首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of juvenile hormone in the haemolymph of larvae of Locusta has been detected by a modified Galleria bioassay and these results are compared with indirect methods of estimating corpus allatum activity. Juvenile hormone is present in the haemolymph during the fourth larval instar except on the last day of the instar, and is absent from the haemolymph of the fifth and final larval instar except on the last day of the instar. Changes in the volumes of the corpora allata simply reflect changes in the growth of the whole insect and are of no value in predicting endocrine activity. Changes in the size of the cells of the corpora allata can be correlated with the presence of juvenile hormone in the haemolymph in the fourth larval instar, but similar changes in cell size occur in the fifth larval instar when no juvenile hormone is present in the haemolymph. The effects of the implantation of corpora allata are unreliable as estimates of corpus allatum activity as isolated corpora allata from fifth instar larvae release juvenile hormone. Indirect methods of measuring corpus allatum activity are thus shown to be unreliable. The Rf value of Locusta juvenile hormone as determined by thin-layer chromatography differs from that of Roeller's juvenile hormone, suggesting that the two hormones might be chemically distinct.  相似文献   

2.
Juvenile hormone synthesis by corpora allata is regulated partly by allatostatin containing nerves from the brain that innervate the corpora cardiaca and the corpora allata. To investigate whether NO also participates in the regulation of juvenile hormone synthesis, antibody against NO synthase and the histochemical test for NADPH diaphorase activity, a marker for NO synthase, were applied to the corpora cardiaca-corpora allata of Diploptera punctata. Strong NADPH diaphorase activity occurred in corpus allatum cells but not in nerve fibers in the corpora allata or corpora cardiaca. In contrast, NO immunoreactivity occurred in nerves in the corpora cardiaca but not within the corpora allata. NO and allatostatin were not colocalized. NO synthase and NADPH diaphorase activity were localized in similar areas of the subesophageal ganglion and cells in the pars intercerebralis of the brain. Positive correlation of the quantity of NADPH diaphorase activity with juvenile hormone synthesis during the gonadotrophic cycle and lack of such correlation in subesophageal ganglia suggest that NADPH diaphorase activity reflects the necessity of NADPH in the pathway of juvenile hormone synthesis. These data suggest that NO is unlikely to play a significant role in the regulation of the corpora allata.  相似文献   

3.
Dippu-allatostatins (ASTs) have pleiotropic effects in Locusta migratoria. Dippu-ASTs act as releasing factors for adipokinetic hormone I (AKH I) from the corpus cardiacum (CC) and also alter juvenile hormone (JH) biosynthesis and release from the corpus allatum (CA). Dippu-AST-like immunoreactivity is found within lateral neurosecretory cells (LNCs) of the brain and axons within the paired nervi corporis cardiaci II (NCC II) to the CC and the CA, where there are extensive processes and nerve endings over both of these neuroendocrine organs. There was co-localization of Dippu-AST-like and proctolin-like immunoreactivity within these regions. Dippu-ASTs increase the release of AKH I in a dose-dependent manner, with thresholds below 10(-11)M (Dippu-AST 7) and between 10(-13) and 10(-12)M (Dippu-AST 2). Both proctolin and Dippu-AST 2 caused an increase in the cAMP content of the glandular lobe of the CC. Dippu-AST 2 also altered the release of JH from the locust CA, but this effect depended on the concentration of peptide and the basal release rates of the CA. These physiological effects for Dippu-ASTs in Locusta have not been shown previously.  相似文献   

4.
Regulation of corpus allatum activity in the black mutant strain of Manduca sexta was studied in vivo and in vitro. Allatectomy, denervation, and implantation studies demonstrated that black mutant corpus allatum activity remains low in both wild-type and black mutant host larvae. Attempts to distinguish humoral control mechanisms versus mechanisms dependent on intact allatal nerves indicated that intact allatal nerves were not required for the reduced black mutant corpus allatum activity in vivo. Incubation of corpora allata, using [1-14C]propionate as a juvenile hormone biosynthetic precursor and haemolymph as culture medium, confirmed that black mutant corpora allata are suppressed by a factor(s) in the haemolymph. Under identical conditions wild-type corpora allata were unaffected. Finally, the lowered black mutant corpus allatum activity in haemolymph in vitro correlates with the lowered juvenile hormone titre in black mutant larvae.  相似文献   

