首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microporation is an efficient method for delivering plasmid DNA molecules into cultured cells. Herein, we present the optimization of gene delivery by microporation using a Central Composite Design methodology. It was given relevance not only to the transfection efficiency but also to the cell recovery. Different amounts of DNA (1 and 3 μg) mainly affected cell viabilities and cell recoveries, which decrease from 93 to 76% and from 47 to 25% respectively, when higher DNA quantity is used. With this work we suggest an easy methodology to improve transfection of mammalian cells underlining the feasibility to achieve 60% of gene delivery efficiencies whilst recovering 50% of cells, with 90% of viability.  相似文献   

2.
In this study, we developed a technique for delivering genes to microorganisms via electrospray of gold nanoparticles. During the electrospray process, charged monodisperse nano-droplets (a mixture of pET30a-GFP plasmid and nano-sized gold particles) were accelerated and deposited on a thin layer of non-competent Escherichia coli cells. Via antibiotic selection, transformed cells containing green fluorescent protein appeared on the agar plates. PCR amplification and restriction enzyme analysis further confirmed that pET30a-GFP plasmid had successfully been delivered into the non-competent E. coli cells. The transformation efficiencies were optimized under different electrospray conditions. Among several electrospray buffer solutions, CaCl2 (0.01 M) was found to be the best for gene delivery. Furthermore, gold nanoparticles (NPs, 50 nm diameter) significantly improved plasmid transformation efficiency by 5- 7 fold (up to 2 × 106 CFU/μg plasmid) compared with that obtained using naked plasmid. Electronic microscopy images and gel electrophoresis showed that the morphology of plasmids remained unchanged during the electrospray process, but cellular membrane integrity was reduced after being electrosprayed with gold NPs and CaCl2 buffer solutions. This gene delivery method has the potential to work for many other microorganisms.  相似文献   

3.
Anion exchange monolithic chromatography is increasingly becoming a prominent tool for plasmid DNA purification but no generic protocol is available to purify all types of plasmid DNA. In this work, we established a simple framework and used it to specifically purify a plasmid DNA model from a clarified alkaline-lysed plasmid-containing cell lysate. The framework involved optimising ligand functionalisation temperature (30–80 °C), mobile phase flow rate (0.1–1.8 mL/min), monolith pore size (done by changing the porogen content in the polymerisation reaction by 50–80%), buffer pH (6–10), ionic strength of binding buffer (0.3–0.7 M) and buffer gradient elution slope (1–10% buffer B/min). We concluded that preferential pcDNA3F adsorption and optimum resolution could be achieved within the tested conditions by loading the clarified cell lysate into 400 nm pore size of monolith in 0.7 M NaCl (pH 6) of binding buffer followed by increasing the NaCl concentration to 1.0 M at 3%B/min.  相似文献   

4.

Background

Mesenchymal stem cells (MSCs) are an attractive source of adult stem cells for therapeutic application in clinical study. Genetic modification of MSCs with beneficial genes makes them more effective for therapeutic use. However, it is difficult to transduce genes into MSCs by common transfection methods, especially nonviral methods. In this study, we applied microporation technology as a novel electroporation technique to introduce enhanced green fluorescent protein (EGFP) and brain-derived neurotropfic factor (BDNF) plasmid DNA into human umbilical cord blood-derived MSCs (hUCB-MSCs) with significant efficiency, and investigated the stem cell potentiality of engineered MSCs through their phenotypes, proliferative capacity, ability to differentiate into multiple lineages, and migration ability towards malignant glioma cells.

Results

Using microporation with EGFP as a reporter gene, hUCB-MSCs were transfected with higher efficiency (83%) and only minimal cell damage than when conventional liposome-based reagent (<20%) or established electroporation methods were used (30-40%). More importantly, microporation did not affect the immunophenotype of hUCB-MSCs, their proliferation activity, ability to differentiate into mesodermal and ectodermal lineages, or migration ability towards cancer cells. In addition, the BDNF gene could be successfully transfected into hUCB-MSCs, and BDNF expression remained fairly constant for the first 2 weeks in vitro and in vivo. Moreover, microporation of BDNF gene into hUCB-MSCs promoted their in vitro differentiation into neural cells.

