首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among a library of 70 azoles, 8 indole derivatives substituted in the 2-, 3- or 5- position with an azolylmethyl or alpha-azolylbenzyl chain were evaluated for retinoic acid (RA) metabolism inhibitory activity. The most active inhibitors identified in this study were 5-bromo-1-ethyl-3-methyl-2-[(phenyl)(1H-1,2,4-triazol-1-yl)methyl]-1H-indole (3) (68.9% inhibition) and 5-bromo-1-ethyl-2-[(4-fluorophenyl) (1H-1,2,4-triazol-1-yl)methyl]-3-methyl-1H-indole (6) (60.4% inhibition). At the same concentration (100 microM) ketoconazole exerted similar inhibitory effect (70% inhibition).  相似文献   

2.
A series of 3-alkyl-4-phenylethylidenamino- (8) and 3-alkyl-4-(3-phenylallylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (9) was synthesized from the reaction of the corresponding 3-alkyl(aryl)-4-amino-4,5-dihydro-1H-1,2,4-triazol-5-ones (1), with phenylacetaldehyde and cinnamaldehyde. 3-Alkyl-4-(2-phenylethylamino)- (10) and 3-alkyl-4-(3-phenylpropylamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (11) were obtained from the selective reduction of compounds (8) and (9) with NaBH4. The in vitro antitumor activity of the novel compounds was screened and the highest inhibition of tree tumor cell lines was observed for the compounds containing phenylethylenamino and phenylethylamino groups at position 4 of 1,2,4-triazol ring.  相似文献   

3.
A series of (2R,3S)-2-(2,4-difluorophenyl)-3-(5-[2-[4-aryl-piperazin-1-yl]-ethyl]-tetrazol-2-yl)-1-[1,2,4]-triazol-1-yl-butan-2-ol (11a-n) and (2R,3S)-2-(2,4-difluorophenyl)-3-(5-[2-[4-aryl-piperazin-1-yl]-ethyl]-tetrazole-1-yl)-1-[1,2,4]-triazol-1-yl-butan-2-ol (12a-n) has been synthesized. The antifungal activity of compounds was evaluated by in vitro agar diffusion and broth dilution assay. Compounds 11d and its positional isomer 12d having 3-trifluoromethyl substitution on the phenyl ring of piperazine demonstrated significant antifungal activity against variety of fungal cultures (Candida spp. C. neoformans and Aspergillus spp.). The compound 12d showed MIC value of 0.12 microg/mL for C. albicans, C. albicans V-01-191A-261 (resistant strain); 0.25 microg/mL for C. tropicalis, C. parapsilosis ATCC 22019 and C. krusei and MIC value of 0.5 microg/mL for C. glabrata, C. krusei ATCC 6258, which is comparable to itraconazole and better than fluconazole. Further, compound 11d showed significant activity (MIC; 0.25-0.5 microg/mL) against Candida spp. and strong anticryptococcal activity (MIC; 0.25 microg/mL) against C. neoformans.  相似文献   

4.
Retinoic acid (RA), the biologically active metabolite of vitamin A, is used medicinally for the treatment of hyperproliferative diseases including dermatological conditions and cancer. The antiproliferative effects of RA have been well documented as well as the limitations owing to toxicity and the development of resistance to RA therapy. RA metabolism inhibitors (RAMBAs or CYP26 inhibitors) are attracting increasing interest as an alternative method for enhancing endogenous levels of retinoic acid in the treatment of hyperproliferative disease. Here the synthesis and inhibitory activity of novel 3-(1H-imidazol- and triazol-1-yl)-2,2-dimethyl-3-(4-(phenylamino)phenyl)propyl derivatives in a MCF-7 CYP26A1 microsomal assay are described. The most promising inhibitor methyl 2,2-dimethyl-3-(4-(phenylamino)phenyl)-3-(1H-1,2,4-triazol-1-yl)propanoate (6) exhibited an IC(50) of 13 nM (compared with standards Liarozole IC(50) 540 nM and R116010 IC(50) 10 nM) and was further evaluated for CYP selectivity using a panel of CYP with >100-fold selectivity for CYP26 compared with CYP1A2, 2C9 and 2D6 observed and 15-fold selectivity compared with CYP3A4. The results demonstrate the potential for further development of these potent inhibitors.  相似文献   

