首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cerebral ischemia causes functional alteration of the blood-brain barrier, formed by brain capillary endothelial cells (BCEC). Changes in protein expression and activity of selected differentially expressed enzymes were investigated in BCEC subjected to hypoxia (24 h) alone or followed by a 24-h reoxygenation. BCEC proteins were isolated, separated by 2-DE, and identified by MALDI-MS. Computer-based 2-D gel analysis identified 21 up-regulated proteins and 4 down-regulated proteins after hypoxia alone and 9 proteins that were further up-regulated after posthypoxic reoxygenation. The expression of the majority of hypoxia-induced proteins was reduced toward control levels during reoxygenation. The most prominent changes were identified for glycolytic enzymes (e.g., phosphoglycerate kinase), proteins of the ER (e.g., calreticulin), and cytoskeletal (e.g., vimentin) proteins. The results indicate that BCEC respond to hypoxia/reoxygenation by adaptive up-regulation of proteins involved in the glycolysis, protein synthesis, and stress response.  相似文献   

2.
Considerable evidence indicates that the amyloid-beta (Abeta) peptide, a proteolytic fragment of the amyloid precursor protein, is the pathogenic agent in Alzheimer's disease (AD). A number of proteases have been reported as capable of degrading Abeta, among them: neprilysin, insulin-degrading enzyme, endothelin-converting enzyme-1 and -2, angiotensin-converting enzyme and plasmin. These proteases, originating from a variety of cell types, degrade Abeta of various conformational states and in different cellular locations. We report here the isolation of a serine protease from serum-free conditioned medium of human neuroblastoma cells. Tandem mass spectrometry (MS/MS)-based sequencing of the isolated protein identified acyl peptide hydrolase (APH; EC3.4.19.1) as the active peptidase. APH is one of four members of the prolyl oligopeptidase family of serine proteases expressed in a variety of cells and tissues, including erythrocytes, liver and brain, but its precise biological activity is unknown. Here, we describe the identification of APH as an Abeta-degrading enzyme, and we show that the degradation of Abeta by APH isolated from transfected cells is inhibited by APH-specific inhibitors, as well as by synthetic Abeta peptide. In addition, we cloned APH from human brain and from neuroblastoma cells. Most importantly, our results indicate that APH expression in AD brain is lower than in age-matched controls.  相似文献   

3.
4.
Brain capillary endothelial cells form a functional barrier between blood and brain, based on the existence of tight junctions that limit paracellular permeability. Occludin is one of the major transmembrane proteins of tight junctions and its peripheral localization gives indication of tight junction formation. We previously reported that RBE4.B cells (brain capillary endothelial cells), cultured on collagen IV, synthesize occludin and correctly localize it at the cell periphery only when cocultured with neurons. In the present study, we describe a three-cell type-culture system that allowed us to analyze the combined effects of neurons and astrocytes on differentiation of brain capillary endothelial cells in culture. In particular, we found that, in the presence of astrocytes, the neuron-induced synthesis and localization of occludin is precocious as compared to cells cocultured with neurons only.  相似文献   

5.
The cell extracts and conditioned medium from cultured bovine capillary endothelial (BCE) cells were examined to determine the types of plasminogen activator (PA) present in each of these two fractions. The fractions were first analyzed by fibrin autography after sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The cell extracts contained two species of PA of Mr 48,000 and 28,000. Multiple forms of PA were detected in the conditioned medium: variable amounts of the Mr 48,000 and 28,000 forms and a broad band of activity with Mr in the range of 67,000-93,000. The major fraction of the Mr 48,000 form was in the cell extract. Treatment of the cells with 12-0-tetradecanoyl phorbol-13-acetate or with a preparation containing angiogenic activity resulted in a proportionate increase in the levels of all forms. The Mr 48,000 form was demonstrated to be a urokinase-like PA, since it was immunoprecipitated with antibodies to urokinase. When conditioned medium or cell extracts from biosynthetically labelled BCE cells were incubated with antiserum to urokinase, the Mr 48,000 form was immunoprecipitated only from the cell extract. The Mr 67,000-93,000 forms were demonstrated to be tissue-type PAs, since they were immunoprecipitated with antibodies to tissue PA. When the same conditioned medium or cell extracts were incubated with antiserum to tissue-type PA, the Mr 67,000-93,000 forms were immunoprecipitated only from the conditioned medium. Therefore, BCE cells are able to produce both tissue-type PA, which is primarily secreted, and urokinase-type PA, which remains primarily cell associated.  相似文献   

