首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The effects of intense submicrosecond electrical pulses on cells   总被引:5,自引:0,他引:5       下载免费PDF全文
A simple electrical model for living cells predicts an increasing probability for electric field interactions with intracellular substructures of both prokaryotic and eukaryotic cells when the electric pulse duration is reduced into the sub-microsecond range. The validity of this hypothesis was verified experimentally by applying electrical pulses (durations 100 micros-60 ns, electric field intensities 3-150 kV/cm) to Jurkat cells suspended in physiologic buffer containing propidium iodide. Effects on Jurkat cells were assessed by means of temporally resolved fluorescence and light microscopy. For the longest applied pulses, immediate uptake of propidium iodide occurred consistent with electroporation as the cause of increased surface membrane permeability. For nanosecond pulses, more delayed propidium iodide uptake occurred with significantly later uptake of propidium iodide occurring after 60 ns pulses compared to 300 ns pulses. Cellular swelling occurred rapidly following 300 ns pulses, but was minimal following 60 ns pulses. These data indicate that submicrosecond pulses achieve temporally distinct effects on living cells compared to microsecond pulses. The longer pulses result in rapid permeability changes in the surface membrane that are relatively homogeneous across the cell population, consistent with electroporation, while shorter pulses cause surface membrane permeability changes that are temporally delayed and heterogeneous in their magnitude.  相似文献   

2.
—During stimulation there occurred a decay in electrical response, vesicular acetylcholine, ATP and nucleotide as well as a loss of vesicle number and a decrease in vesicle diameter in the electric organ of Torpedo. These alterations were re-established during a subsequent recovery period. The different parameters recovered at different rates. Firstly, electrical response to single pulses recovered to prestimulation values within about 5 h. Vesicle number and diameter as well as bouton size were found to be re-established fully after 24 h. The newly formed vesicles appeared to be empty as vesicular acetylcholine, ATP and total nucleotide recovered much more slowly and were back to control values after about three days. Acetylcholine reappeared more quickly in the vesicles than ATP. Only after recovery of the vesicular pool of transmitter and ATP did the electric organ regain full stability of the electric discharge pattern on restimulation.  相似文献   

3.
Electric pulses are known to affect the outer membrane and intracellular structures of tumour cells. By applying electrical pulses of 450 ns duration with electric field intensity of 8 kV/cm to HepG2 cells for 30 s, electric pulse‐induced changes in the integrity of the plasma membrane, apoptosis, viability and mitochondrial transmembrane potential were investigated. Results demonstrated that electric pulses induced cell apoptosis and necrosis accompanied with the decrease of mitochondrial transmembrane potential and the formation of pores in the membrane. The role of cytoskeleton in cellular response to electric pulses was investigated. We found that the apoptotic and necrosis percentages of cells in response to electric pulses decreased after cytoskeletal disruption. The electroporation of cell was not affected by cytoskeletal disruption. The results suggest that the disruption of actin skeleton is positive in protecting cells from killing by electric pulses, and the skeleton is not involved in the electroporation directly.  相似文献   

4.
Evoked potentials of the auditory cortex during the electrical stimulation of the cochlea were studied in acute experiments on cats. A series of electric pulses of short duration and different frequency delivered to the streptomycin-damaged cochlea were used as a stimulus. It has been shown that an amplitude and latency of electrical cortex responses depended on the number of pulses in series and on the interpulse intervals. Amplitudes of evoked responses increased with the growth of the number of stimuli. Latent periods changed in a narrower stimulation frequency band. Dependence of the induced potentials' amplitude growth on the increase in the number of electric pulses changed as a result of the two-fold enhancement of the stimulation amplitude.  相似文献   

5.
Nonthermal irreversible electroporation (NTIRE) is a new minimally invasive technique to treat cancer. It is unique because of its nonthermal mechanism of tumor ablation. Intracranial NTIRE procedures involve placing electrodes into the targeted area of the brain and delivering a series of short but intense electric pulses. The electric pulses induce irreversible structural changes in cell membranes, leading to cell death. We correlated NTIRE lesion volumes in normal brain tissue with electric field distributions from comprehensive numerical models. The electrical conductivity of brain tissue was extrapolated from the measured in vivo data and the numerical models. Using this, we present results on the electric field threshold necessary to induce NTIRE lesions (495–510 V/cm) in canine brain tissue using 90 50-μs pulses at 4 Hz. Furthermore, this preliminary study provides some of the necessary numerical tools for using NTIRE as a brain cancer treatment. We also computed the electrical conductivity of brain tissue from the in vivo data (0.12–0.30 S/m) and provide guidelines for treatment planning and execution. Knowledge of the dynamic electrical conductivity of the tissue and electric field that correlates to lesion volume is crucial to ensure predictable complete NTIRE treatment while minimizing damage to surrounding healthy tissue.  相似文献   

6.