Conclusion

Taken together, the present data demonstrates the value of microporation as an efficient means of transfection of MSCs without changing their multiple properties. Gene delivery by microporation may enhance the feasibility of transgenic stem cell therapy.  相似文献   

5.
Dai YH  Liu BR  Chiang HJ  Lee HJ 《Gene》2011,489(2):89-97
Owing to the cell membrane barriers, most macromolecules and hydrophilic molecules could not freely enter into living cells. However, cell-penetrating peptides (CPPs) have been discovered that can translocate themselves and associate cargoes into the cytoplasm. In this study, we demonstrate that three arginine-rich CPPs (SR9, HR9 and PR9) can form stable complexes with plasmid DNA at the optimized nitrogen/phosphate ratio of 3 and deliver plasmid DNA into Paramecium caudatum in a noncovalent manner. Accordingly, the transported plasmid encoding the green fluorescent protein (GFP) gene could be expressed in cells functionally assayed at both the protein and DNA levels. The efficiency of gene delivery varied among these CPPs in the order of HR9 > PR9 > SR9. In addition, these CPPs and CPP/DNA complexes were not cytotoxic in Paramecium detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diohenyltetrazolium bromide (MTT) assay. Thus, these results suggest that the functionality of arginine-rich CPPs offers an efficient and safe tool for transgenesis in eukaryotic protozoans.  相似文献   

6.
Summary Maximal liquid-holding recovery (LHR) of the DEB-treated rad3 mutant occurs at 30° C in buffer supplemented with glucose. Addition of cycloheximide (CHX) to the buffer, the increase in cell density above 2 × 107/ml as well as lowering of temperature during liquid holding (LH) below 27° C decrease considerably the cell capacity for recovery. LHR does not take place at 5° C. No measurable DNA synthesis or degradation occurs in cells held in buffer alone, while addition of 0.02% glucose results in incorporation of radioactivity into DNA both of DEB-treated and control cells. Similarly, protein synthesis was observed only in cultures held in buffer supplemented with glucose. Cells transfered to growth medium directly after treatment complete one round of DNA replication and at least one division cycle, but further DNA replication and cell division are inhibited. Cells placed in growth medium after 5 days LH show an increased rate of DNA replication and cell division. Completion of the first posttreatment round of DNA replication in growth medium abolishes ishes the cell capacity for LHR. DEB treatment results in abnormal cell division of the rad3 mutant, giving colonies consisting of several cells, usually abnormal in shape, held together by common cell walls.  相似文献   

7.
We have developed and characterized cultures of healthy and dystrophic canine myoblasts for the evaluation of various gene transfer protocols. The number of desmin-positive myoblasts was elevated (>>80%) in cultures of myoblasts obtained from different muscle territories, the diaphragm muscle giving rise to the purest cultures. Myoblasts from dogs turned out to be a very convenient source of well transfectable and transducible cells. Transfection with plasmid DNA allowed efficient transgene expression (50% of β-galactosidase positive cells and about 375 ng luciferase/mg protein after transfection with a calcium phosphate-precipitated plasmid). Infection with high concentrations of adenoviral and retroviral vectors allowed transgene (β-galactosidase or mini-dystrophin) detection in about 75 to 90% of the canine cells. Therefore, primary dog myoblast cultures represent a useful in vitro model for viral and non-viral gene delivery, as well as for functional evaluation and cell grafting with applications in genetic diseases, vaccination or production of circulating therapeutic proteins. Reiner Bischoff is now at This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
A simple, scalable method for purification of plasmid DNA is described. Plasmid DNA was released from Escherichia coli JM109 by lysis (1% SDS, 0.2 M NaOH). Then a neutralization solution (3 M sodium acetate buffer, pH 4.8) was added to precipitate genomic DNA and protein. After the clarification of the lysate, the supernatant was placed in a multicompartment electrolyser separated by ultrafilter membranes to remove the remaining contamination (RNA, genomic DNA and protein). A recovery of 75%±2% of total plasmid DNA was obtained after 60 min electrophoresis with a field strength of 8 V cm–1 using cells at 30 g l–1 (quantified by dry cell weight). Genomic DNA, RNA and protein were undetectable in the purified plasmid DNA solution.  相似文献   

9.
Despite some progress in the field of gene transfer into hard-to-transfect cells, so far an efficient nonviral method for monocytes has not been available. A comparison of plasmid DNA with capped and polyadenylated mRNA for enhanced green fluorescent protein gene delivery into the commonly used monocytic cell lines U937 and THP-1 suggested that limited DNA trafficking may be the underlying cause of poor transfection results. As Nucleofector technology delivers DNA (or mRNA) straight into the nucleus, we obtained nucleofection efficiencies of up to 80% without significant cell toxicity. Moreover, as the DNA quickly reaches the nucleus, nucleofected cells were ready for analysis after only 2–6 h. The technique is suitable not only for monocytes but also for other hard-to-transfect cells.  相似文献   

