首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Macroautophagy (hereafter referred to as autophagy) is a lysosomal catabolic pathway whereby cells recycle macromolecules and organelles. The capacity of autophagy to maintain cellular metabolism under starvation conditions and to remove damaged organelles under stress conditions improves the survival of cells. Yet, autophagy appears to suppress tumorigenesis. In this review we discuss recent data that begin to elucidate the molecular basis for this apparent controversy. First, we summarize our current knowledge on the autophagy-mediated control of both cell survival and cell death in general. Then, we highlight the common cancer-associated changes in autophagy induction, regulation and execution. And finally we discuss the potential of pro- as well as anti-autophagic signaling pathways as targets for future cancer therapy.  相似文献   

2.
《Autophagy》2013,9(5):574-580
Macroautophagy (hereafter referred to as autophagy) is a lysosomal catabolic pathway whereby cells recycle macromolecules and organelles. The capacity of autophagy to maintain cellular metabolism under starvation conditions and to remove damaged organelles under stress conditions improves the survival of cells. Yet, autophagy appears to suppress tumorigenesis. In this review we discuss recent data that begin to elucidate the molecular basis for this apparent controversy. First, we summarize our current knowledge on the autophagy-mediated control of both cell survival and cell death in general. Then, we highlight the common cancer-associated changes in autophagy induction, regulation and execution. And finally we discuss the potential of pro- as well as anti-autophagic signaling pathways as targets for future cancer therapy.  相似文献   

3.
Jin S  White E 《Autophagy》2008,4(5):563-566
Autophagy plays a critical protective role maintaining energy homeostasis and protein and organelle quality control. These functions are particularly important in times of metabolic stress and in cells with high energy demand such as cancer cells. In emerging cancer cells, autophagy defect may cause failure of energy homeostasis and protein and organelle quality control, leading to the accumulation of cellular damage in metabolic stress. Some manifestations of this damage, such as activation of the DNA damage response and generation of genome instability may promote tumor initiation and drive cell-autonomous tumor progression. In addition, in solid tumors, autophagy localizes to regions that are metabolically stressed. Defects in autophagy impair the survival of tumor cells in these areas, which is associated with increased cell death and inflammation. The cytokine response from inflammation may promote tumor growth and accelerate cell non-autonomous tumor progression. The overreaching theme is that autophagy protects cells from damage accumulation under conditions of metabolic stress allowing efficient tolerance and recovery from stress, and that this is a critical and novel tumor suppression mechanism. The challenge now is to define the precise aspects of autophagy, including energy homeostasis and protein and organelle turnover, that are required for the proper management of metabolic stress that suppress tumorigenesis. Furthermore, we need to be able to identify human tumors with deficient autophagy, and to develop rational cancer therapies that take advantage of the altered metabolic state and stress responses inherent to this autophagy defect.  相似文献   

4.
《Autophagy》2013,9(5):563-566
Autophagy plays a critical protective role maintaining energy homeostasis and protein and organelle quality control. These functions are particularly important in times of metabolic stress and in cells with high energy demand such as cancer cells. In emerging cancer cells, autophagy defect may cause failure of energy homeostasis and protein and organelle quality control, leading to the accumulation of cellular damage in metabolic stress. Some manifestations of this damage, such as activation of the DNA damage response and generation of genome instability may promote tumor initiation and drive cell-autonomous tumor progression. In addition, in solid tumors, autophagy localizes to regions that are metabolically stressed. Defects in autophagy impair the survival of tumor cells in these areas, which is associated with increased cell death and inflammation. The cytokine response from inflammation may promote tumor growth and accelerate cell non-autonomous tumor progression. The overreaching theme is that autophagy protects cells from damage accumulation under conditions of metabolic stress allowing efficient tolerance and recovery from stress, and that this is a critical and novel tumor suppression mechanism. The challenge now is to define the precise aspects of autophagy, including energy homeostasis, and protein and organelle turnover, that are required for the proper management of metabolic stress that suppress tumorigenesis. Furthermore, we need to be able to identify human tumors with deficient autophagy, and to develop rational cancer therapies that take advantage of the altered metabolic state and stress responses inherent to this autophagy defect.  相似文献   

