首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pre-natal stress (PNS) or undernutrition can have numerous effects on an individual''s biology throughout their lifetime. Some of these effects may be adaptive by allowing individuals to tailor their phenotype to environmental conditions. Here we investigated, in the domestic pig Sus scrofa, whether one possible consequence of a predicted adverse environment could be altered pain perception. The behavioural response of piglets to the surgical amputation (‘docking’) of their tail or a sham procedure was measured for 1 min in piglets born to mothers who either experienced mid-gestation social stress or were left undisturbed throughout pregnancy. A behavioural pain score was found to predict the docked status of piglets with high discriminant accuracy. Piglets exposed to PNS had a significantly higher pain score than controls, and for each litter of tail-docked piglets, the average pain score was correlated with mid-gestation maternal cortisol levels. The data presented here provide evidence that the experience of stress in utero can result in a heightened acute response to injury in early life. Speculatively, this may represent an adaptive alteration occurring as a consequence of a pre-natal ‘early warning’ of environmental adversity.  相似文献   

2.
Pain, due to mechanical stimuli, is a normal, indeed healthy, response of animals to potential or actual damage to tissues. Mammals in general, and humans in particular, have evolved a highly sophisticated system of pain perception, which is characterized in humans by complementary but distinct neural processing of the intensity and location of a noxious stimulus, and a motivational/emotional or affective response to the stimulus. The peripheral and central neurons that comprise this system, which has been called the 'neuromatrix', dynamically (temporally) respond and adapt to noxious biomechanical stimuli. However, phenotypic variability of the neuromatrix can be large, which can result in a host of musculoskeletal conditions that are characterized by altered pain perception, which can and often does alter the course of the condition. This neural plasticity has been well recognized in the central nervous system, but it has only more recently become known that peripheral nociceptors also adapt to their altered extracellular matrix environment. This work reviews the biomechanics of pain focusing on the relevant stimulus that initiates responses by nociceptors to the cognitive perception of pain.  相似文献   

3.
Gold MS  Gebhart GF 《Nature medicine》2010,16(11):1248-1257
The incidence of chronic pain is estimated to be 20-25% worldwide. Few patients with chronic pain obtain complete relief from the drugs that are currently available, and more than half report inadequate relief. Underlying the challenge of developing better drugs to manage chronic pain is incomplete understanding of the heterogeneity of mechanisms that contribute to the transition from acute tissue insult to chronic pain and to pain conditions for which the underlying pathology is not apparent. An intact central nervous system (CNS) is required for the conscious perception of pain, and changes in the CNS are clearly evident in chronic pain states. However, the blockage of nociceptive input into the CNS can effectively relieve or markedly attenuate discomfort and pain, revealing the importance of ongoing peripheral input to the maintenance of chronic pain. Accordingly, we focus here on nociceptors: their excitability, their heterogeneity and their role in initiating and maintaining pain.  相似文献   

4.
Summary The responses of single sensory afferent nerve fibres were recorded from small nerve bundles of the intramandibular nerve of the chicken following thermal and mechanical stimulation of the beak. Thermoreceptors, nociceptors and mechanoreceptors were identified and their responses characterized.Of the thermoreceptors identified 11 units were classified as cold receptors, which responded to cooling the receptive field by increasing the discharge rate and had conduction velocities in the range 0.83 to 4.4 m/s. Only one warm unit was identified.Two classes of nociceptors were identified: mechano-thermal (polymodal) nociceptors and high threshold mechanical nociceptors. The discharge characteristics and stimulus-response curves of both types were described. While the mechanothermal nociceptors were exclusively C-fibres (c.v. 0.4 to 1.86 m/s), the high threshold mechanoreceptors contained both C and A delta fibres (c.v. 1 to 5.5 m/s). Thermal response thresholds for the mechano-thermal units ranged from 41 to 50 °C with mechanical thresholds of 2 to over 50 g. Mechanical thresholds for the high threshold units ranged from 5 to over 50 g.The mechanoreceptors were either slowly or rapidly adapting. The pattern of response together with stimulus-response curves were presented for the slowly adapting units. Conduction velocities of the slowly adapting units varied from 0.7 to 20 m/s and mechanical threshold from 0.1 to 2 g. On the basis of their response to a vibrating, and a ramp-and-hold mechanical stimulus, the rapidly adapting units were divided into Herbst and Grandry units with only the Herbst units responding accurately to the vibrating stimulus. Both units had fibres conducting in the 50 m/s range with thresholds in the 0.1 to 10 g range.The results are discussed in relation to the receptors found in other avian species and mammalian peripheral sensory afferents.Abbreviations c.v. conduction velocity - RA rapidly adapting (receptors) - SA slowly adapting (receptors)  相似文献   