6.
The growth of capillary endothelial cells (BCE) is an important regulatory step in the formation of capillary blood vessels. In vivo, the proliferation of these cells is stringently controlled. In vitro they can be stimulated by polypeptide growth factors, such as acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF). Since bFGF is synthesized and stored by vascular endothelial cells, this mitogen may play an important role in an autocrine growth regulation during angiogenesis. Here, evidence is presented for induction of the mRNA of bFGF by bFGF itself. A similar increase of bFGF mRNA was observed in response to thrombin and after treatment with phorbol ester. These results suggest that an autocrine loop may exist that may serve to modulate the mitogenic response in BCE under various physiological conditions, (e.g., wound healing and new capillary formation).  相似文献   

7.
Tight junctions (TJs) are an important component of the blood-brain barrier, and claudin-1, -3, -5 and -12 have been reported to be localized at the TJs of brain capillary endothelial cells (BCECs). To understand the contribution of each claudin subtype to TJ formation, we have measured the mRNA expression levels of claudin subtypes (claudin-1 to -23) and other relevant proteins in highly purified mouse BCECs. Mouse BCECs were labeled with anti-platelet endothelial cellular adhesion molecule-1 antibody and 2.3 × 106 cells were isolated from 15 mice by magnetic cell sorting. Expression of Tie-2, Mdr1a and GLUT1 mRNAs was concentrated in the isolated fraction, and contamination with neurons and astrocytes was substantially less than in the brain capillary fraction prepared by the standard glass-beads column method. Expression of occludin, junctional adhesion molecule and endothelial-specific adhesion molecule mRNAs was concentrated in the isolated fraction, suggesting that the corresponding proteins are selectively expressed in mouse BCECs. Among claudin subtypes, claudin-5 was most highly expressed, at a level which was at least 593-fold greater that that of claudin-1, -3 or -12. Expression of mRNAs of claudin-8, -10, -15, -17, -19, -20, -22 or -23 was also concentrated in the isolated fraction, suggesting these subtypes are expressed in mouse BCECs. The levels of claudin-10 and -22 mRNAs were comparable with that of occludin mRNA. These results indicate that claudin-5 is the most abundant claudin subtype in mouse BCECs, and are consistent with the idea that claudin-10 and -22 are involved in TJ formation at the blood-brain barrier in cooperation with claudin-5.  相似文献   

8.
9.
Summary We examined the distribution of binding sites for alpha-atrial natriuretic peptide (125I-ANP1–28) and the recently discovered porcine brain natriuretic peptide (125I-pBNP) on immunocytochemically identified cells in dissociated culture preparations of the rat trachea. Specific binding sites for both 125I-ANP1–28 and 125I-pBNP were evenly distributed over distinet subpopulations of smooth muscle myosin-like immunoreactive muscle cells, fibronectin-like immunoreactive fibroblasts and S-100-like immunoreactive glial cells. Neither keratin-like immunoreactive epithelial cells nor protein gene product 9.5-like immunoreactive paratracheal neurones expressed natriuretic peptide binding sites, although autoradiographically labelled glial cells were seen in close association with both neuronal cell bodies and neurites. The binding of each radiolabelled peptide was abolished by the inclusion of either excess (1 M) unlabelled rat ANP or excess unlabelled porcine BNP, suggesting that ANP and BNP share binding sites in the trachea. Furthermore, the ring-deleted analogue, Des-[Gln18, Ser19, Gly20, Leu21, Gly22]-ANF4–23-NH2, strongly competed for specific 125I-ANP1–28 and 125I-pBNP binding sites in the tracheal cultures; this suggests that virtually all binding sites were of the clearance (ANP-C or ANF-R2) receptor subtype.  相似文献   