5.
Normal rates of juvenile hormone synthesis, cell number and volume of corpora allata were measured in penultimate and final-instar male larvae of Diploptera punctata. The rate of juvenile hormone synthesis per corpus allatum cell was highest on the 4th day of the penultimate stadium, declined slowly for the remainder of that stadium, and rapidly after the first day of the final stadium.Regulation of the corpora allata in final-instar males was studied by experimental manipulation of the corpora allata followed by in vitro radiochemical assay of juvenile hormone synthesis. Nervous inhibition of the corpora allata during the final stadium is suggested by the observation that rates of juvenile hormone synthesis increased following denervation of the corpora allata at the start of the stadium; this operation induced a supernumerary larval instar. Juvenile hormone synthesis by corpora allata denervated at progressively later ages in the final stadium and assayed after 4 days decreased with age at operation. This suggests an increasingly unfavourable humoral environment in the final stadium, which was confirmed by the low rate of juvenile hormone synthesis of adult female corpora allata implanted into final-instar larvae. Thus, inhibitory factors or lack of stimulatory factors in the haemolymph may act with neural inhibition to suppress juvenile hormone synthesis in final-instar males.  相似文献   

6.
The synthesis of insect juvenile hormone III (JH III) by isolated corpora allata of the cockroach Diploptera punctata incubated in vitro is inhibited by phorbol 12-myristate 13-acetate (PMA), phorbol 12,13-dibutyrate and 1-oleyl-2-acetylglycerol. 4 alpha-Phorbol 12,13-didecanoate and diolein are inactive. The inhibitory effect of phorbol 12-myristate 13-acetate is fully reversed by 2E,6E-farnesol or by 2E,6E-farnesoic acid. It is highest in corpora allata that are past their peak in secretory activity or that have been inhibited by injections of 20-hydroxyecdysone. This effect of phorbol esters implicates protein kinase C in the regulation of insect corpus allatum activity.  相似文献   

7.
Summary A monoclonal antibody against allatostatin I was used to demonstrate the allatostatin-immunoreactive pathways between the brain and the corpus cardiacum-corpus allatum complex in the adult cockroach Diploptera punctata. The antibody was two to three orders of magnitude more sensitive to allatostatin I than to the other four known members of the allatostatin family. Whole and sectioned brains in which immunoreactivity was localized with horseradish peroxidase-H2O2-diaminobenzidine reaction showed strongly immunoreactive cells in the pars lateralis of the brain with axons leading to and arborizing in the corpus cardiacum and the corpus allatum. Although many neurosecretory cells of the pars intercerebralis project to the corpora allata only, four strongly immunoreactive cells were evident here (two pairs on either side), and these did not project to the corpus cardiacum and corpus allatum but rather terminated within the protocerebrum in areas in which lateral cells also formed arborizations. Immunoreactivity was found in many other cells in the brain, especially in the tritocerebrum.  相似文献   

8.
A radiochemical assay measuring juvenile hormone synthesis by corpora allata incubated in vitro was adapted for use with the termite Zootermopsis angusticollis. Corpora allata from 3–4-day old virgin female neotenic reproductives were used in these studies because this caste showed the highest rates of juvenile hormone synthesis (0.6 pmol h?1 per pair corpora allata). Juvenile hormone-III synthesis was linear for up to 6 h over the range of concentrations of labelled l-methionine from 27–280 μM. Rates of juvenile hormone synthesis were stimulated up to 10-fold in a dose-dependent manner by the addition of farnesoic acid to the incubation medium. However, the relatively high concentration of 120 μM farnesoic acid reduced the rates of juvenile hormone synthesis. The radiochemical assay was used to determine rates of juvenile hormone synthesis in vitro by corpora allata from larvae with a queen and king vs orphaned larvae. The presence of reproductives resulted in a suppression of larval corpus allatum activity relative to orphaned controls.  相似文献   