10.
The effect of DNA vector topology when complexed to poly-l-lysine (PLL) and its quantification in transfection efficiency has not been fully addressed even though it is thought to be of importance from both production and regulatory viewpoints. This study investigates and quantifies cell uptake followed by transfection efficiency of PLL:DNA complexes (polyplexes) in Chinese hamster ovary (CHO) cells and their dependence on DNA topology. PLL is known for its ability to condense DNA and serve as an effective gene delivery vehicle. Characterization of PLL conjugated to a 6.9 kb plasmid was carried out. Dual labeling of both the plasmid DNA (pDNA) and PLL enabled quantitative tracking of the complexed as well as dissociated elements, within the cell, and their dependence on DNA topology. Polyplex uptake was quantified by confocal microscopy and image analysis. Supercoiled (SC) pDNA when complexed with PLL, forms a polyplex with a mean diameter of 139.06 nm (±0.84% relative standard error [RSE]), whereas open circular (OC) and linear-pDNA counterparts displayed mean diameters of 305.54 (±3.2% RSE) and 841.5 nm (±7.2% RSE) respectively. Complexes containing SC-pDNA were also more resistant to nuclease attack than its topological counterparts. Confocal microscope images reveal how the PLL and DNA remain bound post transfection. Quantification studies revealed that by 1 h post transfection 61% of SC-pDNA polyplexes were identified to be associated with the nucleus, in comparison to OC- (24.3%) and linear-pDNA polyplexes (3.5%) respectively. SC-pDNA polyplexes displayed the greatest transfection efficiency of 41% which dwarfed that of linear-pDNA polyplexes of 18.6%. Collectively these findings emphasize the importance of pDNA topology when complexed with PLL for gene delivery with the SC-form being a key pre-requisite.  相似文献   

11.
An efficient and user-friendly bacterial transformation method by simple spreading cells with aminoclays was demonstrated. Compared to the reported transformation approaches using DNA adsorption or wrapping onto (in)organic fibers, the spontaneously generated clay-coated DNA suprastructures by mixing DNA with aminoclay resulted in transformants in both Gram-negative (Escherichia coli) and Gram-positive cells (Streptococcus mutans). Notably, the wild type S. mutans showed comparable transformation efficiency to that of the E. coli host for recombinant DNA cloning. This is a potentially promising result because other trials such as heat-shock, electroporation, and treatment with sepiolite for introducing DNA into the wild type S. mutans failed. Under defined conditions, the transformation efficiency of E. coli XL1-Blue and S. mutans exhibited ~ 2 × 105 and ~ 6 × 103 CFU/μg of plasmid DNA using magnesium-aminoclay. In contrast, transformation efficiency was higher in S. mutans than that in E. coli XL1-Blue for calcium-aminoclay. It was also confirmed that each plasmid transformed into E. coli and S. mutans was stably maintained and that they expressed the inserted gene encoding the green fluorescent protein during prolonged growth of up to 80 generations.  相似文献   

12.
Dang SP  Wang RX  Qin MD  Zhang Y  Gu YZ  Wang MY  Yang QL  Li XR  Zhang XG 《Plasmid》2011,66(1):19-25
Albumin microbubbles have been intensively studied for their application in gene delivery. However, with negative surface potential, albumin microbubbles hardly bind plasmid DNA, which might contribute to their low transgene efficiency. In this study, we developed polyethylenimine (PEI) coated albumin microbubbles (PAMB) which were prepared by sonicating the mixture of human albumin, PEI, polyethylene glycol and glucose. CHO cells, COS cells and 293T cells were transfected with PEI, PEI + albumin, PAMB and Lipofectamine 2000, respectively. Our results showed that the surface potential was elevated and PAMB could bind plasmid DNA. The transgene efficiency of PAMB was higher than PEI and PEI + albumin (P < 0.05), and PAMB performed the same transgene effect as Lipofectamine 2000 did but with lower cytotoxicity than Lipofectamine 2000. Albumin microbubbles modified by PEI has high transgene efficiency and low cytotoxicity even without ultrasound medication, making it a useful non-virus gene delivery method in vitro.  相似文献   