5.
Jin S  White E 《Autophagy》2007,3(1):28-31
Human breast, ovarian, and prostate tumors display allelic loss of the essential autophagy gene beclin1 with high frequency, and an increase in the incidence of tumor formation is observed in beclin1(+/-) mutant mice. These findings suggest a role for beclin1 and autophagy in tumor suppression; however, the mechanism by which this occurs has been unclear. Autophagy is a bulk degradation process whereby organelles and cytoplasm are engulfed and targeted to lysosomes for proteolysis,(1,2) There is evidence that autophagy sustains cell survival during nutrient deprivation through catabolism, but also that autophagy is a means of achieving cell death when executed to completion. If or how either of these diametrically opposing functions proposed for autophagy may be related to tumor suppression is unknown. We found that metabolic stress is a potent trigger of apoptotic cell death, defects in which enable long-term survival that is dependent on autophagy both in vitro and in tumors in vivo.(3) These findings raise the conundrum whereby inactivation of a survival pathway (autophagy) promotes tumorigenesis. Interestingly, when cells with defects in apoptosis are denied autophagy, this creates the inability to tolerate metabolic stress, reduces cellular fitness, and activates a necrotic pathway to cell death. This necrosis in tumors is associated with inflammation and enhancement of tumor growth, due to the survival of a small population of surviving, but injured, cells in a microenvironment that favors oncogenesis. Thus, by sustaining metabolism through autophagy during periods of metabolic stress, cells can limit energy depletion, cellular damage, and cell death by necrosis, which may explain how autophagy can prevent cancer, and how loss of a survival function can be tumorigenic.  相似文献   

6.
Autophagy is a catabolic process involving lysosomal turnover of proteins and organelles for maintenance of cellular homeostasis and mitigation of metabolic stress. Autophagy defects are linked to diseases, such as liver failure, neurodegeneration, inflammatory bowel disease, aging and cancer. The role of autophagy in tumorigenesis is complex and likely context-dependent. Human breast, ovarian and prostate cancers have allelic deletions of the essential autophagy regulator BECN1 and Becn1(+/-) and other autophagy-deficient transgenic mice are tumor-prone, whereas tumors with constitutive Ras activation, including human pancreatic cancers, upregulate basal autophagy and are commonly addicted to this pathway for survival and growth; furthermore, autophagy suppression by Fip200 deletion compromises PyMT-induced mammary tumorigenesis. The double-edged sword function of autophagy in cancer has been attributed to both cell- and non-cell-autonomous mechanisms, as autophagy defects promote cancer progression in association with oxidative and ER stress, DNA damage accumulation, genomic instability and persistence of inflammation, while functional autophagy enables cancer cell survival under stress and likely contributes to treatment resistance. In this review, we will focus on the intimate link between autophagy and cancer cell metabolism, a topic of growing interest in recent years, which has been recognized as highly clinically relevant and has become the focus of intense investigation in translational cancer research. Many tumor-associated conditions, including intermittent oxygen and nutrient deprivation, oxidative stress, fast growth and cell death suppression, modulate, in parallel and in interconnected ways, both cellular metabolism and autophagy to enable cancer cells to rapidly adapt to environmental stressors, maintain uncontrolled proliferation and evade the toxic effects of radiation and/or chemotherapy. Elucidating the interplay between autophagy and tumor cell metabolism will provide unique opportunities to identify new therapeutic targets and develop synthetically lethal treatment strategies that preferentially target cancer cells, while sparing normal tissues.  相似文献   

7.
During the tumorigenesis, cancer cells are frequently exposed to metabolic stress which is derived from altered cancer cell metabolism as well as unfavorable tumor microenvironment, such as hypoxia and glucose deprivation. Cancer cells need to respond to these stress stimuli properly through inducing cellular stress responses, such as unfolded protein response and autophagy, for cell survival. Therefore, modulation of these stress responses has been investigated as an alternative anticancer strategy, although their therapeutic clinical roles remain to be determined. In this review, we will discuss the cellular stress responses in cancer cells, the alternative anticancer strategy targeting unfolded protein response and/or autophagy, and the role of phytochemicals, which include resveratrol, genistein, curcumin, epigallocatechin-3-gallate and quercetin, in modulating the cellular stress responses.  相似文献   

