首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major limitation of adenovirus type 5 (Ad5)-based gene therapy, the inability to target therapeutic genes to selected cell types, is attributable to the natural tropism of the virus for the widely expressed coxsackievirus-adenovirus receptor (CAR) protein. Modifications of the Ad5 fiber knob domain have been shown to alter the tropism of the virus. We have developed a novel system to rapidly evaluate the function of modified fiber proteins in their most relevant context, the adenoviral capsid. This transient transfection/infection system combines transfection of cells with plasmids that express high levels of the modified fiber protein and infection with Ad5.beta gal.Delta F, an E1-, E3-, and fiber-deleted adenoviral vector encoding beta-galactosidase. We have used this system to test the adenoviral transduction efficiency mediated by a panel of fiber protein mutants that were proposed to influence CAR interaction. A series of amino acid modifications were incorporated via mutagenesis into the fiber expression plasmid, and the resulting fiber proteins were subsequently incorporated onto adenoviral particles. Mutations located in the fiber knob AB and CD loops demonstrated the greatest reduction in fiber-mediated gene transfer in HeLa cells. We also observed effects on transduction efficiency with mutations in the FG loop, indicating that the binding site may extend to the adjacent monomer in the fiber trimer and in the HI loop. These studies support the concept that modification of the fiber knob domain to diminish or ablate CAR interaction should result in a detargeted adenoviral vector that can be combined simultaneously with novel ligands for the development of a systemically administered, targeted adenoviral vector.  相似文献   

2.
We investigated the mechanism of adenovirus serotype 5 (Ad5)-mediated maturation of bone marrow-derived murine dendritic cells (DC) using (i) Ad5 vectors with wild-type capsid (AdE1 degrees, AdGFP); (ii) Ad5 vector mutant deleted of the fiber C-terminal knob domain (AdGFPDeltaknob); and (iii) capsid components isolated from Ad5-infected cells or expressed as recombinant proteins, hexon, penton, penton base, full-length fiber, fiber knob, and fiber mutants. We found that penton capsomer (penton base linked to its fiber projection), full-length fiber protein, and its isolated knob domain were all capable of inducing DC maturation, whereas no significant DC maturation was observed for hexon or penton base alone. This capacity was severely reduced for AdGFPDeltaknob and for fiber protein deletion mutants lacking the beta-stranded region F of the knob (residues Leu-485-Thr-486). The DC maturation effect was fully retained in a recombinant fiber protein deleted of the HI loop (FiDeltaHI), a fiber (Fi) deletion mutant that failed to trimerize, suggesting that the fiber knob-mediated DC activation did not depend on the integrity of the HI loop and on the trimeric status of the fiber. Interestingly, peptide-pulsed DC that had been stimulated with Ad5 knob protein induced a potent CD8+ T cell response in vivo.  相似文献   

3.
BACKGROUND: A paucity of coxsackie adenovirus receptor (CAR) hampers the adenovirus serotype 5 (Ad5)-based vector-mediated gene transfer into malignant hematopoietic cells. Fiber-retargeted adenoviral vectors with species B tropism can potentially bypass the CAR requirement and facilitate efficient gene transfer into malignant hematopoietic cells. METHODS: For feasible generation of fiber-retargeted adenoviral vectors, we have modified the versatile AdEasy system with a chimeric fiber gene encoding the Ad5 fiber tail domain and Ad35 fiber shaft and knob domains. An Ad5-based vector encoding the green fluorescent protein (GFP) gene under the control of the PGK promoter with Ad35 fiber receptor specificity was generated (Ad5F35-GFP). The Ad5F35-GFP vector-mediated gene transfer efficiency was compared with a fiber non-modified Ad5-GFP vector, which also encodes the GFP gene under the control of the PGK promoter. RESULTS: We demonstrated that a variety of Ad5-refractory malignant myeloid and B lymphoid cell lines were highly permissive to the Ad5F35-GFP vector infection. Importantly, primary chronic myeloid leukemic (CML) cells and chronic lymphocytic leukemia (CLL) B cells were superiorly transduced by the Ad5F35-GFP vector at a multiplicity of infection (MOI) of 100 compared with the Ad5-GFP vector. CONCLUSIONS: Our study will facilitate the generation of fiber-retargeted adenoviral vectors and enable transient genetic manipulation of primary malignant hematopoietic cells.  相似文献   