Background  

Gene electrotransfer is a non-viral method used to transfer genes into living cells by means of high-voltage electric pulses. An exposure of a cell to an adequate amplitude and duration of electric pulses leads to a temporary increase of cell membrane permeability. This phenomenon, termed electroporation or electropermeabilization, allows various otherwise non-permeant molecules, including DNA, to cross the membrane and enter the cell. The aim of our research was to develop and test a new system and protocol that would improve gene electrotransfer by automatic change of electric field direction between electrical pulses.  相似文献   

7.
Intracellular effect of ultrashort electrical pulses   总被引:20,自引:0,他引:20  
A simple electrical model for biological cells predicts an increasing probability for electric field interactions with cell substructures of prokaryotic and eukaryotic cells when the electric pulse duration is reduced into the sub-microsecond range. The validity of this hypothesis was verified experimentally by applying electrical pulses with electric field intensities of up to 5.3 MV/m to human eosinophils in vitro. When 3-5 pulses of 60 ns duration were applied to human eosinophils, intracellular granules were modified without permanent disruption of the plasma membrane. In spite of the extreme electrical power levels applied to the cells thermal effects could be neglected because of the ultrashort pulse duration. The intracellular effect extends conventional electroporation to cellular substructures and opens the potential for new applications in apoptosis induction, gene delivery to the nucleus, or altered cell functions, depending on the electrical pulse conditions.  相似文献   

8.
The effect of application of short, intense electric pulses on tumor blood volume was investigated using albumin-(Gd-DTPA)30 contrast-enhanced magnetic resonance imaging (MRI). One of paired SA-1 fibrosarcoma tumors implanted in each flank of A/J mice was treated with electric pulses. MRI was performed dynamically before and after intravenous administration of albumin-(Gd-DTPA)30 (0.02 mmol Gd/kg), and fractional tumor blood volume was estimated. MRI images of tumors exposed to electric pulses showed no enhancement at 30 min after injection of albu-min-(Gd-DTPA)30. However, marked enhancement was observed in paired tumors of the same mice that were not exposed to electric pulses. A significant difference in blood volume was observed between nontreated tumors and tumors treated with electric pulses. Application of electric pulses to the tumors significantly reduced blood volume in the tumors. Therefore, through a reduction in tumor blood volume, electric pulses may, besides producing electroporation of cells, exert antitumor effectiveness by entrapping drugs within the tumors.  相似文献   

9.
The electrical properties of the membranes of Valoniautricularis were investigated using intracellular electrodes. Using short (0.5–1.0 ms) current pulses it was found that at a critical membrane potential difference of 0.85 V there was a large and discontinuous decrease in the membrane impedance and the slope resistance beyond this potential was virtually zero.The electrical breakdown of the membranes did not lead to global damage of the cells and after a resealing time of approx. 5 s could be repeated with identical results.Experiments with long current pulses and long bursts of pulses repeated at 1 kHz are described which show that the electrical breakdown is not due to thermal damage arising from localized heating in the membrane. Thus a dissipation of some 103–105 times the energy normally dissipated during the onset of breakdown did not lead to breakdown itself unless the critical membrane potential was exceeded.The results also show that punch-through and avalanche ionization are not likely to be important in the breakdown mechanism. The results are consitent, however, with there being a critical instability in the electro-mechanical stresses set up in the membrane at large electric field strengths.  相似文献   

10.
The effects of high intensity light emissions, produced by a novel pulsed power energization technique (PPET), on the survival of bacterial populations of verocytotoxigenic Escherichia coli (serotype 0157:H7) and Listeria monocytogenes (serotype 4b) were investigated. Using this PPET approach, many megawatts (MW) of peak electrical power were dissipated in the light source in an extremely short energization time (about 1 μs). The light source was subjected to electric field levels greater than could be achieved under conventional continuous operation, which led to a greater production of the shorter bacteriocidal wavelengths of light. In the exposure experiments, pre-determined bacterial populations were spread onto the surface of Trypone Soya Yeast Extract Agar and were then treated to a series of light pulses (spectral range of 200–530 nm) with an exposure time ranging from 1 to 512 μs. While results showed that as few as 64 light pulses of 1 μs duration were required to reduce E. coli 0157:H7 populations by 99·9% and Listeria populations by 99%, the greater the number of light pulses the larger the reduction in cell numbers ( P < 0·01). Cell populations of E. coli 0157:H7 and Listeria were reduced by as much as 6 and 7 log10 orders at the upper exposure level of 512 μs, respectively. Survival data revealed that E. coli 0157:H7 was less resistant to the lethal effects of radiation ( P < 0·01). These studies have shown that pulsed light emissions can significantly reduce populations of E. coli 0157:H7 and L. monocytogenes on exposed surfaces with exposure times which are 4–6 orders of magnitude lower than those required using continuous u.v. light sources.  相似文献   