13.
Pseudomonas fluorescens strains F113 and CHA0 are well-known plant growth-promoting rhizobacteria (PGPR) often used as model strains in biocontrol experiments. To monitor their persistence in large scale field experiments, culture-independent methods are needed. In this study, a strain-specific real-time PCR quantification tool was developed based on sequence-characterized amplified regions (SCAR) for P. fluorescens strains F113, CHA0 and Pf153. Differences in DNA extraction efficiencies from rhizosphere samples were circumvented using plasmid APA9 as internal standard to normalize CT values after real-time amplification. The detection limits of the real-time PCR assays for all three strains were approximately 10 cells for genomic DNA and 104 cells/g rhizosphere for maize samples grown in different natural soils. Population sizes of the three strains in the rhizosphere of maize measured by the new real-time PCR approaches were similar to those measured by most probable number (MPN)-PCR. A persistence study of the three strains indicated that the strains persisted differently over a period of 5 weeks. In conclusion the newly developed real-time PCR approach is a fast and resource efficient method for monitoring individual biocontrol strains in natural soil, which makes it an apt quantification tool for future large-scale field experiments.  相似文献   

14.
Existing methods for extraction and processing of large fragments of bacterial genomic DNA are manual, time-consuming, and prone to variability in DNA quality and recovery. To solve these problems, we have designed and built an automated fluidic system with a mini-reactor. Balancing flows through and tangential to the ultrafiltration membrane in the reactor, cells and then released DNA can be immobilized and subjected to a series of consecutive processing steps. The steps may include enzymatic reactions, tag hybridization, buffer exchange, and selective removal of cell debris and by-products of the reactions. The system can produce long DNA fragments (up to 0.5 Mb) of bacterial genome restriction digest and perform DNA tagging with fluorescent sequence-specific probes. The DNA obtained is of high purity and floating free in solution, and it can be directly analyzed by pulsed-field gel electrophoresis (PFGE) or used in applications requiring submegabase DNA fragments. PFGE-ready samples of DNA restriction digests can be produced in as little as 2.1 h and require less than 108 cells. All fluidic operations are automated except for the injection of the sample and reagents.  相似文献   

15.
The performance of a small-scale automated cryopreservation and storage system (Mini-BioArchive system) used in the banking of umbilical cord blood (UCB) units was evaluated. After thawing the units, the viability and recovery of cells, as well as the recovery rate of hematopoietic progenitor cells (HPCs) such as CD34+ cells, colony-forming unit-granulocyte-macrophage (CFU-GM), and total CFU were analyzed. Twenty UCB units cryopreserved using the automated system and stored for a median of 34 days were analyzed. Mean CD34+ cell viabilities before freezing were 99.8 ± 0.5% and after thawing were 99.8 ± 0.4% in the large bag compartments and 99.7 ± 0.5% in the small compartments. The mean recovery values for total nucleated cells, CD34+ cells, CFU-GM, and total CFU were 94.8 ± 16.0%, 99.3 ± 18.6%, 103.9 ± 20.6%, and 94.3 ± 12.5%, respectively in the large compartments, and 95.8 ± 25.9%, 106.8 ± 23.9%, 101.3 ± 23.3%, and 93.8 ± 19.2%, respectively in the small compartments. A small-scale automated cryopreservation and storage system did not impair the clonogenic capacity of UCB HPCs. This cryopreservation system could provide cellular products adequate for UCB banking and HPC transplantation.  相似文献   

16.
A protocol for the extraction of DNA from ancient skeletal material was developed. Bone specimen samples (powder or slice), buffer, pretreatment, and extraction methodologies were compared to investigate the best conditions yielding the highest concentration of DNA. The degree of extract contamination by polymerase chain reaction (PCR) inhibitors was compared as well. Pretreatment was carried out using agitation in an incubator shaker and microwave digestion. Subsequently, DNA from bones was isolated by the classical organic phenol–chloroform extraction and silica-based spin columns. Decalcification buffer for total demineralization was required as well as lysis buffer for cell lysis to obtain DNA, whereas microwave-assisted digestion proved to be very rapid, with an incubation time of 2 min instead of 24 h at an incubator shaker without using lysis buffer. The correction of isolated DNA was detected using real-time PCR with melt curve analysis, which was 82.8 ± 0.2 °C for highly repetitive α-satellite gene region specific for human chromosome 17 (locus D17Z1). Consequently, microwave-based DNA digestion followed by silica column yielded a high-purity DNA with a concentration of 19.40 ng/μl and proved to be a superior alternative to the phenol–chloroform method, presenting an environmentally friendly and efficient technique for DNA extraction.  相似文献   