8.
Macroautophagy/autophagy is a fundamental cellular degradation mechanism that maintains cell homeostasis, regulates cell signaling, and promotes cell survival. Its role in promoting tumor cell survival in stress conditions is well characterized, and makes autophagy an attractive target for cancer therapy. Emerging research indicates that autophagy also influences cancer metastasis, which is the primary cause of cancer-associated mortality. However, data demonstrate that the regulatory role of autophagy in metastasis is multifaceted, and includes both metastasis-suppressing and -promoting functions. The metastasis-suppressing functions of autophagy, in particular, have important implications for autophagy-based treatments, as inhibition of autophagy may increase the risk of metastasis. In this review, we discuss the mechanisms and context underlying the role of autophagy in metastasis, which include autophagy-mediated regulation of focal adhesion dynamics, integrin signaling and trafficking, Rho GTPase-mediated cytoskeleton remodeling, anoikis resistance, extracellular matrix remodeling, epithelial-to-mesenchymal transition signaling, and tumor-stromal cell interactions. Through this, we aim to clarify the context-dependent nature of autophagy-mediated metastasis and provide direction for further research investigating the role of autophagy in cancer metastasis.  相似文献   

9.
Role of autophagy in breast cancer   总被引:1,自引:0,他引:1  
Autophagy is an evolutionarily conserved process of cytoplasm and cellular organelle degradation in lysosomes. Autophagy is a survival pathway required for cellular viability during starvation; however, if it proceeds to completion, autophagy can lead to cell death. In neurons, constitutive autophagy limits accumulation of polyubiquitinated proteins and prevents neuronal degeneration. Therefore, autophagy has emerged as a homeostatic mechanism regulating the turnover of long-lived or damaged proteins and organelles, and buffering metabolic stress under conditions of nutrient deprivation by recycling intracellular constituents. Autophagy also plays a role in tumorigenesis, as the essential autophagy regulator beclin1 is monoallelically deleted in many human ovarian, breast, and prostate cancers, and beclin1(+/-) mice are tumor-prone. We found that allelic loss of beclin1 renders immortalized mouse mammary epithelial cells susceptible to metabolic stress and accelerates lumen formation in mammary acini. Autophagy defects also activate the DNA damage response in vitro and in mammary tumors in vivo, promote gene amplification, and synergize with defective apoptosis to accelerate mammary tumorigenesis. Thus, loss of the prosurvival role of autophagy likely contributes to breast cancer progression by promoting genome damage and instability. Exploring the yet unknown relationship between defective autophagy and other breast cancer promoting functions may provide valuable insight into the pathogenesis of breast cancer and may have significant prognostic and therapeutic implications for breast cancer patients.  相似文献   

10.
细胞自噬及其与肿瘤关系的研究进展   总被引:2,自引:0,他引:2  
细胞自噬是一种细胞自我降解的过程,在适应代谢应激、保护基因组完整性及维持内环境稳定方面起到重要作用。在许多人类肿瘤中存在自噬水平的改变。肿瘤发生发展的不同阶段,自噬起到了促进和抑制的双重作用。该文综述了细胞自噬的分子机制及其与肿瘤关系的主要研究进展。  相似文献   

11.
Autophagy is a cellular self-catabolic process in which cytoplasmic constituents are sequestered in double membrane vesicles that fuse with lysosomes where they are degraded. As this catabolic activity generates energy, autophagy is often induced under nutrient limiting conditions providing a mechanism to maintain cell viability and may be exploited by cancer cells for survival under metabolic stress. However, progressive autophagy can be cytotoxic and autophagy can under certain settings substitute for apoptosis in induction of cell death. Moreover, loss of autophagy is correlated with tumorigenesis and several inducers of autophagy are tumor-suppressor genes. Thus, the relation of autophagy to cancer development is complex and depends on the genetic composition of the cell as well as on the extra-cellular stresses a cell is exposed to. In this review we describe the intricate nature of autophagy and its regulators, particularly those that have been linked to cancer. We discuss the multifaceted relation of autophagy to tumorigenesis and highlight studies supporting a role for autophagy in both tumor-suppression and tumor-progression. Finally, various autophagy-targeting therapeutic strategies for cancer treatment are presented. This review is dedicated to the memory of Dr. Avner Eisenberg 1953–2004.  相似文献   