4.
General strategy for broadening adenovirus tropism   总被引:4,自引:0,他引:4       下载免费PDF全文
In spite of its broad host range, adenovirus type 5 (Ad5) transduces a number of clinically relevant tissues and cell types inefficiently, mostly because of low expression of the coxsackievirus-adenovirus receptor (CAR). To improve gene transfer to such cells, we modified the Ad5 fiber knob to recognize novel receptors. We expressed a functional Ad5 fiber knob domain on the capsid of phage lambda and employed this display system to construct a large collection of ligands in the HI loop of the Ad5 knob. Panning this library on the CAR-negative mouse fibroblast cell line NIH 3T3 resulted in the identification of three clones with increased binding to these cells. Adenoviruses incorporating these ligands in the fiber gene transduced NIH 3T3 cells 2 or 3 orders of magnitude better than the parent vector. The same nonnative tropism was revealed in other cell types, independently of CAR expression. These Ad5 derivatives proved capable of transducing mouse and human primary immature dendritic cells with up to 100-fold increased efficiency.  相似文献   

5.
One of the hurdles to adenovirus (Ad)-mediated gene transfer is that Ad vectors mediate inefficient gene transfer into cells lacking in the primary receptors, Coxsackievirus and adenovirus receptor (CAR). We previously developed a fiber-mutant Ad vector containing the Arg-Gly-Asp (RGD)-containing peptide motif on the HI loop of the fiber knob, and showed that the mutant vector had enhanced gene transfer activity to human glioma cells, which showed little CAR expression, compared to the vector containing wild type fiber. In this study, the feasibility of the Ad vector containing RGD peptide on the fiber knob was examined in a wide variety of cell types: CAR-positive or -negative human tumor cells, mouse cells, and leukemia cells. The mutant vector infected the cells, which lacked CAR expression but showed αv integrin expression, about 10–1000 times more efficiently than the vector containing wild type fiber via an RGD-integrin (αvβ3 and αvβ5)-dependent, CAR-independent cell entry pathway. The results of this study indicate that Ad vector containing RGD peptide on the fiber knob could be of great utility for gene therapy and gene transfer experiments.  相似文献   

6.
Adenoviral vectors are widely used for cancer therapy and show a tumor-suppressing effect. However, bladder cancers are found to be resistant against infection of Ad5-derived adenoviral vector, limiting the application of the existing strategy of gene therapy. Therefore, efforts to develop novel types of adenoviral vector aimed for improving the viral infection and enhancing expression level of tumor-inhibiting transgene is urgently required. We constructed a 5/35 fiber-modified E1A-deleted adenoviral vector armed with TRAIL gene. Its ability to express this gene for inhibition of bladder cancer cell growth was investigated in our work. The results showed that this modification in fiber region facilitates adenoviral infection to bladder cancer, perhaps due to high expression of CD46 on target cell surface. Subsequently, we found an enhanced expression level of TRAIL mediated by 5/35 fiber-modified adenoviral vectors in bladder cancer cells, leading to an increased tumor-inhibiting capability of 5/35 adenoviral vector against bladder cancer cells. Consistently, growth of xenograft tumors in mice was also effectively inhibited by 5/35 fiber-modified vector-mediated gene therapy strategy. The 5/35 fiber-modified adenoviral vector-based gene transfer shows an improved efficacy against bladder cancers. The application of this novel gene therapy vector may benefit the patients in clinical bladder cancer treatment.  相似文献   