17.
Lacrimal gland acinar cells are an important cell type to study due to their role in production and release of tear proteins, a function essential for ocular surface integrity and normal visual acuity. However, mechanistic studies are often limited by problems with transfection using either plasmid DNA or siRNA. Although various gene delivery methods are available, many have been unproductive due to consistently low transfection efficiencies. We have developed a method using nucleofection that can result in 50% transfection efficiency and 60% knockdown efficiency for plasmid DNA and siRNA, respectively. These results are vastly improved relative to previous studies, demonstrating that nucleofection offers an efficient transfection technique for primary lacrimal gland acinar cells.  相似文献   

18.
Non-viral gene delivery is a safe and suitable alternative to viral vector-mediated delivery to overcome the immunogenicity and tumorigenesis associated with viral vectors. Using the novel, human-origin Hph-1 protein transduction domain that can facilitate the transduction of protein into cells, we developed a new strategy to deliver naked DNA in vitro and in vivo. The new DNA delivery system contains Hph-1-GAL4 DNA-binding domain (DBD) fusion protein and enhanced green fluorescent protein (EGFP) reporter plasmid that includes the five repeats of GAL4 upstream activating sequence (UAS). Hph-1-GAL4-DBD protein formed complex with plasmid DNA through the specific interaction between GAL4-DBD and UAS, and delivered into the cells via the Hph-1-PTD. The pEGFP DNA was successfully delivered by the Hph-1-GAL4 system, and the EGFP was effectively expressed in mammalian cells such as HeLa and Jurkat, as well as in Bright Yellow-2 (BY-2) plant cells. When 10 μg of pEGFP DNA was intranasally administered to mice using Hph-1-GAL4 protein, a high level of EGFP expression was detected throughout the lung tissue for 7 days. These results suggest that an Hph-1-PTD-mediated DNA delivery strategy may be an useful non-viral DNA delivery system for gene therapy and DNA vaccines.  相似文献   

19.
Summary Electroporation offers a fast, efficient and reproducible way to introduce DNA into bacteria. We have successfully used this technique to transform two commercially important strains of Bradyrhizobium japonicum, the nitrogen-fixing soybean symbiont. Initially, electroporation conditions were optimized using plasmid DNA which had been prepared from the same B. japonicum strain into which the{imDNA was to b}e transformed. Efficiencies of 105-106 transformants/g DNA were obtained for strains USDA 110 and 61A152 with ready-to-use frozen cells. Successful electroporation of B. japonicum with plasmid DNA prepared from Escherichia coli varied with the E. coli strain from which the plasmid was purified. The highest transformation efficiencies (104 transformants/g DNA) were obtained using DNA prepared from a dcm dam strain of E. coli. This suggests that routine isolation of DNA from an E. coli strain incapable of DNA modification should help in increasing transformation efficiencies for other strains of bacteria where DNA restriction appears to be a significant obstacle to successful transformation. We have also monitored the rate of spontaneous mutation in electroporated cells and saw no significant difference in the frequency of streptomycin resistance for electroporated cells compared to control cells.  相似文献   

20.
Four ruthenium(II) complexes with the formula [Ru(η5-C5H5)(PP)L][CF3SO3], being (PP = two triphenylphosphine molecules), L = 1-benzylimidazole, ; (PP = two triphenylphosphine molecules), L = 2,2′bipyridine, ; (PP = two triphenylphosphine molecules), L = 4-Methylpyridine, ; (PP = 1,2-bis(diphenylphosphine)ethane), L = 4-Methylpyridine, , were prepared, in view to evaluate their potentialities as antitumor agents. The compounds were completely characterized by NMR spectroscopy and their crystal and molecular structures were determined by X-ray diffraction. Electrochemical studies were carried out giving for all the compounds quasi-reversible processes. The images obtained by atomic force microscopy (AFM) suggest interaction with pBR322 plasmid DNA. Measurements of the viscosity of solutions of free DNA and DNA incubated with different concentrations of the compounds confirmed this interaction. The cytotoxicity of compounds 1234 was much higher than that of cisplatin against human leukemia cancer cells (HL-60 cells). IC50 values for all the compounds are in the range of submicromolar amounts. Apoptotic death percentage was also studied resulting similar than that of cisplatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号