5.
N-Substituted amides of endo-3-(3-methylthio-1,2,4-triazol-5-yl)bicyclo[2.2.1]hept-5-ene-2-carboxylic acid and 1-(5-methylthio-1,2,4-triazol-3-yl)cyclohexane-2-carboxylic acid were prepared by the condensation reaction of endo-S-methyl-N1-(bicyclo[2.2.1]hept-5-ene-2,3-dicarbonyl)isothiosemicarbazide and S-methyl-N1-(cyclohexane-2,3-dicarbonyl)isothiosemicarbazide with primary amines. The synthesized compounds were screened for their microbiological and pharmacological activities.  相似文献   

6.
A series of 1-(N-benzylamino)-2-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-2-ols 6a-c, 7a-c, 8a, and 9a were prepared in five steps and evaluated for their antifungal activity. The most active compound 7b was docked into a home-made 3D model of the targeted enzyme confirming the importance of Tyr118, His377, and Ser378 residues in its binding mode.  相似文献   

7.
Enantiomerically pure (R)- and (S)-1-(1H-1,2,4-triazol-1-yl)-2-(4-fluorophenyl)-3-trimethylsilylpropan-2-ol 1 were prepared via an enantioselective Grignard reaction. The absolute stereochemistry of 1 was determined by X-ray analysis. In a comparison of in vitro antifungal activities of the enantiomers, the (-)-enantiomer with the R-absolute configuration was far more potent than the (+)-enantiomer.  相似文献   

8.
(3-tert-Butyl-7-(5-methylisoxazol-3-yl)-2-(1-methyl-1H-1,2,4-triazol-5-ylmethoxy)pyrazolo[1,5-d][1,2,4]triazine (1) was recently identified as a functionally selective, inverse agonist at the benzodiazepine site of GABA(A) alpha5 receptors and enhances performance in animal models of cognition. The routes of metabolism of this compound in vivo in rat have been well characterised, the identities of the major metabolites are confirmed by synthesis and their biological profiles were evaluated. An unusual oxidation of the pyrazolo[1,5-d][1,2,4]triazine core to the corresponding pyrazolo[1,5-d][1,2,4]triazin-4(5H)-one scaffold by aldehyde oxidase has been observed.  相似文献   

9.
Earlier, we have reported the synthesis and anti-inflammatory evaluation of different 3-(4H-1,2,4-triazol-3-ylthio)-N-substituted propanamide. In this article, we are reporting the various tautomeric forms of the most active anti-inflammatory compound, 3-(4H-1,2,4-triazol-3-ylthio)-N-phenylpropanamide (6a) and their virtual screening by molecular docking using six principle tautomeric forms. Docking analysis suggested that compound 3-(4H-1,2,4-triazol-3-ylthio)-N-phenylpropanamide (6a) bound with COX-1 selectively and drug receptor complex was stabilized by tautomerism. Noticeably, hydroxy group formed by tautomerism appreciably improve the drug receptor interactions. It was also supervised that the compound 3-(4H-1,2,4-triazol-3-ylthio)-N-phenylpropanamide (6a) docked near the gate of COX-1 active site and might block the conversion of arachidonic acid to prostaglandin (PG) H2 in the active site of COXs. Moreover, we have carried out receptor based electrostatic analysis to clarify the electronic, steric and hydrophobic field requirement of 3-(4H-1,2,4-triazol-3-ylthio)-N-phenylpropanamide (6a) to interact with COX -1 receptor.  相似文献   

