequence-based method.By generating mass spectra for each species and sub-species, we were able to discriminate all members of the S. bovis/equinus complex. Furthermore, we demonstrated reliable identifications to the species level by MALDI-TOF MS, independently of cultivation conditions.  相似文献   

15.
Vibrio harveyi and related bacteria are important pathogens responsible for severe economic losses in the aquaculture industry worldwide. Phenotypic tests and 16S rRNA gene analysis fail to discriminate species within the V. harveyi group because these are phenotypically and genetically nearly identical. This study used multilocus sequence analysis to identify 36 V. harveyi-like isolates obtained from a wide range of sources in Australia and to re-evaluate the identity of important pathogens. Phylogenies inferred from the 16S rRNA gene and five concatenated protein-coding genes (rpoA-pyrH-topA-ftsZ-mreB) revealed four well-supported clusters identified as V. harveyi, V. campbellii, V. rotiferianus and V. owensii. Results revealed that important V. campbellii and V. owensii prawn pathogens were previously misidentified as V. harveyi and also that the recently described V. communis sp. nov. is likely a junior synonym of V. owensii. Although the MLSA topologies corroborated the 16S rRNA gene phylogeny, the latter was less informative than each of the protein-coding genes taken singularly or the concatenated dataset. A two-locus phylogeny based on topA-mreB concatenated sequences was consistent with the five-locus MLSA phylogeny. Global Bayesian phylogenies inferred from topA-mreB suggested that this gene combination provides a practical yet still accurate approach for routine identification of V. harveyi-related species.  相似文献   

16.
大豆快生根瘤菌SMH12效应蛋白NopP在共生固氮过程中的功能   总被引:1,自引:0,他引:1  
孙轶芳  赵鹏  刘元  李友国 《微生物学报》2020,60(10):2172-2183
【目的】研究Sinorhizobium fredii SMH12中的nopP在共生固氮过程中的功能,为深入解析根瘤菌效应蛋白的菌植互作机理提供线索,进而为大豆高效根瘤菌的遗传改良提供一定的科学依据。【方法】利用生物信息学分析nopP的结构特征,构建nopP缺失、过表达和互补菌株,并对其进行共生表型分析;通过qRT-PCR分析nopP在共生过程中的时空表达特征,测定在接野生型和突变体的冀豆17中NIN、ENOD40、PR1、PR2和PR5的表达量;采用激光共聚焦显微镜观察NopP的亚细胞定位。【结果】根瘤菌的NopP不包含任何已知功能域,与病原体的任何Avr效应物没有同源性。nopP缺失之后对冀豆17和中黄13的根瘤固氮酶活均有显著影响,在瘤数上对冀豆17有显著增加,表明nopP突变后促进其与冀豆17和中黄13的共生固氮。qRT-PCR显示,nopP在自生条件下少量表达,在共生条件下表达量显著升高,尤其在接菌2 d后表达量达到最高,显示该基因可能与根瘤菌早期侵染相关。此外,发现NopP在烟草叶片和大豆根中均定位于细胞膜和细胞核。接种突变体的冀豆17根中NIN的表达量升高1.2倍,PR5的表达量降低3.6倍。【结论】效应蛋白NopP在与大豆共生过程中,参与根瘤菌的早期侵染以及在根瘤菌与豆科宿主植物之间的免疫防御反应中发挥重要功能。  相似文献   

17.
Nitrogen fixing rhizobia associated with the Medicago L. genus belong to two closely related species Sinorhizobium medicae and S. meliloti. To investigate the symbiotic requirements of different Medicago species for the two microsymbionts, 39 bacterial isolates from nodules of eleven Medicago species growing in their natural habitats in the Mediterranean basin plus six historical Australian commercial inocula were symbiotically characterized with Medicago hosts. The bacterial species allocation was first assigned on the basis of symbiotic proficiency with M. polymorpha. PCR primers specific for 16S rDNA were then designed to distinguish S. medicae and S. meliloti. PCR amplification results confirmed the species allocation acquired in the glasshouse. PCR fingerprints generated from ERIC, BOXA1R and nif-directed RPO1 primers revealed that the Mediterranean strains were genetically heterogenous. Moreover PCR fingerprints with ERIC and BOX primers showed that these repetitive DNA elements were specifically distributed and conserved in S. meliloti and S. medicae, clustering the strains into two divergent groups according to their species. Linking the Sinorhizobium species with the plant species of origin we have found that S. medicae was mostly associated with medics well adapted to moderately acid soils such as M. polymorpha, M. arabica and M. murex whereas S. meliloti was predominantly isolated from plants naturally growing on alkaline or neutral pH soils such as M. littoralis and M. tornata. Moreover in glasshouse experiments the S. medicae strains were able to induce well-developed nodules on M. murex whilst S. meliloti was not infective on this species. This feature provides a very distinguishing characteristic for S. medicae. Results from the symbiotic, genotypic and cultural characterization suggest that S. meliloti and S. medicae have adapted to different Medicago species according to the niches these medics usually occupy in their natural habitats.  相似文献   

18.
Ensifer arboris LMG 14919T is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of several species of legume trees. LMG 14919T was isolated in 1987 from a nodule recovered from the roots of the tree Prosopis chilensis growing in Kosti, Sudan. LMG 14919T is highly effective at fixing nitrogen with P. chilensis (Chilean mesquite) and Acacia senegal (gum Arabic tree or gum acacia). LMG 14919T does not nodulate the tree Leucena leucocephala, nor the herbaceous species Macroptilium atropurpureum, Trifolium pratense, Medicago sativa, Lotus corniculatus and Galega orientalis. Here we describe the features of E. arboris LMG 14919T, together with genome sequence information and its annotation. The 6,850,303 bp high-quality-draft genome is arranged into 7 scaffolds of 12 contigs containing 6,461 protein-coding genes and 84 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.  相似文献   

19.
Hispaniola Island was the first stopover in the travels of Columbus between America and Spain, and played a crucial role in the exchange of Phaseolus vulgaris seeds and their endosymbionts. The analysis of recA and atpD genes from strains nodulating this legume in coastal and inner regions of Hispaniola Island showed that they were almost identical to those of the American strains CIAT 652, Ch24-10 and CNPAF512, which were initially named as Rhizobium etli and have been recently reclassified into Rhizobium phaseoli after the analysis of their genomes. Therefore, the species R. phaseoli is more abundant in America than previously thought, and since the proposal of the American origin of R. etli was based on the analysis of several strains that are currently known to be R. phaseoli, it can be concluded that both species have an American origin coevolving with their host in its distribution centres. The analysis of the symbiovar phaseoli nodC gene alleles carried by different species isolated in American and European countries suggested a Mesoamerican origin of the α allele and an Andean origin of the γ allele, which is supported by the dominance of this latter allele in Europe where mostly Andean cultivars of common beans have been traditionally cultivated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号