9.
When the titre of juvenile hormone III in female Leptinotarsa decemlineata was elevated by the implantation of supernumerary corpora allata or by the injection of the hormone, the rate of endogenous hormone production by the host glands was significantly restrained, as determined by the short-term in vitro radiochemical assay. From denervation studies, it is suggested that during phases of elevated juvenile hormone titre, the corpus allatum activity is regulated via humoral as well as neural factors requiring intact nerve connections. Restrainment of gland activity appears to be mainly via the neural pathway. Isolated corpora allata were not influenced by 10?5 M juvenile hormone III added to the incubation medium in vitro.Studies with farnesenic acid revealed that the final two enzymatic steps in the biosynthetic pathway of juvenile hormone are also diminished during prolonged neural inhibition of the corpora allata.20-Hydroxyecdysone and precocene II had no apparent effect on the corpus allatum activity of Leptinotarsa decemlineata.  相似文献   

10.
11.
Juvenile hormone synthesis by adult female corpora allata was inhibited following implantation into final-larval-instar males; inhibition was prevented by decapitation of the larval hosts on day 11 (prior to the head critical period for moulting), but not by decapitation on day 13. Implantation of one larval protocerebrum restored inhibition of implanted corpora allata, demonstrating that the brain releases an inhibitory factor. Corpora allata implanted into larvae decapitated on day 11 were inhibited by injections of 20-hydroxyecdysone. Since treatment of corpora allata with 20-hydroxyecdysone in vitro did not inhibit juvenile hormone synthesis, ecdysteroids probably act indirectly on the corpora allata. Juvenile hormone synthesis and haemolymph ecdysteroid concentration were measured following implantation of corpora allata along with two larval brains into larval hosts. Brain implantation did not affect ecdysteroid concentration, but did inhibit juvenile hormone synthesis, even in animals with low haemolymph ecdysteroid concentration. Incubation with farnesoic acid stimulated juvenile hormone synthesis by corpora allata from males early in the final larval stadium, but not after day 8, showing that one of the final two reactions of juvenile hormone synthesis is rate-limiting in larval corpora allata at this stage. Adult female corpora allata which had been humorally inhibited by implantation into larvae were stimulated by farnesoic acid.  相似文献   

12.
Electrostimulation of the medial neurosecretory cells of day-1 adult female Locusta migratoria resulted in a significant enhancement of juvenile hormone biosynthesis by the corpora allata within 2–3 days of the operation, as determined by a radiochemical assay for juvenile hormone biosynthesis. This elevation in the rate of juvenile hormone biosynthesis was also reflected in basal oöcyte length, with the oöcytes of stimulated animals significantly larger than the sham-operated animals. Radio-frequency cautery of the cerebral axonal tracts of the medial neurosecretory cells prevented this enhancement in juvenile hormone biosynthesis and in basal oöcyte growth in both stimulated and sham-operated animals.Stimulation of the lateral neurosecretory cells resulted in a slight elevation in rates of juvenile hormone biosynthesis 2 days after the operation. However, after cautery of the medial cell tracts, a significant elevation in juvenile hormone biosynthesis was observed 1 and 2 days after stimulation. Basal oöcyte length in stimulated animals differed significantly from sham-operated animals only on day 6. Cautery of the medial cell tracts again attenuated oöcyte growth. Our results suggest that the medial neurosecretory cells are the source of an allatotropin that can be released by electrostimulation. This substance appears to operate directly on the corpus allatum, causing a change in the juvenile hormone biosynthetic machinery.  相似文献   

13.
In the 1950s, Berta Scharrer predicted that neurosecretions from the brain regulated corpus allatum activity based upon the observation of the change in localization of neurosecretory material in the brain and change in gland activity after severance of nerves between the brain and corpus allatum. Isolation and characterization of neuropeptide regulators of juvenile hormone production by the corpora allata in the late 1980s has confirmed this prediction. Both a stimulatory allatotropin and an inhibitory allatostatin have been isolated from moth brains. Two families of allatostatins, both quite different from each other and that of moths, have been isolated from cockroaches and crickets.The wide distribution of these peptides in the nervous system, in nerves to visceral muscle, in endocrine cells of the midgut and in blood cells, indicate multifunctions in the insects in which they are allatoregulatory. Some of these other functions have been demonstrated in these insects and in insects in which these neuropeptides occur but do not act as corpus allatum regulators. For the latter group, the neuropeptide regulators of the corpora allata have yet to be isolated. The families of neurosecretory regulators will continue to grow.  相似文献   