5.
辣椒素及其受体   总被引:13,自引:0,他引:13  
Luo H  Wan Y  Han JS 《生理科学进展》2003,34(1):11-15
可以感受痛觉刺激的初级感觉神经元的周围末梢被称为伤害性感受器。这些小直径神经元的末梢可将化学、机械和热刺激信号转化为动作电位,并将这些信息上传到中枢,最后使机体产生痛觉或不舒服的感受。但到目前为止,人们对这些可探测到伤害性刺激的分子所知甚少。1997年成功克隆的辣椒素受体亚型1(vanilloid receptor subtype1,VR1)是近年来科学家们研究的“热点分子”,它是表达于伤害性感受器上的非选择性阳离子通道,已有诸多证据表明其可探测和整合诱发痛觉的化学和热刺激信号,基因敲除小鼠的研究分析也有力证明了该离子通道参与了疼痛及组织损伤后痛觉过敏的产生,而且是热诱发疼痛发生过程的关键分子。  相似文献   

6.
H. Bai  Y. Sun  N. Liu  Y. Liu  F. Xue  Y. Li  S. Xu  A. Ni  J. Ye  Y. Chen  J. Chen 《Animal genetics》2018,49(3):226-236
Beak deformity (crossed beaks) is found in several indigenous chicken breeds including Beijing‐You studied here. Birds with deformed beaks have reduced feed intake and poor production performance. Recently, copy number variation (CNV) has been examined in many species and is recognized as a source of genetic variation, especially for disease phenotypes. In this study, to unravel the genetic mechanisms underlying beak deformity, we performed genome‐wide CNV detection using Affymetrix chicken high‐density 600K data on 48 deformed‐beak and 48 normal birds using penncnv . As a result, two and eight CNV regions (CNVRs) covering 0.32 and 2.45 Mb respectively on autosomes were identified in deformed‐beak and normal birds respectively. Further RT‐qPCR studies validated nine of the 10 CNVRs. The ratios of six CNVRs were significantly different between deformed‐beak and normal birds (< 0.01). Within these six regions, three and 21 known genes were identified in deformed‐beak and normal birds respectively. Bioinformatics analysis showed that these genes were enriched in six GO terms and one KEGG pathway. Five candidate genes in the CNVRs were further validated using RT‐qPCR. The expression of LRIG2 (leucine rich repeats and immunoglobulin like domains 2) was lower in birds with deformed beaks (< 0.01). Therefore, the LRIG2 gene could be considered a key factor in view of its known functions and its potential roles in beak deformity. Overall, our results will be helpful for future investigations of the genomic structural variations underlying beak deformity in chickens.  相似文献   

7.
1,001 faecal samples were obtained from 89 sheep (lambs and adult), 184 goats, 190 horses, 178 rabbits, 110 camels, 200 broiler chicken and 50 turkeys housed in farms from different localities in Tunisia. All samples were analysed for Cryptosporidium oocysts by microscopic examination of smears stained by modified Ziehl Neelsen technique. The parasite was detected in ten lambs and adult sheep (11.2 %) and nine broiler chicken (4.5 %). Molecular characterization, performed in four animals, identified C. bovis in three lambs and C. meleagridis in one broiler chicken. This work is the first report on Cryptosporidium in farm animals in Tunisia.  相似文献   

8.
The study of implicit perception - perception in the absence of awareness - has a long history. Decades of behavioural work have identified crucial theoretical and methodological issues that must be considered when evaluating claims of implicit perception. Neuroimaging methods provide an important new avenue for illuminating our understanding of perception both with and without awareness, but most imaging experiments have not met the rigorous conditions that the behavioural work has shown are necessary for inferring implicit perception. Here, we review the literature of both behavioural and neuroimaging studies, and note the pitfalls of studying implicit perception as well as the promise that neuroimaging studies have for providing insights about implicit perception when combined with appropriately rigorous behavioural measures of awareness.  相似文献   