10.
11.
12.
Increased cerebrovascular permeability is an important factor in the development of cerebral oedema after stroke, implicating the blood-brain barrier (BBB). To investigate the effect of hypoxia on the permeability changes, we used a cell culture model of the BBB consisting of a co-culture of brain capillary endothelial cells and glial cells. When endothelial cells from this co-culture model were submitted alone to hypoxic conditions, long exposures (48 h) were necessary to result in an increase in endothelial cell monolayer permeability to [3H]inulin. When endothelial cells were incubated in presence of glial cells, a huge increase in permeability occurred after 9 h of hypoxic conditions. Oxygen glucose deprivation (OGD) resulted in a much shorter time (i.e. 2 h) required for an increase in permeability. We have demonstrated that this OGD-induced permeability increase involves a transcellular rather than a paracellular pathway. Conditioned medium experiments showed that glial cells secrete soluble permeability factors during OGD. However, endothelial cells have to be made sensitive by OGD in order to respond to these glial soluble factors. This work shows that an early cross-talk between glial and endothelial cells occurs during ischaemic stroke and alters BBB transcellular transport by means of glial factor secretions.  相似文献   

13.
《Cell》2022,185(20):3753-3769.e18
  1. Download : Download high-res image (311KB)
  2. Download : Download full-size image
  相似文献   

14.
There is evidence that binding of metal ions like Zn2+ and Cu2+ to amyloid beta-peptides (Abeta) may contribute to the pathogenesis of Alzheimer's disease. Cu2+ and Zn2+ form complexes with Abeta peptides in vitro; however, the published metal-binding affinities of Abeta vary in an enormously large range. We studied the interactions of Cu2+ and Zn2+ with monomeric Abeta(40) under different conditions using intrinsic Abeta fluorescence and metal-selective fluorescent dyes. We showed that Cu(2+) forms a stable and soluble 1 : 1 complex with Abeta(40), however, buffer compounds act as competitive copper-binding ligands and affect the apparent K(D). Buffer-independent conditional K(D) for Cu(II)-Abeta(40) complex at pH 7.4 is equal to 0.035 micromol/L. Interaction of Abeta(40) with Zn2+ is more complicated as partial aggregation of the peptide occurs during zinc titration experiment and in the same time period (within 30 min) the initial Zn-Abeta(40) complex (K(D) = 60 micromol/L) undergoes a transition to a more tight complex with K(D) approximately 2 micromol/L. Competition of Abeta(40) with ion-selective fluorescent dyes Phen Green and Zincon showed that the K(D) values determined from intrinsic fluorescence of Abeta correspond to the binding of the first Cu2+ and Zn2+ ions to the peptide with the highest affinity. Interaction of both Zn2+ and Cu2+ ions with Abeta peptides may occur in brain areas affected by Alzheimer's disease and Zn2+-induced transition in the peptide structure might contribute to amyloid plaque formation.  相似文献   

15.
Summary We have developed a novel isolation technique for harvesting human capillary endothelial cells. We compared the use of eitherUlex Europaeus Agglutinin (UEA) lectin or anti-platelet endothelial cell adhesion molecule (PECAM) antibody conjugated to magnetic beads for the ability to isolate and maintain pure cultures of human capillary endothelial cells. Cells isolated using either method actively scavenged DiI-acetylated-low density lipoprotein and expressed von Willebrand factor (vWf) up to four passages as assessed by immunofluorescent labeling. Endothelial cells isolated using the anti-PECAM antibody method maintained these endothelial-specific properties for up to 12 passages while the percentage of UEA selected cells expressing these properties decreased during increasing passage number. Furthermore, while both techniques yielded cells that bind UEA at Passage six, only the antibody selected cells expressed the normal pattern of endothelial-specific cellular adhesion molecules as assessed by flow cytometry. Both cell isolates were cultured within a three-dimensional matrix of type I collagen, the antibody selected cells formed tubelike structures within 2 days, while the lectin selected cells did not. The antibody selected capillary endothelial cells were transduced with a retroviral vector containing the human growth hormone cDNA and were found to secrete growth hormone from both two- and three-dimensional cultures. We propose that anti-PECAM antibodies linked to a solid support provide a highly selective step in the isolation and maintenance of pure populations of human capillary endothelial cells from abdominal wall liposuction remnants.  相似文献   