7.
人C组5型腺病毒(Ad5)载体能够有效感染上皮来源的细胞,但对造血细胞的感染效率很低,限制了其在造血调控基础研究以及血液病基因治疗中的应用。为了建立高效感染血液细胞的新型靶向性腺病毒载体系统,对5型腺病毒载体的纤维顶球进行了改造,以AdEasy系统为基础,应用递归PCR的方法人工合成人B组11p型腺病毒的部分纤维(fiber)基因,采用一系列分子生物学方法将其替换AdEasy骨架质粒中的人5型腺病毒的fiber基因,得到新的腺病毒骨架质粒命名为pAdEasy-1/F11p,应用带有GFP报告基因的穿梭质粒pShuttle-GFP与AdEasy-1/F11p腺病毒DNA在BJ5183细菌内重组得到重组腺病毒质粒,将其转染293细胞获得重组腺病毒,命名为Ad5F11p-GFP。以Ad5-GFP作对照,同时感染K562、U937等白血病细胞系,流式细胞仪检测GFP的表达。初步检测结果显示:在10MOI时,Ad5F11p-GFP能够有效感染K562、U937等白血病细胞系,感染细胞效率>90%,对照Ad5-GFP感染细胞效率<30%,这表明改建后的腺病毒AdEasy-1/F11p可以高效介导基因转移到血液细胞,是一种很好的血液细胞靶向性腺病毒载体。  相似文献   

8.
The development of genetically modified adenovirus (Ad) vectors with specificity for a single cell type will require both the introduction of novel tropism determinants and the ablation of endogenous tropism. Consequently, it will not be possible to exploit the native cellular entry pathway in the propagation of these targeted Ad vectors. Based on the concept that Ad enters cells by a two-step process in which a primary receptor serves as a high affinity binding site for the Ad fiber knob, with subsequent internalization mediated by alpha v integrins, we designed two artificial primary receptors. The extracellular domain of one of these synthetic receptors was derived from a single-chain antibody (sFv) with specificity for Ad5 knob, while the second receptor consisted of an icosapeptide identified by biopanning a phage display library against Ad5 knob. Expression of either of these artificial virus-binding receptors in fiber receptor-negative cells possessing alpha v integrins conferred susceptibility to Ad infection. We then created a novel mechanism for cell binding by genetically modifying both the vector and the target cell. In this approach, six histidine (His) residues were incorporated at the C-terminal of the Ad fiber protein. The resultant Ad vector was able to infect nonpermissive cells displaying the cognate artificial receptor, containing an anti-His sFv. This strategy, comprising a genetically engineered Ad virion and a modified cell line, should be useful in the propagation of targeted Ad vectors that lack the ability to bind the native fiber receptor.  相似文献   

9.
NGR(Asn-Gly-Arg)是通过噬菌体展示技术筛选出来的能够和肿瘤新生血管特异结合的三肽模体,可以将多种药物分子和病毒载体靶向运输到肿瘤或者进行血管再生的组织中。为此构建了腺病毒衣壳蛋白knob的HI环(HI-loop)经NGR肽段修饰的并同时表达三种报告基因的腺病毒载体Ad5/E1-mCherry/E3-luciferase-2A-eGFP/knob-NGR。体内、外实验研究表明,该病毒载体可成功表达三种报告基因;经NGR肽段修饰的腺病毒载体对人乳腺癌细胞系MDA-MB-231的感染效率高于未经修饰的对照腺病毒Ad5CMVeGFP。该载体的成功构建为进一步研究经NGR肽段修饰的腺病毒在肿瘤动物模型体内的靶向性及经NGR肽段修饰的并携带治疗基因的实验治疗研究奠定了基础。  相似文献   

10.
Rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) do not express the coxsackie-adenovirus (Ad) receptor and are poorly permissive to Ad serotype 5 (Ad5). Genetically modified, coxsackie-Ad receptor-independent Ad5 vectors were studied for gene delivery in human RA FLS and synovium explants and murine collagen-induced arthritis. Short-fiber Ad5 vectors with seven fiber shaft repeats Ad5GFP-R7-knob, Ad5GFP-R7-arginine-glycine-aspartic acid (RGD) (RGD-liganded), and Ad5GFPDeltaknob (knob-deleted) were compared with Ad5GFP-FiWT, a conventional wild-type (WT) Ad5 vector. Gene transfer by Ad5GFP-R7-knob and Ad5GFP-R7-RGD was 40- to 50-fold and 25-fold higher, respectively, than Ad5GFP-FiWT in FLS. Ad5GFPDeltaknob was more efficacious than its knob-bearing version Ad5GFP-R7-knob in FLS transduction. Virus attachment and entry required RGD- and LDV-binding integrins including alpha(v), alpha(v)beta3, a(v)beta5, and beta1. Ad5GFP-R7-knob infection of FLS was partially neutralized by synovial fluid (SF), but remained 30- to 40-fold higher than Ad5GFP-FiWT in the presence of SF. Ad5GFPDeltaknob was partially neutralized by SF at low virus input, but escaped viral neutralization by SF at higher virus input. Gene transfer to human synovium ex vivo explants and murine collagen-induced arthritis in vivo was also more efficient with short fiber-modified vectors (with and without the knob domain) than Ad5GFPFiWT. Gene transfer by short fiber-modified vectors was enhanced by inflammatory cytokines in vitro and in the presence of inflammation in murine synovium in vivo. Our data indicated that the highly efficient gene delivery RA was mediated by RGD- and non-RGD-binding integrins and enhanced by inflammation. Short fiber modifications with knob ablation may be a strategy to enhance gene delivery, reducing vector dose and vector-induced inflammation and toxicity.  相似文献   