11.
The aim of this study was to evaluate the effect of a 5-kHz repetition frequency of electroporating electric pulses in comparison to the standard 1-Hz frequency on blood flow of invasive ductal carcinoma tumors in Balb/C mice. Electroporation was performed by the delivery of eight electric pulses of 1,000 V cm−1 and 100 μs duration at a repetition frequency of 1 Hz or 5 kHz. Blood flow changes in tumors were measured by laser Doppler flowmetry. Monitoring was performed continuously for 10 min before application of the electric pulses as well as immediately after application of the electric pulses for 40 min. The delivery of electric pulses to tumors induced changes in tumor blood flow. The reduction in blood flow started after the stimulation and continued for the 40-min period of observation. There was a significant difference in blood flow changes 3 min after application of the electric pulses at 1-Hz or 5-kHz repetition frequency. However, after 3 min the difference became nonsignificant. The findings showed that the high pulse frequency (5 kHz) had an effect comparable to the 1-Hz frequency on tumor blood flow except at very short times after pulse delivery, when pulses at 5 kHz produced a more intense reduction of blood flow.  相似文献   

12.
Recently there has been intense and growing interest in the non-thermal biological effects of nanosecond electric pulses, particularly apoptosis induction. These effects have been hypothesized to result from the widespread creation of small, lipidic pores in the plasma and organelle membranes of cells (supra-electroporation) and, more specifically, ionic and molecular transport through these pores. Here we show that transport occurs overwhelmingly after pulsing. First, we show that the electrical drift distance for typical charged solutes during nanosecond pulses (up to 100 ns), even those with very large magnitudes (up to 10 MV/m), ranges from only a fraction of the membrane thickness (5 nm) to several membrane thicknesses. This is much smaller than the diameter of a typical cell (∼16 μm), which implies that molecular drift transport during nanosecond pulses is necessarily minimal. This implication is not dependent on assumptions about pore density or the molecular flux through pores. Second, we show that molecular transport resulting from post-pulse diffusion through minimum-size pores is orders of magnitude larger than electrical drift-driven transport during nanosecond pulses. While field-assisted charge entry and the magnitude of flux favor transport during nanosecond pulses, these effects are too small to overcome the orders of magnitude more time available for post-pulse transport. Therefore, the basic conclusion that essentially all transmembrane molecular transport occurs post-pulse holds across the plausible range of relevant parameters. Our analysis shows that a primary direct consequence of nanosecond electric pulses is the creation (or maintenance) of large populations of small pores in cell membranes that govern post-pulse transmembrane transport of small ions and molecules.  相似文献   

13.
Preilluminated suspensions of swollen thylakoid vesicles (‘blebs’) were exposed to uni- and bipolar pairs of identical electric field pulses of variable duration, intensity and spacing. The resulting field-stimulated luminescence (electrophotoluminescence) was used as an intrinsic, voltage-sensitive optical probe to monitor electrical phenomena at the membrane level. The application of a pair of voltage pulses of opposite polarity made it possible to produce electric changes in the membrane by the first pulse and to analyse these effects by a second pulse of opposite polarity. It was found that the relative amplitudes of the two electrophoto-luminescence signals depended on the intensity of the applied electric field and on the time interval (t*) between the two pulses. When t* varied from 0.4 to 12 ms, the second stimulated luminescence signal was at first much smaller than the first one and then increased exponentially until the two signals were equal for t* ≥ 3 ms. We analysed these differences between the two field-stimulated luminescence signals as a measure of the electrical breakdown of the membrane, induced during the first pulse. In this way a distinction between irreversible and reversible breakdown could be made with an estimation of the recovery kinetics of the reversible breakdown, which was found to be complete within 3 ms. Irreversible breakdown of the membrane was found to increase with lengthening the exposure time from 0.1 to 1.3 ms especially when applying high electric field of at least 2000 V/cm.  相似文献   