16.
Although the genetic link between the epsilon 4 allele of apolipoprotein E (apoE) and Alzheimer's disease (AD) is well established, the apoE isoform-specific activity underlying this correlation remains unclear. We have recently characterized the interaction of the soluble the amyloid-beta peptide (A beta) with model membrane and demonstrated that non-fibrillar A beta peptide, including N-terminal truncated forms of A beta, induced apoptotic cell death in primary rat cortical neurones in vitro. To further investigate the potential interaction between apoE and A beta in the pathogenesis of AD, we have determined the effect of apoE isoforms on the neurotoxicity of non-fibrillar A beta peptides. We demonstrate here that the apoE2 and E3 isoforms protect cortical neurones against apoptotic cell death induced by a non-fibrillar form of the A beta(1-40), A beta(12-42), A beta(29-40) and A beta(29-42) peptides, whereas apoE4 had no effect. This effect involves the formation of stable complexes between apoE and the C-terminal domain (e.g. amino acids 29-40) of A beta(1-40). Interestingly, apoE had no effect on the toxicity induced by aggregated A beta peptides, suggesting a lack of interaction between apoE and amyloid fibrils. Our results provide evidence that interaction with the C-terminal domain of A beta, apoE2 and E3, but not apoE4, inhibits the interactions of the non-fibrillar A beta peptide with the plasma membrane of neurones, A beta peptide aggregation and subsequent neurotoxicity.  相似文献   

17.
18.
A protein with a molecular mass of 27kDa was induced by hypoxia in a mouse brain capillary endothelial cell line and identified as triosephosphate isomerase (TPI) by amino-terminal sequencing. Hypoxia caused an elevation of the TPI protein level, concomitant with an increase of the TPI mRNA level. However, hypoxia resulted in an insufficient elevation of TPI activity level, compared to an increase of TPI protein level. When cells expressing the recombinant TPI protein with histidine tag were exposed to hypoxia and the TPI protein was affinity-purified, the catalytic activity (specific activity) of the TPI protein purified from hypoxic cells was substantially lower than that obtained from normoxic cells. In addition, three TPI isoforms with an electrophoretic multiplicity were found; two of the three isoforms were substantially increased in response to the hypoxia, but the level of the most acidic isoform was barely changed. The induction of TPI gene expression by hypoxia was suppressed by (1) a chelator of intracellular Ca(2+), (2) a blocker of non-selective cation channels, (3) a blocker of Na(+)/Ca(2+) exchangers, (4) an inhibitor of Ca(2+)/calmodulin-dependent protein kinases, and (5) an inhibitor of c-jun/AP-1 activation.  相似文献   

19.
Human prothrombin kringle-2 and its partial peptide, NSA9 (NSAVQLVEN), have been reported to have potent anti-angiogenic activities. Here, the internalization mechanism of NSA9 into bovine capillary endothelial (BCE) cells was examined using lactate dehydrogenase (LDH) release assay, fluorescence microscopy, and flow cytometry. LDH release assay results suggested that the integrity of the BCE cell membrane was unaffected by NSA9. Fluorescence microscopy indicated that internalized NSA9 was localized in the cytoplasm around the nucleus, and showed a punctuated fluorescence pattern, which is indicative of endocytic vesicles. Also, the cellular internalization of NSA9 is significantly inhibited by depletion of the cellular ATP pool, endocytosis inhibitors such as chloroquine and nocodazole, and incubation at low temperature (4 degrees C). In addition, the anti-proliferative activity of NSA9 against BCE cells was diminished in the presence of endocytosis or metabolic inhibitors. In conclusion, these results strongly suggest that NSA9 might exert its anti-proliferative activity through internalization into BCE cells by endocytosis and energy-dependent pathways.  相似文献   

20.
Tube formation of endothelial cells is an important step of angiogenesis. However, little is known about the molecular mechanisms underlying growth factor-mediated tube formation by endothelial cells. FGF-2 stimulates tube formation by a murine brain capillary endothelial cell line, IBE cells, when cultured on collagen gels (differentiation-associated culture condition), whereas cells proliferate and migrate without forming tube on fibronectin-coated surface (proliferation/migration-associated condition). To elucidate FGF-2-mediated signal transduction pathways leading to tube formation by endothelial cells, we focused on the contribution of Src family kinases. Src family kinase inhibitor PP2 attenuated FGF-2-induced tube formation. Stable expression of kinase-inactive c-Src in IBE cells demonstrated no dominant negative effect on FGF-2-induced tube formation. In vitro kinase assay revealed that c-Fyn was activated by FGF-2 only in cells cultured on collagen gels. Three independent cell lines, expressing kinase-inactive c-Fyn, all exhibited attenuation of FGF-2-mediated tube formation. However, FGF-2-mediated proliferation or migration was not clearly perturbed in these cells. These results show the first time that c-Fyn plays a pivotal role in tube formation by endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号