11.

Purpose

To evaluate localization and transgene expression from adenoviral vector of serotypes 5, 35, and 28, ± an RGD motif in the fiber following intravitreal or subretinal administration.

Methods

Ocular transduction by adenoviral vector serotypes ± RGD was studied in the eyes of mice receiving an intravitreous or subretinal injection. Each serotype expressed a CMV-GFP expression cassette and histological sections of eyes were examined. Transgene expression levels were examined using luciferase (Luc) regulated by the CMV promoter.

Results

GFP localization studies revealed that serotypes 5 and 28 given intravitreously transduced corneal endothelial, trabecular, and iris cells. Intravitreous delivery of the unmodified Ad35 serotype transduced only trabecular meshwork cells, but, the modification of the RGD motif into the fiber of the Ad35 viral vector base expanded transduction to corneal endothelial and iris cells. Incorporation of the RGD motif into the fiber knob with deletion of RGD from the penton base did not affect the transduction ability of the Ad5 vector base. Subretinal studies showed that RGD in the Ad5 knob shifted transduction from RPE cells to photoreceptor cells. Using a CMV-Luc expression cassette, intravitreous delivery of all the tested vectors, such as Ad5-, Ad35- and Ad28- resulted in an initial rapid induction of luciferase activity that thereafter declined. Subretinal administration of vectors showed a marked difference in transgene activity. Ad35-Luc gene expression peaked at 7 days and remained elevated for 6 months. Ad28-Luc expression was high after 1 day and remained sustained for one month.

Conclusions

Different adenoviral vector serotypes ± modifications transduce different cells within the eye. Transgene expression can be brief or extended and is serotype and delivery route dependent. Thus, adenoviral vectors provide a versatile platform for the delivery of therapeutic agents for ocular diseases.  相似文献   

12.
While adenovirus (Ad) gene delivery vectors are useful in many gene therapy applications, their broad tropism means that they cannot be directed to a specific target cell. There are also a number of cell types involved in human disease which are not transducible with standard Ad vectors, such as Epstein-Barr virus (EBV)-transformed B lymphocytes. Adenovirus binds to host cells via the viral fiber protein, and Ad vectors have previously been retargeted by modifying the fiber gene on the viral chromosome. This requires that the modified fiber be able to bind to the cell in which the vector is grown, which prevents truly specific vector targeting. We previously reported a gene delivery system based on a fiber gene-deleted Ad type 5 (Ad5) vector (Ad5.betagal.DeltaF) and packaging cells that express the viral fiber protein. Expression of different fibers in packaging cells will allow Ad retargeting without modifying the viral chromosome. Importantly, fiber proteins which can no longer bind to the producer cells can also be used. Using this approach, we generated for the first time pseudotyped Ad5.betagal.DeltaF particles containing either the wild-type Ad5 fiber protein or a chimeric fiber with the receptor-binding knob domain of the Ad3 fiber. Particles equipped with the chimeric fiber bound to the Ad3 receptor rather than the coxsackievirus-adenovirus receptor protein used by Ad5. EBV-transformed B lymphocytes were infected efficiently by the Ad3-pseudotyped particles but poorly by virus containing the Ad5 fiber protein. The strategy described here represents a broadly applicable method for targeting gene delivery to specific cell types.  相似文献   