14.
When two-day-old female Leptinotarsa decemlineata were starved, their corpus allatum activity, as measured by the radiochemical in vitro assay, was significantly reduced after 24 hr. Such a reduction was not observed when the nerve connections between the central nervous system and the retrocerebral complex were severed and the beetles starved up to 5 days. In some experiments, the rate of juvenile hormone biosynthesis in vitro, was substantiated by measurement of the juvenile hormone titre in the haemolymph by physico-chemical methods. It is concluded that intact nervous connections between the central nervous system and the corpora allata are essential for restraining the juvenile hormone biosynthesis during the initial stages of starvation.Corpora allata from 1-day starved insects were considerably stimulated in vitro by farnesenic acid indicating that juvenile hormone synthesis is controlled enzymatically at a stage prior to the final two steps in the pathway. However, on day 5 of starvation, rate-limitation may occur after formation of this intermediate, since farnesenic acid stimulation was much less at this time.Corpora allata of adult females newly emerged from the soil were activated within 4 hr regardless of feeding.  相似文献   

15.
Assay conditions for the short-term, radiochemical, in vitro determination of the spontaneous rate of juvenile biosynthesis by isolated corpora allata from Leptinotarsa decemlineata have been further improved, permitting the measurement of juvenile hormone biosynthesis by individual pairs of corpora allata. The final incubation product has been identified as juvenile hormone III with the aid of High-performance liquid chromatography (HPLC) and juvenile hormone esterase degradation. Using the new assay conditions, the activities of adult corpora allata during maturation were found to be significantly higher in reproductive, long-day animals than in pre-diapause, short-day beetles. During diapause no activity was detectable, whereas corpora allata from post-diapause beetles were reactivated totally after 5 days. Simultaneous determination of the in vitro rates of juvenile hormone biosynthesis and corpus allatum volumes revealed no clear correlation although the results suggest that the volume may be indicative of the maximal capacity for juvenile hormone production. Corpora allata from a population of beetles did not display any synchronous diurnal rhythmicity.  相似文献   

16.
In the subterranean termite Reticulitermes flavipes, allatostatins (ASTs) with the C-terminus Phe-Gly Leu-amide were localized by immunocytochemistry with antibody against a cockroach AST, Dippu AST-7. AST-immunoreactivity occurred in the corpus cardiacum and corpus allatum and in the lateral and medial neurosecretory cells of the brain that innervate these organs as well as in many other nerve cells of the brain. This was observed in workers, nymphs, soldiers and secondary reproductives. A radioimmunoassay, using anti-Dippu AST-11, demonstrated about 40 fmole equivalents of AST in brains of soldiers and secondary reproductives. The product of the corpora allata in this species was determined to be juvenile hormone III. Its synthesis by corpora allata of secondary reproductives, determined by in vitro radiochemical assay, was inhibited in a dose-dependent fashion by two cockroach allatostatins, Dippu AST-7 and Dippu AST-11. Thus, as in cockroaches and crickets, allatostatin-containing nerves innervate the corpora allata of this termite species and their production of juvenile hormone is inhibited by these neuropeptides.  相似文献   

17.
Summary Neuronal circuits in the brain and retrocerebral complex of the cockroach Diploptera punctata have been mapped immunocytochemically with antisera directed against the extended enkephalin, Met-enkephalin-Arg6-Gly7-Leu8 (Met-8). The pathways link median and lateral neurosecretory cells with the corpus cardiacum/corpus allatum complex. In females, nerve fibres penetrate the corpora allata and varicosities or terminals, immunoreactive to Met-8, surround the glandular cells. Males differ in having almost no Met-8 immunoreactivity in the corpora allata. The corpora cardiaca of both males and females are richly supplied with Met-8 immunoreactive material, in particular in the cap regions immediately adjacent to the corpora allata. A similarity in the amino-acid sequences of Met-8 and the C-terminus of the recently characterised allatostatins of D. punctata suggests that the pathways identified with the Met-8 antisera may be the same as those by which the allatostatins are transported from the brain to the corpus allatum. In comparative studies on the blowfly Calliphora vomitoria, similar neuronal pathways have been identified except that no sexual dimophism with respect to amounts of immunoreactive material within the corpus allatum has been observed. These results suggest a possible homology in the neuropeptide regulation of the gland.  相似文献   