14.
Rhabdomyolysis due to pulsed electric fields   总被引:5,自引:0,他引:5  
High-voltage electrical trauma frequently results in extensive and scattered destruction of skeletal muscle along the current path. The damage is commonly believed to be mediated by heating. Recent experimental and theoretical evidence suggests, however, that the rhabdomyolysis and secondary myoglobin release that occur also can result from electroporation, a purely nonthermal mechanism. Based on the results of a computer simulation of a typical high-voltage electric shock, we have postulated that electroporation contributes substantially to skeletal muscle damage and could be the primary mechanism of damage in some cases of electrical injury. In this study, we determined the threshold field strength and exposure duration required to produce rhabdomyolysis by the electroporation mechanism. The change in the electrical impedance of intact skeletal muscle tissue following the application of short-duration, high-intensity electric field pulses is used as an indicator of membrane damage. Our experiments show that a decrease in impedance magnitude occurs following electric field pulses that exceed threshold values of 60 V/cm magnitude and 1-ms duration. The field strength, pulse duration, and number of pulses are factors that determine the extent of damage. The effect does not depend on excitation-contraction coupling. Electron micrographs confirm structural defects created in the membranes by the applied electric field pulses, and these represent the first clear demonstration of rhabdomyolysis in intact muscle due to electroporation. These results provide compelling evidence in support of our postulate.  相似文献   

15.
Cell hybridization by electrofusion on filters   总被引:5,自引:0,他引:5  
Electric field pulses induce permeabilization and associated fusogenicity in cell membranes. Electrofusion of cells is usually performed in two steps: the first is the creation of close intercellular contacts; the second is an application of electric pulses that induces membrane fusion. Very large cell contacts can be obtained by a filter aspiration method. A cell monolayer is created by controlled suction on biocompatible filter. No spontaneous fusion results. Just after filtration, electrofusion is obtained by field pulses applied parallel to the filter. Cell viability is not strongly affected and cells recover their spherical shape in the minute time range after filtration. The electrical parameters, the cell density, and the flow rate control fusion. Fusion is obtained with cells of different origins with very different adhesion properties. Hybrid cells are easily formed. This approach appears to be a very efficient method for cell hybridization with an easy-to-use protocol.  相似文献   

16.
Electric field pulses induce a substantial increase of the light scattering intensity of double-helical DNA. The relative change of light scattering and also the reciprocal relaxation time constants under electric field pulses increase with increasing nucleotide concentration. These observations, together with a large difference between dichroism orientation time constants and light scattering time constants under electric field pulses, demonstrate that the main part of the light scattering effect is due not to field-induced orientation but to interactions between DNA helices. From the concentration dependence of the light scattering time constants we obtain, according to an isodesmic reaction model, association rate constants in the range 3 × 1010 M?1 helices s?1 for DNA with approx. 300 base-pairs. These values are at the limit of a diffusion-controlled DNA association and do not show any dependence upon the field strength. The dissociation rate constants kd decrease strongly with increasing field strength E and thus demonstrate that the interactions between the helices are induced by the electric field. This conclusion is consistent with independent measurements which do not reveal any DNA association at zero field strength. The observed linear relation between log(kd) and E2 suggests a field-induced reaction driven by dipole changes. According to this interpretation the change of dipole moment should be in the range of approx. 1400 debye. The dissociation rates for DNA helices with approx. 300 to approx. 800 base-pairs strongly increase with increasing sail concentration (measured in the range 1–5 mM ionic strength), whereas the association rate constants remain virtually unchanged. Measurements of the linear dichroism in the same range of DNA chain length demonstrate that for long field pulses of e.g., 40 μs, the amplitude approaches a maximum value and then decreases. The dichroism relaxation curves observed after long field pulses exhibit a component with a positive dichroism and an increased decay time. These observations suggest the formation of a DNA aggregate with an unusual arrangement of the bases.  相似文献   

17.
Alexander A. Bulychev 《BBA》1984,766(3):647-652
The effects of varying dark interval on the kinetics of light-induced formation of the membrane potential were studied on individual chloroplasts of Anthoceros with the use of capillary microelectrodes. Illumination of the chloroplast with 1 s light pulse after 3 min dark period induced the photoelectrical response with two peaks of the potential that were located at 20 and 500 ms after the onset of illumination. The position of the second peak was shifted along the time-scale depending on the preceding dark interval. The repeated illumination of the chloroplast with 1 s light pulse after 30 s dark interval induced the electrical response with only one maximum and a monotonous decay of the potential in the light. Distinctions in the electrical responses induced by the first and the second light pulses were eliminated by the addition of 50 μM dicyclohexylcarbodiimide (DCCD). The results show that the photoinduction kinetics of the membrane potential in chloroplasts is affected by functioning of H+-ATPase. The delayed peak of the membrane potential in the photoinduction kinetics is interpreted as a consequence of the photoactivated electron transport supported by Photosystem I.  相似文献   