13.
Adenoviral (Ad) vectors have been widely used in human gene therapy clinical trials. However, their application has frequently been restricted by the unfavorable expression of cell surface receptors critical for Ad infection. Infections by Ad2 and Ad5 are largely regulated by the elongated fiber protein that mediates its attachment to a cell surface receptor, coxsackie and adenovirus receptor (CAR). The fiber protein is a homotrimer consisting of an N-terminal tail, a long shaft, and a C-terminal knob region that is responsible for high-affinity receptor binding and Ad tropism. Consequently, the modification of the knob region, including peptide insertion and C-terminal fusion of ligands for cell surface receptors, has become a major research focus for targeting gene delivery. Such manipulation tends to disrupt fiber assembly since the knob region contains a stabilization element for fiber trimerization. We report here the identification of a novel trimerization element in the Ad fiber shaft. We demonstrate that fiber fragments containing the N-terminal tail and shaft repeats formed stable trimers that assembled onto Ad virions independently of the knob region. This fiber shaft trimerization element (FSTE) exhibited a capacity to support peptide fusion. We showed that Ad, modified with a chimeric protein by direct fusion of the FSTE with a growth factor ligand or a single-chain antibody, delivered a reporter gene selectively. Together, these results indicate that the shaft region of Ad fiber protein contains a trimerization element that allows ligand fusion, which potentially broadens the basis for Ad vector development.  相似文献   

14.
Vectors based on the chicken embryo lethal orphan (CELO) avian adenovirus (Ad) have two attractive properties for gene transfer applications: resistance to preformed immune responses to human Ads and the ability to grow in chicken embryos, allowing low-cost production of recombinant viruses. However, a major limitation of this technology is that CELO vectors demonstrate decreased efficiency of gene transfer into cells expressing low levels of the coxsackie-Ad receptor (CAR). In order to improve the efficacy of gene transfer into CAR-deficient cells, we modified viral tropism via genetic alteration of the CELO fiber 1 protein. The alphav integrin-binding motif (RGD) was incorporated at two different sites of the fiber 1 knob domain, within an HI-like loop that we identified and at the C terminus. Recombinant fiber-modified CELO viruses were constructed containing secreted alkaline phosphatase (SEAP) and enhanced green fluorescent protein genes as reporter genes. Our data show that insertion of the RGD motif within the HI-like loop of the fiber resulted in significant enhancement of gene transfer into CAR-negative and CAR-deficient cells. In contrast, CELO vectors containing the RGD motif at the fiber 1 C terminus showed reduced transduction of all cell lines. CELO viruses modified with RGD at the HI-like loop transduced the SEAP reporter gene into rabbit mammary gland cells in vivo with an efficiency significantly greater than that of unmodified CELO vector and similar to that of Ad type 5 vector. These results illustrate the potential for efficient CELO-mediated gene transfer into a broad range of cell types through modification of the identified HI-like loop of the fiber 1 protein.  相似文献   

15.
Intranuclear crystalline inclusions have been observed in the nucleus of epithelial cells infected with Adenovirus serotype 5 (Ad5) at late steps of the virus life cycle. Using immuno-electron microscopy and confocal microscopy of cells infected with various Ad5 recombinants modified in their penton base or fiber domains, we found that these inclusions represented crystals of penton capsomers, the heteromeric capsid protein formed of penton base and fiber subunits. The occurrence of protein crystals within the nucleus of infected cells required the integrity of the fiber knob and part of the shaft domain. In the knob domain, the region overlapping residues 489-492 in the FG loop was found to be essential for crystal formation. In the shaft, a large deletion of repeats 4 to 16 had no detrimental effect on crystal inclusions, whereas deletion of repeats 8 to 21 abolished crystal formation without altering the level of fiber protein expression. This suggested a crucial role of the five penultimate repeats in the crystallisation process. Chimeric pentons made of Ad5 penton base and fiber domains from different serotypes were analyzed with respect to crystal formation. No crystal was found when fiber consisted of shaft (S) from Ad5 and knob (K) from Ad3 (heterotypic S5-K3 fiber), but occurred with homotypic S3K3 fiber. However, less regular crystals were observed with homotypic S35-K35 fiber. TB5, a monoclonal antibody directed against the Ad5 fiber knob was found by immunofluorescence microscopy to react with high efficiency with the intranuclear protein crystals in situ. Data obtained with Ad fiber mutants indicated that the absence of crystalline inclusions correlated with a lower infectivity and/or lower yields of virus progeny, suggesting that the protein crystals might be involved in virion assembly. Thus, we propose that TB5 staining of Ad-infected 293 cells can be used as a prognostic assay for the viability and productivity of fiber-modified Ad5 vectors.  相似文献   