12.
Autophagy is a self-degradative process that plays a pivotal role in several medical conditions associated with infection, cancer, neurodegeneration, aging, and metabolic disorders. Its interplay with cancer development and treatment resistance is complicated and paramount for drug design since an autophagic response can lead to tumor suppression by enhancing cellular integrity and tumorigenesis by improving tumor cell survival. In addition, autophagy denotes the cellular ability of adapting to stress though it may end up in apoptosis activation when cells are exposed to a very powerful stress. Induction of autophagy is a therapeutic option in cancer and many anticancer drugs have been developed to this aim. Curcumin as a hydrophobic polyphenol compound extracted from the known spice turmeric has different pharmacological effects in both in vitro and in vivo models. Many reports exist reporting that curcumin is capable of triggering autophagy in several cancer cells. In this review, we will focus on how curcumin can target autophagy in different cellular settings that may extend our understanding of new pharmacological agents to overcome relevant diseases.  相似文献   

13.
Hexokinase II (HK2), a key enzyme involved in glucose metabolism, is regulated by growth factor signaling and is required for initiation and maintenance of tumors. Here we show that metabolic stress triggered by perturbation of receptor tyrosine kinase FLT3 in non–acute myeloid leukemia cells sensitizes cancer cells to autophagy inhibition and leads to excessive activation of chaperone-mediated autophagy (CMA). Our data demonstrate that FLT3 is an important sensor of cellular nutritional state and elucidate the role and molecular mechanism of CMA in metabolic regulation and mediating cancer cell death. Importantly, our proteome analysis revealed that HK2 is a CMA substrate and that its degradation by CMA is regulated by glucose availability. We reveal a new mechanism by which excessive activation of CMA may be exploited pharmacologically to eliminate cancer cells by inhibiting both FLT3 and autophagy. Our study delineates a novel pharmacological strategy to promote the degradation of HK2 in cancer cells.  相似文献   

14.
Macroautophagy/autophagy is a conserved catabolic process through which cellular excessive or dysfunctional proteins and organelles are transported to the lysosome for terminal degradation and recycling. Over the past few years increasing evidence has suggested that autophagy is not only a simple metabolite recycling mechanism, but also plays a critical role in the removal of intracellular pathogens such as bacteria and viruses. When autophagy engulfs intracellular pathogens, the pathway is called ‘xenophagy’ because it leads to the elimination of foreign microbes. Recent studies support the idea that xenophagy can be modulated by bacterial infection. Meanwhile, convincing evidence indicates that xenophagy may be involved in malignant transformation and cancer therapy. Xenophagy can suppress tumorigenesis, particularly during the early stages of tumor initiation. However, in established tumors, xenophagy may also function as a prosurvival pathway in response to microenvironment stresses including bacterial infection. Therefore, bacterial infection-related xenophagy may have an effect on tumor initiation and cancer treatment. However, the role and machinery of bacterial infection-related xenophagy in cancer remain elusive. Here we will discuss recent developments in our understanding of xenophagic mechanisms targeting bacteria, and how they contribute to tumor initiation and anticancer therapy. A better understanding of the role of xenophagy in bacterial infection and cancer will hopefully provide insight into the design of novel and effective therapies for cancer prevention and treatment.  相似文献   

15.
Autophagy is considered an indispensable process that scavenges toxins, recycles complex macromolecules, and sustains the essential cellular functions. In addition to its housekeeping role, autophagy plays a substantial role in many pathophysiological processes such as cancer. Certainly, it adapts cancer cells to thrive in the stress conditions such as hypoxia and starvation. Cancer cells indeed have also evolved by exploiting the autophagy process to fulfill energy requirements through the production of metabolic fuel sources and fundamentally altered metabolic pathways. Occasionally autophagy as a foe impedes tumorigenesis and promotes cell death. The complex role of autophagy in cancer makes it a potent therapeutic target and has been actively tested in clinical trials. Moreover, the versatility of autophagy has opened new avenues of effective combinatorial therapeutic strategies. Thereby, it is imperative to comprehend the specificity of autophagy in cancer-metabolism. This review summarizes the recent research and conceptual framework on the regulation of autophagy by various metabolic pathways, enzymes, and their cross-talk in the cancer milieu, including the implementation of altered metabolism and autophagy in clinically approved and experimental therapeutics.  相似文献   