9.
Pain genes     
Foulkes T  Wood JN 《PLoS genetics》2008,4(7):e1000086
Pain, which afflicts up to 20% of the population at any time, provides both a massive therapeutic challenge and a route to understanding mechanisms in the nervous system. Specialised sensory neurons (nociceptors) signal the existence of tissue damage to the central nervous system (CNS), where pain is represented in a complex matrix involving many CNS structures. Genetic approaches to investigating pain pathways using model organisms have identified the molecular nature of the transducers, regulatory mechanisms involved in changing neuronal activity, as well as the critical role of immune system cells in driving pain pathways. In man, mapping of human pain mutants as well as twin studies and association studies of altered pain behaviour have identified important regulators of the pain system. In turn, new drug targets for chronic pain treatment have been validated in transgenic mouse studies. Thus, genetic studies of pain pathways have complemented the traditional neuroscience approaches of electrophysiology and pharmacology to give us fresh insights into the molecular basis of pain perception.  相似文献   

10.
BackgroundNon-typhoidal Salmonella enterica serovars, associated with different foods including poultry products, are important causes of bacterial gastroenteritis worldwide. The colonization of the chicken gut by S. enterica could result in the contamination of the environment and food chain. The aim of this study was to compare the genomes of 25 S. enterica serovars isolated from broiler chicken farms to assess their intra- and inter-genetic variability, with a focus on virulence and antibiotic resistance characteristics.Conclusions/SignificanceThis study showed that the predominant Salmonella serovars in broiler chickens harbor genes encoding adhesins, flagellar proteins, T3SS, iron acquisition systems, and antibiotic and metal resistance genes that may explain their pathogenicity, colonization ability and persistence in chicken. The existence of mobile genetic elements indicates that isolates from a given serovar could acquire and transfer genetic material. Conserved genes in the T3SS and T4SS that we have identified are promising candidates for identification of diagnostic, antimicrobial or vaccine targets for the control of Salmonella in broiler chickens.  相似文献   

11.

Background

On-going pain is one of the most debilitating symptoms associated with a variety of chronic pain disorders. An understanding of mechanisms underlying on-going pain, i.e. stimulus-independent pain has been hampered so far by a lack of behavioural parameters which enable studying it in experimental animals. Ultrasound vocalizations (USVs) have been proposed to correlate with pain evoked by an acute activation of nociceptors. However, literature on the utility of USVs as an indicator of chronic pain is very controversial. A majority of these inconsistencies arise from parameters confounding behavioural experiments, which include novelty, fear and stress due to restrain, amongst others.

Results

We have developed an improved assay which overcomes these confounding factors and enables studying USVs in freely moving mice repetitively over several weeks. Using this improved assay, we report here that USVs increase significantly in mice with bone metastases-induced cancer pain or neuropathic pain for several weeks, in comparison to sham-treated mice. Importantly, analgesic drugs which are known to alleviate tumour pain or neuropathic pain in human patients significantly reduce USVs as well as mechanical allodynia in corresponding mouse models.

Conclusions

We show that studying USVs and mechanical allodynia in the same cohort of mice enables comparing the temporal progression of on-going pain (i.e. stimulus-independent pain) and stimulus-evoked pain in these clinically highly-relevant forms of chronic pain.  相似文献   

12.
B. M. Lumb 《Neurophysiology》2006,38(4):286-293
Nociceptive information is transmitted to the spinal cord via A-and C-fiber nociceptors. These different groups of nociceptors convey different qualities of the pain signal and play different roles in chronic pain states. It is of considerable importance, therefore, to compare the respective central processing. To do this, we have developed a technique allowing us to preferentially activate either A-or C-heat nociceptors. This article describes functional anatomical approaches used to study spinal brainstem loops and their roles in determining the pain experience. It will focus on (i) A-vs C-nociceptive inputs to control centers in the midbrain periaqueductal gray and the hypothalamus, including interactions between these afferent signals, and (ii) differential descending control of A-vs C-nociceptor-evoked spinal nociception. Neirofiziologiya/Neurophysiology, Vol. 38, No. 4, pp. 342–349, July–August, 2006.  相似文献   