16.
The primary receptor, the coxsackievirus and adenovirus receptor (CAR), and the secondary receptor, αv integrins, are the tropism determinants of adenovirus (Ad) type 5. Inhibition of the interaction of both the fiber with CAR and the penton base with the αv integrin appears to be crucial to the development of targeted Ad vectors, which specifically transduce a given cell population. In this study, we developed Ad vectors with ablation of both CAR and αv integrin binding by mutating the fiber knob and the RGD motif of the penton base. We also replaced the fiber shaft domain with that derived from Ad type 35. High transduction efficiency in the mouse liver was suppressed approximately 130- to 270-fold by intravenous administration of the double-mutant Ad vectors, which mutated two domains each of the fiber knob and shaft and the RGD motif of the penton base compared with those of conventional Ad vectors (type 5). Most significantly, the triple-mutant Ad vector containing the fiber knob with ablation of CAR binding ability, the fiber shaft of Ad type 35, and the penton base with a deletion of the RGD motif mediated a >30,000-fold lower level of mouse liver transduction than the conventional Ad vectors. This triple-mutant Ad vector also mediated reduced transduction in other organs (the spleen, kidney, heart, and lung). Viral DNA analysis showed that systemically delivered triple-mutant Ad vector was primarily taken up by liver nonparenchymal cells and that most viral DNAs were easily degraded, resulting in little gene expression in the liver. These results suggest that the fiber knob, fiber shaft, and RGD motif of the penton base each plays an important role in Ad vector-mediated transduction to the mouse liver and that the triple-mutant Ad vector exhibits little tropism to any organs and appears to be a fundamental vector for targeted Ad vectors.  相似文献   

17.
Hepatic stellate cells (HSCs) are known as initiator cells that induce liver fibrosis upon intoxication or other noxes. Deactivation of this ongoing remodeling process of liver parenchyma into fibrotic tissue induced by HSCs is an interesting goal to be achieved by targeted genetic modification of HSCs. The most widely applied approach in gene therapy is the utilization of specifically targeted vectors based on Adenovirus (Ad) serotype 5. To narrow down the otherwise ubiquitous tropism of parental Ad, two modifications are required: a) ablating the native tropism and b) redirecting the vector particles towards a specific entity solely present on the cells of interest. Therefore, we designed a peptide of the nerve growth factor (NGFp) with specific affinity for the p75 neurotrophin receptor (p75NTR) present on HSCs. Coupling of this NGFp to vector particles was done either via chemical conjugation using bifunctional polyethylene glycol (PEG) or, alternatively, by molecular bridging with a fusion protein specific for viral fiber knob and p75NTR. Both Ad vectors transmit the gene for the green fluorescent protein (GFP). GFP expression was monitored in vitro on primary murine HSCs as well as after systemic administration in mice with healthy and fibrotic livers using intravital fluorescence microscopy. Coupling of NGFp to Ad via S11 and/or PEGylation resulted in markedly reduced liver tropism and an enhanced adenoviral-mediated gene transfer to HSCs. Transduction efficiency of both specific Ads was uniformly higher in fibrotic livers, whereas Ad.GFP-S11-NGFp transduce activated HSCs better than Ad.GFP-PEG-NGFp. These experiments contribute to the development of a targeted gene transfer system to specifically deliver antifibrotic compounds into activated HSCs by systemically applied adenoviral vector modified with NGFp.  相似文献   