16.
《Autophagy》2013,9(6):610-613
Autophagy is an evolutionarily conserved process of cytoplasm and cellular organelle degradation in lysosomes. Autophagy is a survival pathway required for cellular viability during starvation; however, if it proceeds to completion, autophagy can lead to cell death. In neurons, constitutive autophagy limits accumulation of polyubiquitinated proteins and prevents neuronal degeneration. Therefore, autophagy has emerged as a homeostatic mechanism regulating the turnover of long-lived or damaged proteins and organelles, and buffering metabolic stress under conditions of nutrient deprivation by recycling intracellular constituents. Autophagy also plays a role in tumorigenesis, as the essential autophagy regulator beclin1 is monoallelically deleted in many human ovarian, breast, and prostate cancers, and beclin1+/- mice are tumor-prone. We found that allelic loss of beclin1 renders immortalized mouse mammary epithelial cells susceptible to metabolic stress and accelerates lumen formation in mammary acini. Autophagy defects also activate the DNA damage response in vitro and in mammary tumors in vivo, promote gene amplification, and synergize with defective apoptosis to accelerate mammary tumorigenesis. Thus, loss of the prosurvival role of autophagy likely contributes to breast cancer progression by promoting genome damage and instability. Exploring the yet unknown relationship between defective autophagy and other breast cancer-promoting functions may provide valuable insight into the pathogenesis of breast cancer and may have significant prognostic and therapeutic implications for breast cancer patients.

Addendum to:

Autophagy Mitigates Metabolic Stress and Genome Damage in Mammary Tumorigenesis

V. Karantza-Wadsworth, S. Patel, O. Kravchuk, G. Chen, R. Mathew, S. Jin and E. White

Genes Dev 2007; 21:1621-35  相似文献   

17.
《Autophagy》2013,9(7):835-837
Reactive oxygen species (ROS) have been implicated in many biological functions and diseases. Often their role is counterintuitive, where ROS can either promote cell survival or cell death depending on the cellular context. Similarly, autophagy is involved in many biological functions and diseases where it can either promote cell survival or cell death. There is now a growing consensus that ROS controls autophagy in multiple contexts and cell types. Furthermore, alterations in ROS and autophagy regulation contribute to cancer initiation and progression. However, how ROS and autophagy contribute to cancer and how to target either for cancer treatment is controversial. Blocking ROS generation could prevent cancer initiation, whereas blockage of autophagy seems to be required for initiation of cancer. In cancer progression, high levels of ROS correspond with increased metabolism, and under metabolic stress autophagy is required to maintain cellular integrity. In cancer treatment, therapeutic drugs that increase ROS and autophagy have been implicated in their mechanism for cell death, such as 2-methoxyestrodial (2-ME) and arsenic trioxide (As2O3), whereas other therapeutic drugs that induce ROS and autophagy seem to have a protective effect. This has led to different approaches to treat cancer patients where autophagy is either activated or inhibited. Both views of ROS and autophagy are valid and reflect the balance within a cell to either survive or die. Understanding this balancing act within a cell is essential to determine whether to block or activate ROS-controlled autophagy for cancer therapy.  相似文献   

18.
Mathew R  White E 《Autophagy》2007,3(5):502-505
Cells exploit autophagy for survival to metabolic stress in vitro as well as in tumors where it localizes to regions of metabolic stress suggesting its role as a survival pathway. Consistent with this survival function, deficiency in autophagy impairs cell survival, but also promotes tumor growth, creating a paradox that the loss of a survival pathway leads to tumorigenesis. There is evidence that autophagy is a homeostatic process functioning to limit the accumulation of poly-ubiquitinated proteins and mutant protein aggregates associated with neuronal degeneration. Interestingly, we found that deficiency in autophagy caused by monoallelic loss of beclin1 or deletion of atg5 leads to accelerated DNA damage and chromosomal instability demonstrating a mutator phenotype. These cells also exhibit enhanced chromosomal gains or losses suggesting that autophagy functions as a tumor suppressor by limiting chromosomal instability. Thus the impairment of survival to metabolic stress due to deficiency in autophagy may be compensated by an enhanced mutation rate thereby promoting tumorigenesis. The protective role of autophagy may be exploited in developing novel autophagy modulators as rational chemotherapeutic as well as chemopreventive agents.  相似文献   