13.
Nociception, the encoding and processing of noxious environmental stimuli by sensory neurons, functions to protect an organism from bodily damage. Activation of the terminal endings of certain sensory neurons, termed nociceptors, triggers a train of impulses to neurons in the spinal cord. Signals are integrated and processed in the dorsal spinal cord and then projected to the brain where they elicit the perception of pain. A number of neuromodulators that can affect nociceptors are released in the periphery during the inflammation that follows an initial injury. Serotonin (5-HT) is a one such proinflammatory mediator. This review discusses our current understanding of the neuromodulatory role of 5-HT, and specifically how this monoamine activates and sensitizes nociceptors. Potential therapeutic targets to treat pain are described.  相似文献   

14.
Synaptic long-term potentiation (LTP) at spinal neurons directly communicating pain-specific inputs from the periphery to the brain has been proposed to serve as a trigger for pain hypersensitivity in pathological states. Previous studies have functionally implicated the NMDA receptor-NO pathway and the downstream second messenger, cGMP, in these processes. Because cGMP can broadly influence diverse ion-channels, kinases, and phosphodiesterases, pre- as well as post-synaptically, the precise identity of cGMP targets mediating spinal LTP, their mechanisms of action, and their locus in the spinal circuitry are still unclear. Here, we found that Protein Kinase G1 (PKG-I) localized presynaptically in nociceptor terminals plays an essential role in the expression of spinal LTP. Using the Cre-lox P system, we generated nociceptor-specific knockout mice lacking PKG-I specifically in presynaptic terminals of nociceptors in the spinal cord, but not in post-synaptic neurons or elsewhere (SNS-PKG-I(-/-) mice). Patch clamp recordings showed that activity-induced LTP at identified synapses between nociceptors and spinal neurons projecting to the periaqueductal grey (PAG) was completely abolished in SNS-PKG-I(-/-) mice, although basal synaptic transmission was not affected. Analyses of synaptic failure rates and paired-pulse ratios indicated a role for presynaptic PKG-I in regulating the probability of neurotransmitter release. Inositol 1,4,5-triphosphate receptor 1 and myosin light chain kinase were recruited as key phosphorylation targets of presynaptic PKG-I in nociceptive neurons. Finally, behavioural analyses in vivo showed marked defects in SNS-PKG-I(-/-) mice in several models of activity-induced nociceptive hypersensitivity, and pharmacological studies identified a clear contribution of PKG-I expressed in spinal terminals of nociceptors. Our results thus indicate that presynaptic mechanisms involving an increase in release probability from nociceptors are operational in the expression of synaptic LTP on spinal-PAG projection neurons and that PKG-I localized in presynaptic nociceptor terminals plays an essential role in this process to regulate pain sensitivity.  相似文献   

15.
Mechanical probes of various sizes and shapes were used to determine thresholds for the perception of pressure, sharpness, and pain on the human finger. As force increased, perception changed from dull pressure to sharp pressure to sharp pain. With the smallest probe (0.01 mm2), sharpness threshold was very close to pressure threshold. As probe size increased, sharpness and pain threshold expressed in terms of force) increased in proportion to probe circumference (not probe area), whereas pressure threshold increased relatively little. Pain and sharpness thresholds also increased as probe angle became obtuse. There was a statistically significant increase in both thresholds with a probe angle change of 15 degrees. Thus, both size and shape are necessary to describe a mechanical stimulus adequately, and pressure (force/area) is not a sufficient metric for pain studies. Thresholds varied at different skin sites on the finger. The dorsal surface had lower thresholds than the volar surface, but the difference between the two areas was not always statistically significant. The compliance of the skin (e.g., the amount of indentation produced by a given force) exhibited no relation to sharpness or pain threshold, whether considered within subjects at various skin sites, or across subjects at the same skin site. Comparison of the perceptual thresholds with the thresholds for nociceptors determined in electrophysiological studies indicates that the sensation of nonpainful sharpness is likely to be mediated by nociceptors. Furthermore, considerably more than threshold activation of nociceptors is necessary for normal pain perception.  相似文献   