18.
Transient electrical birefringence characterization of heavy meromyosin   总被引:3,自引:0,他引:3  
S Highsmith  D Eden 《Biochemistry》1985,24(18):4917-4924
Heavy meromyosin (HMM) and myosin subfragment 1 (S1) were prepared from myosin by using low concentrations of alpha-chymotrypsin. The light chain distribution in HMM was identical with that of myosin, within experimental error, when analyzed on 12% polyacrylamide gels after electrophoresis. Specific birefringences and birefringence decay times were measured by transient electrical birefringence in 5 mM KCl, 5 mM tris(hydroxymethyl)aminomethane (pH 7), and 1 mM MgCl2 at 4 degrees C under gentle conditions that reduced the CaATPase activity by less than 10%. For solutions of HMM, by use of electric field pulses shorter than 0.5 microseconds, the birefringence decay signal from the S1 portions of HMM could be resolved and the rotational motions of the S1 moieties observed directly. The rotation relaxation time, adjusted to 20 degrees C, was 0.34 microseconds; this is in quantitative agreement with previous hydrodynamic results obtained by using covalently attached probes. The assignment of the fast decay time obtained with HMM to the S1 portions was confirmed by birefringence decay measurements on free S1, for which the relaxation time was 0.13 microseconds, corrected to 20 degrees C. The specific birefringences for S1 and HMM, respectively, were 0.37 X 10(-6) and 12.8 X 10(-6) (cm/statvolt)2. Thus, for much longer electric field pulses, the signal from HMM is due almost entirely to its subfragment 2 (S2) portion, and its rotational dynamics can also be monitored directly by using electrical birefringence. The decay of the signal from the S2 portion could be adequately fit without evoking bending of the S2 portion of HMM other than at its junction with S1.  相似文献   

19.
Summary Mouse leukemic lymphoblasts (L5178Y) brought into close contact by dielectrophoresis underwent cell fusion following the application of electrical pulses in the presence of electrolytes. The electrically fused cells became spherical after switching off the dielectrophoretic field. Fusion between a cell vitally stained with Janus Green and that with Neutral Red resulted in the homokaryon with a mixed color. Intracellular potentials simultaneously recorded from the two cells located on both sides of the homokaryon were identical. The fusion efficiency was remarkably dependent upon temperature, displaying a discontinuity at about 11°C in the Arrhenius plot. The extracellular application of phospholipase-A2 or-C suppressed the fusion yield. Thus, it appears that the phospholipid domains play a crucial role in the electric pulse-induced cell fusion. Treatment of the cells with proteolytic enzymes markedly enhanced the fusion yield, presumably due to removing the glycocalix and/or giving rise to fusion-potent, protein-free lipid domains. The presence of millimolar concentrations of divalent cations (irrespective of Mg2+ or Ca2+) as well as of micromolar concentrations of Ca2+ (but not Mg2+) was prerequisite to the resealing of membranes suffered from electrical breakdown upon exposure to electric pulses. In addition, extracellular Ca2+ (but not Mg2+) ions at more than micromolar concentrations were indispensable for the cell fusion.  相似文献   

20.
Electrical stimulation was applied to hybridoma cells in order to activate metabolic activities and increase the monoclonal antibody production. Hybridoma cells that produce monoclonal antibody to adenosine 3':5'-cyclic monophosphate were placed on a transparent glass electrode immersed in medium and subjected to electric pulses (pulse shape, alternating rectangular; field strength, 4 X 10(3) V X m-1; frequency, 5 kHz; pulse mode, 0.5 min application and 4.5 min pause). After 48 h of incubation, the concentration of lactic acid in the medium reached 8.4 mM, approx. 30% higher than that obtained without electric stimulation. Similarly, cell growth rate was promoted by the electric stimulation, reaching a maximum stimulation after 40 h. When the hybridoma was cultured for 48 h with electrical stimulation, the antibody concentration in the medium reached 22.3 microgram X ml-1, approx. 10% higher than the control, with a concomitant 16% increase in cell concentration. Longer periods of electric pulse application, however, caused an inhibitory effect on the hybridoma growth. The most probable cause of the inhibition are reactive oxygen species such as superoxide and hydrogen peroxide, which are inevitably generated by electrolysis. The presence of superoxide dismutase (EC 1.15.1.1) reduced the inhibitory effects. In conclusion, metabolic activities including monoclonal antibody production were activated by the electrical stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号