19.
Reactive oxygen species (ROS) are important in regulating normal cellular processes, but deregulated ROS contribute to the development of various human diseases including cancers. Autophagy is one of the first lines of defense against oxidative stress damage. The autophagy pathway can be induced and upregulated in response to intracellular ROS or extracellular oxidative stress. This leads to selective lysosomal self-digestion of intracellular components to maintain cellular homeostasis. Hence, autophagy is the survival pathway, conferring stress adaptation and promoting viability under oxidative stress. However, increasing evidence has demonstrated that autophagy can also lead to cell death under oxidative stress conditions. In addition, altered autophagic signaling pathways that lead to decreased autophagy are frequently found in many human cancers. This review discusses the advances in understanding of the mechanisms of ROS-induced autophagy and how this process relates to tumorigenesis and cancer therapy.  相似文献   

20.
The role of autophagy in tumorigenesis is controversial. Both autophagy inhibitors (chloroquine) and autophagy promoters (rapamycin) block tumorigenesis by unknown mechanism(s). This is called the “Autophagy Paradox”. We have recently reported a simple solution to this paradox. We demonstrated that epithelial cancer cells use oxidative stress to induce autophagy in the tumor microenvironment. As a consequence, the autophagic tumor stroma generates recycled nutrients that can then be used as chemical building blocks by anabolic epithelial cancer cells. This model results in a net energy transfer from the tumor stroma to epithelial cancer cells (an energy imbalance), thereby promoting tumor growth. This net energy transfer is both unilateral and vectorial, from the tumor stroma to the epithelial cancer cells, representing a true host-parasite relationship. We have termed this new paradigm “The Autophagic Tumor Stroma Model of Cancer Cell Metabolism” or “Battery-Operated Tumor Growth”. In this sense, autophagy in the tumor stroma serves as a “battery” to fuel tumor growth, progression, and metastasis, independently of angiogenesis. Using this model, the systemic induction of autophagy will prevent epithelial cancer cells from using recycled nutrients, while the systemic inhibiton of autophagy will prevent stromal cells from producing recycled nutrients—both effectively “starving” cancer cells. We discuss the idea that tumor cells could become resistant to the systemic induction of autophagy, by the up-regulation of natural endogenous autophagy inhibitors in cancer cells. Alternatively, tumor cells could also become resistant to the systemic induction of autophagy, by the genetic silencing/deletion of pro-autophagic molecules, such as Beclin1. If autophagy resistance develops in cancer cells, then the systemic inhibition of autophagy would provide a therapeutic solution to this type of drug resistance, as it would still target autophagy in the tumor stroma. As such, an anti-cancer therapy that combines the alternating use of both autophagy promoters and autophagy inhibitors would be expected to prevent the onset of drug resistance. We also discuss why anti-angiogenic therapy has been found to promote tumor recurrence, progression, and metastasis. More specifically, anti-angiogenic therapy would induce autophagy in the tumor stroma via the induction of stromal hypoxia, thereby converting a non-aggressive tumor type to a “lethal” aggressive tumor phenotype. Thus, uncoupling the metabolic parasitic relationship between cancer cells and an autophagic tumor stroma may hold great promise for anti-cancer therapy. Finally, we believe that autophagy in the tumor stroma is the local microscopic counterpart of systemic wasting (cancer-associated cachexia), which is associated with advanced and metastatic cancers. Cachexia in cancer patients is not due to decreased energy intake, but instead involves an increased basal metabolic rate and increased energy expenditures, resulting in a negative energy balance. Importantly, when tumors were surgically excised, this increased metabolic rate returned to normal levels. This view of cachexia, resulting in energy transfer to the tumor, is consistent with our hypothesis. So, cancer-associated cachexia may start locally as stromal autophagy, and then spread systemically. As such, stromal autophagy may be the requisite precursor of systemic cancer-associated cachexia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号