16.
Krishtal  O.  Ostrovskaya  O.  Moroz  L. 《Neurophysiology》2003,35(3-4):208-216
Acid-sensing ion channels (ASIC) are involved in a variety of sensory functions, including mechanoreception, nociception, and perception of acid taste, thus being considerably involved in the control of smooth musculature. It is suggested that FMRFa-related peptides can be endogenous regulators of these channels, primarily by modulating the rate of ASIC desensitization. Here we present two our findings. (I) The effect is strongly pH-dependent: The lower the pH used to activate ASIC, the greater the modulatory effect of RFa-related peptides, and (ii) in the small (nociceptive), but not in the large (mechanoceptive) primary somatosensory neurons, RFa-related peptides shift steady-state desensitization toward more acidic levels. We suggest that the pH dependence of the modulatory action of RFa-related peptides can be associated with the presence of positively charged arginine residues and their possible interactions with histidine residues in ASIC. The second effect should result in strongly increased phasic activity of nociceptors under conditions of moderate ischemia. Our results show that the RFa-related peptides are capable of changing the sensitivity of nociceptors to protons, as well as the temporal pattern of their activity. Short neuropeptides are usually the products of proteolysis of larger prohormone molecules. Interestingly, chronic pain is accompanied by a significant activation of proteases in dorsal root ganglion neurons, and RFa peptides have been found in the spinal dorsal horn of mammals. They may play a role in the modulation of the mammalian sensory inputs.  相似文献   

17.
余梅  蔡伟强  金建平  张庆德  曹建华  李奎 《遗传学报》2003,30(12):1097-1100
以艾维茵鸡和湖北省地方鸡种洪山鸡为实验材料 ,借助特异性识别Tx残基肽的单克隆抗体 6B8,采用Western杂交方法 ,检测Tx TnT异构体在洪山鸡和艾维茵鸡 7个发育时期 (孵化第 14d、初生 1日龄、7、14、2 1、2 8和35日龄 )的胸肌和腿肌中的表达差异 ,并与胸肌重进行相关分析。结果表明 ,Tx TnT在腿肌和孵化第 14d的胸肌中均不表达 ,在初生 1日龄后胸肌中的表达随发育逐步增长 ,统计分析发现 ,Tx TnT在艾维茵鸡和洪山鸡胸肌中的表达量具有显著差异 (P <0 0 5 ) ,与胸肌重具有显著相关 (P <0 0 5 )。  相似文献   

18.
Understanding the signaling and transmission of visceral nociceptive events   总被引:4,自引:0,他引:4  
Visceral pain can be considered as part of the defense reactions of the body against harmful stimuli, particularly of those that impinge on the mucosal lining of hollow organs. It is a problem of considerable clinical relevance, and its neurobiological mechanisms differ from those of somatic nociceptive or neuropathic pain. Much progress had been made in recent years in the understanding of the functional properties of the visceral nociceptors that trigger pain states, their molecular mechanisms of activation and sensitization and on their central actions. Some molecular targets have been identified as key players in the activation and sensitization of visceral nociceptors, notably ASICs, TTX-resistant Na channels and the TRPV1 receptor. Some nonneural elements of visceral organs, such as the urothelium have been shown to play active roles in the transduction of visceral sensory events by mechanisms involving ATP release by the urothelial cells. Certain well-known neurotransmitters, such as the tachykinin family of neuropeptides, likely play an important role in the peripheral and central activation of visceral nociceptive afferents and in the generation of visceral hyperalgesia. This article reviews current evidence on the mechanisms of activation and sensitization of visceral nociceptive afferents and on their role in the triggering and maintenance of clinically relevant visceral pain states.  相似文献   

19.
Psychophysically, spatial summation can be demonstrated as a decrease in threshold accompanying an increased field of stimulation. The present study examined to what extent different mechanically evoked percepts (pressure, sharpness, and pain) show spatial summation. Various probes were used to apply prescribed forces to the dorsal surface of the digits of 19 healthy subjects. The threshold for three perceptual qualities showed differing degrees of spatial summation: sharpness showed no statistically significant spatial summation; pain demonstrated some significant summation (46% on average); pressure showed the greatest degree of spatial summation (76% on average). The lack of significant spatial summation for sharpness threshold is consistent with the theory that perceived sharpness can be evoked by near threshold activity of a single nociceptor. The modest amount of spatial summation for pain implies that distinctly suprathreshold activation of nociceptors is required for mechanically evoked pain perception, and such input summates centrally, but not completely. The greater spatial summation observed for pressure vs. pain thresholds implies a greater degree of central summation for slowly adapting mechanoreceptors vs. nociceptors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号