18.
The binding of adenovirus (Ad) fiber knob to its cellular receptor, the coxsackievirus and Ad receptor (CAR), promotes virus attachment to cells and is a major determinant of Ad tropism. Analysis of the kinetics of binding of Ad type 5 (Ad5) fiber knob to the soluble extracellular domains of CAR together (sCAR) and each immunoglobulin (Ig) domain (IgV and IgC2) independently by surface plasmon resonance demonstrated that the IgV domain is necessary and sufficient for binding, and no additional membrane components are required to confer high-affinity binding to Ad5 fiber knob. Four Ad5 fiber knob mutations, Ser408Glu and Pro409Lys in the AB loop, Tyr477Ala in the DG loop, and Leu485Lys in beta strand F, effectively abolished high-affinity binding to CAR, while Ala406Lys and Arg412Asp in the AB loop and Arg481Glu in beta strand E significantly reduced the level of binding. Circular dichroism spectroscopy showed that these mutations do not disorder the secondary structure of the protein, implicating Ser408, Pro409, Tyr477, and Leu485 as contact residues, with Ala406, Arg412, and Arg481 being peripherally or indirectly involved in CAR binding. The critical residues have exposed side chains that form a patch on the surface, which thus defines the high-affinity interface for CAR. Additional site-directed mutagenesis of Ad5 fiber knob suggests that the binding site does not extend to the adjacent subunit or toward the edge of the R sheet. These findings have implications for our understanding of the biology of Ad infection, the development of novel Ad vectors for targeted gene therapy, and the construction of peptide inhibitors of Ad infection.  相似文献   