18.
Allatostatins are a family of peptides that inhibit the production of juvenile hormone in the cockroach, Diploptera punctata. It is likely that the allatostatin prohormone precursor is processed to give rise to all 13 members of the family simultaneously. All members of the family show potency and efficacy, in terms of their ability to inhibit juvenile hormone production, albeit with dramatically different IC(50) and ED(50) values, ranging from a maximum of 0.014 nM for Dippu-AST 2 to 107 nM for Dippu-AST 1 (ED(50)). The likely occurrence of all 13 peptides in tissues and in haemolymph suggests that they may act in concert to produce physiological effects. We have employed combinations of the allatostatins, including a cocktail of all 13, 12 (minus Dippu-AST 2) and 11 (minus Dippu-AST 2 and 5) as well as mixtures of high and low activity allatostatins (Dippu-AST 5 plus either Dippu-AST 1 or 13) in dose-response studies to examine the possibility of synergistic or additive effects of the peptides on biological activity. None of the peptide combinations yielded evidence of synergistic interactions between allatostatins. However, the data do provide insight into receptor-ligand interactions in cockroaches and suggest the allatostatins regulate JH biosynthesis through a complex mix of differing affinity interactions with receptors in the corpora allata.  相似文献   

19.
The cockroach allatostatin receptor (Dippu-AstR) is a 425 amino acid G-protein coupled receptor that is related to the mammalian galanin receptor. Using relative standard curve real-time PCR analysis, changes in Dippu-AstR mRNA expression levels were examined in tissues of adult mated and virgin female Diploptera punctata. Tissues were chosen that were either known targets of allatostatin (Dippu-AST) action or sites of Dippu-AST localization. Tissues examined included brain, corpora allata (CA), gut, ovaries, testes and abdominal ganglia. Dippu-AstR was expressed in all tissues examined for 7 days after adult emergence. Juvenile hormone (JH) biosynthesis is known to peak on day 5 post-emergence in mated females. In mated females, Dippu-AstR mRNA was at the highest levels on day 6 post-emergence in brain and CA and day 2 post-emergence in midgut. Dippu-AstR expression was found to correlate with the decline in JH biosynthesis noted on day 5 post-emergence and early inhibition of feeding. Dippu-AstR mRNA expression in virgin female midgut and CA was dramatically elevated on days 6 and 7, respectively. Expression of Dippu-AstR mRNA was found to be similar in the abdominal ganglia of mated or virgin females. Ovarian Dippu-AstR expression declined to low levels by day 4. Testes exhibited maximal Dippu-AstR mRNA expression on days 4 and 7 of adult life. A role for Dippu-AST in testes of Diploptera is unknown.  相似文献   

20.
The factors responsible for the initiation of a second oöcyte maturation cycle were investigated by measuring oöcyte growth, vitellogenin titre, and corpus allatum activity after injection of juvenile hormone and/or removal of the egg-case from pregnant females and by performing ovary and corpus allatum transplant experiments.Egg-case removal in late pregnancy results in immediate oöcyte growth, whereas in early pregnancy oöcyte growth is resumed only after a lapse of time, even after injection of juvenile hormone. This, however, induces an immediate increase in the haemolymph vitellogenin titre. A single injection of 2 or 10 μg of juvenile hormone II first stimulates some oöcyte growth after this lapse of time and later activates the corpora allata, which in turn leads to completion of oöcyte maturation. A repeat injection of 10 μg stimulates continuous oöcyte growth without activating the corpora allata. In the presence of an egg case, activation of the corpora allata is suppressed, even after injection of 2 μg of juvenile hormone III, and the oöcytes do not grow. Injection of higher doses stimulates oöcyte growth and leads to expulsion of the egg case in up to 95% of the females. This, however, is not a direct consequence of the increase in size of the ovaries. Ovary transplant experiment show that in young pregnant females the second generation of oöcyte is not yet competent for growth and that ovaries which are competent can mature in young pregnant females, treated with juvenile hormone, whose egg case has been removed.The results are summarized in a model demonstrating the various factors involved in regulating corpus allatum activity in oöcyte maturation and pregnancy and after application of juvenile hormone. We prepose that the corpus allatum activating effect of exogenous juvenile hormone is mediated by the growing oöcyte and that this activation can be suppressed by the continuous presence of exogenous juvenile hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号