19.
The utility of the present generation of recombinant adenovirus vectors for gene therapy applications could potentially be improved by designing targeted vectors capable of gene delivery to selected cell types in vivo. In order to achieve such targeting, we are investigating the possibilities of incorporation of ligands in the adenovirus fiber protein, which mediates primary binding of adenovirus to its cell surface receptor. Based on the proposed structure of the cell-binding domain of the fiber, we hypothesized that the HI loop of the fiber knob can be utilized as a convenient locale for incorporation of heterologous ligands. In this study, we utilized recombinant fiber proteins expressed in baculovirus-infected insect cells to demonstrate that the incorporation of the FLAG octapeptide into the HI loop does not ablate fiber trimerization and does not disturb formation of the cell-binding site localized in the knob. We then generated a recombinant adenovirus containing this modified fiber and showed that the short peptide sequence engineered in the knob is compatible with the biological functions of the fiber. In addition, by using a ligand-specific antibody, we have shown that the peptide incorporated into the knob remains available for binding in the context of mature virions containing modified fibers. These findings suggest that heterologous ligands can be incorporated into the HI loop of the fiber knob and that this locale possesses properties consistent with its employment in adenovirus retargeting strategies.Recombinant adenovirus vectors have found wide employment for a number of gene therapy applications (22, 36, 40). This fact has derived principally from the high levels of gene transfer achievable with this vector approach both in vitro and in vivo. Indeed, recombinant adenovirus vectors are distinguished from other available systems by their unique ability to accomplish in situ gene delivery to differentiated target cells in a variety of organ contexts (5, 6, 9, 10, 12, 21, 26, 28, 30, 32). Despite this property, specific aspects of the adenovirus biology have prevented the full realization of the potential of such vectors. In this regard, the broad tropism profile of the parent virus for cells of diverse tissues potentially allows unrestricted gene delivery. Thus, for the many gene therapy applications requiring targeted, cell-specific gene delivery, the promiscuous tropism of the adenovirus vector represents a confounding factor. Based on this concept, strategies to modify the native tropism of adenovirus have been developed to allow the derivation of vectors capable of targeted gene delivery.Strategies to achieve this end are directed at modifying specific steps in the adenovirus infection pathway. Adenoviruses of serotypes 2 and 5 normally achieve initial recognition and binding to target cells by means of interactions between the carboxy-terminal knob domain of the fiber protein and the primary receptor (4, 19, 39). After binding, RGD motifs in the penton base interact with cellular integrins of the αVβ3 and αVβ5 types (13, 43, 44). This interaction triggers cellular internalization whereby the virions achieve localization within the endosome. Acidification of the endosome elicits conformational changes in capsid proteins, allowing their interaction with the endosome membrane in a manner that achieves vesicle disruption and particle escape (41). Following endosomolysis, the virion translocates to the nucleus, where the subsequent steps of the viral life cycle occur. This understanding of the key role played by capsid proteins in the viral infectious pathway has suggested strategies to alter this process via modifications of these proteins.In this regard, genetic retargeting of adenovirus vectors via modification of viral genes encoding coat proteins, if successful, offers a simple way to achieve a significant improvement in the present generation of these gene-delivery vehicles. To this end, several groups have reported genetic modifications to the knob domain of adenovirus fiber protein and incorporation of such chimeric fibers into virions. For instance, Stevenson et al. (37) and Krasnykh et al. (25) reported successful generation of adenovirus type 5 (Ad5) virions containing fibers consisting of the tail and shaft domains of Ad5 fiber and the knob domain of Ad3, respectively. In addition, Michael et al. (31) demonstrated the incorporation of the gastrin-releasing peptide into the carboxy terminus of recombinant Ad5 fiber. This finding was extended by Legrand et al. (30a), who achieved rescue of recombinant adenovirus vectors containing such fibers. Another report published by Wickham et al. (45) described the generation of recombinant virus containing fibers with carboxy-terminal polylysine sequences. These studies have established key feasibility issues with respect to this genetic approach but have also demonstrated a number of potentially limiting factors.Of note, all the modifications of adenovirus fiber reported so far were directed towards the carboxy terminus of the protein. In addition, these efforts were initiated without prior knowledge of the three-dimensional (3D) structure of the fiber knob. Thus, the employment of the carboxy terminus of the fiber represented a choice of convenience without consideration of the knob tertiary structure. Clearly, 3D structural information has important bearing upon the placement of heterologous protein sequences within the knob for targeting purposes. Such localization of targeting ligands would ideally be achieved in such a manner as to allow their surface presentation and to minimally perturb the fiber quaternary structure. Thus, the recent crystallization of the fiber knob by Xia et al. (47, 48) has provided a level of structural resolution potentially allowing such a rational modification of the fiber protein. According to the proposed 3D model of the knob (Fig. (Fig.1),1), the HI loop possesses a number of features which predict its utility as an alternative site for ligand incorporation. Specifically, the HI loop does not contribute to intramolecular interactions in the knob. Therefore, incorporation of additional protein sequence should not affect the trimerization of the fiber. In addition, the loop consists mostly of hydrophilic amino acid residues and is exposed outside the knob. It thus potentially demonstrates a high degree of flexibility, creating an optimal environment for ligand incorporation. Furthermore, the lengths of HI loops vary significantly in knobs of different adenovirus serotypes. This fact suggests that alterations of the original structure of the loop, such as insertions and deletions, should be compatible with the correct folding of the entire knob domain. Finally, the HI loop is not involved in the formation of the putative cell-binding site localized in the knob. Open in a separate windowFIG. 13D model of the Ad5 fiber knob. The trimer forms a propeller-like structure when it is viewed along the threefold-symmetry axis from above. The HI loop, exposed outside the knob, connects the β-strands H and I, which are involved in the formation of the cell-binding site. (Reproduced from reference 47 by permission.)Based on these considerations, we endeavored to develop a novel approach to modify the adenovirus fiber protein by employing the HI loop of the knob for this purpose. We show in this report that it is possible to incorporate heterologous amino acid sequences into the HI loop without affecting the correct folding of the fiber polypeptide and its biological functions. Further, our results suggest that this locale may offer advantages for strategies designed to achieve tropism modification based on genetic alteration of capsid proteins.  相似文献   

20.
Recombinant adenoviruses (Ad) have become the vector system of choice for a variety of gene therapy applications. However, the utility of Ad vectors is limited due to the low efficiency of Ad-mediated gene transfer to cells expressing marginal levels of the coxsackievirus and adenovirus receptor (CAR). In order to achieve CAR-independent gene transfer by Ad vectors in clinically important contexts, we proposed modification of viral tropism via genetic alterations to the viral fiber protein. We have shown that incorporation of an Arg-Gly-Asp (RGD)-containing peptide in the HI loop of the fiber knob domain results in the ability of the virus to utilize an alternative receptor during the cell entry process. We have also demonstrated that due to its expanded tissue tropism, this novel vector is capable of efficient transduction of primary tumor cells. An increase in gene transfer to ovarian cancer cells of 2 to 3 orders of magnitude was demonstrated by the vector, suggesting that recombinant Ad containing fibers with an incorporated RGD peptide may be of great utility for treatment of neoplasms characterized by deficiency of the primary Ad type 5 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号