10.
New copper(I) complexes have been synthesised from the reaction of CuCl with 4-(diphenylphosphane)benzoic acid and lithium tris(1H-pyrazol-1-yl)methanesulfonate, Li(SO(3))C(pz)(3), sodium hydrotris(3-trifluoromethyl-1H-pyrazol-1-yl)borate, NaHB[3-(CF(3))pz](3), potassium dihydrobis(1H-1,2,4-triazol-1-yl)borate, KH(2)B(tz)(2), hydrotris(1H-1,2,4-triazol-1-yl)borate, KHB(tz)(3), sodium hydrotris(1H-pyrazol-1-yl)borate, NaHB(pz)(3), potassium hydrotris(3,5-dimethyl-1H-pyrazol-1-yl)borate KHB(3,5-Me(2)Pz)(3) or potassium hydrotris(4-bromo-1H-pyrazol-1-yl)borate KHB(4-Brpz)(3). The complexes obtained have been characterized by elemental analyses and FT-IR in the solid state, and by NMR (1H and 31P[(1)H]) spectroscopy and conductivity measurements in solution. The solution data are consistent with partial dissociation of the sterically hindered complexes by way of breaking of Cu-P and Cu-N bonds. Electrospray mass spectrometry has been used to investigate the relative properties of the 4-(diphenylphosphane)benzoic acid and of the "scorpionate" ligands towards copper(I) ions. Chemiluminescence technique was used to evaluate the superoxide scavenging activity of these new copper complexes.  相似文献   

11.
In the present study, we have tested the cytotoxic and DNA damage activity of two novel bis-1,2,4 triazole derivatives, namely 1,4-bis[5-(5-mercapto-1,3,4-oxadiazol-2-yl-methyl)-thio-4-(p-tolyl)-1,2,4-triazol-3-yl]-butane (MNP-14) and 1,4-bis[5-(carbethoxy-methyl)-thio-4-(p-ethoxy phenyl) -1,2,4-triazol-3-yl]-butane (MNP-16). The effect of these molecules on cellular apoptosis was also determined. The in-vitro cytotoxicity was evaluated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay as well as Trypan blue dye exclusion methods against human acute lymphoblastic leukemia (MOLT4) and lung cancer cells (A549). Our results showed that MNP-16 induced significant cytotoxicity (IC(50) of 3-5 μM) compared with MNP-14. The cytotoxicity induced by MNP-16 was time and concentration dependent. The cell cycle analysis by flow cytometry (fluorescence-activated cell sorting [FACS]) revealed that though there was a significant increase in the apoptotic population (sub-G(1) phase) with an increased concentration of MNP-14 and 16, there was no cell cycle arrest. Further, the comet assay results indicated considerable DNA strand breaks upon exposure to these compounds, thereby suggesting the possible mechanism of cytotoxicity induced by MNP-16. Hence, we have identified a novel molecule (MNP-16) which could be of great clinical relevance in cancer therapeutics.  相似文献   

12.
In the present study, we have tested the cytotoxic and DNA damage activity of two novel bis-1,2,4 triazole derivatives, namely 1,4-bis[5-(5-mercapto-1,3,4-oxadiazol-2-yl-methyl)-thio-4-(p-tolyl)-1,2,4-triazol-3-yl]-butane (MNP-14) and 1,4-bis[5-(carbethoxy-methyl)-thio-4-(p-ethoxy phenyl) -1,2,4-triazol-3-yl]-butane (MNP-16). The effect of these molecules on cellular apoptosis was also determined. The in-vitro cytotoxicity was evaluated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay as well as Trypan blue dye exclusion methods against human acute lymphoblastic leukemia (MOLT4) and lung cancer cells (A549). Our results showed that MNP-16 induced significant cytotoxicity (IC50 of 3–5 μM) compared with MNP-14. The cytotoxicity induced by MNP-16 was time and concentration dependent. The cell cycle analysis by flow cytometry (fluorescence-activated cell sorting [FACS]) revealed that though there was a significant increase in the apoptotic population (sub-G1 phase) with an increased concentration of MNP-14 and 16, there was no cell cycle arrest. Further, the comet assay results indicated considerable DNA strand breaks upon exposure to these compounds, thereby suggesting the possible mechanism of cytotoxicity induced by MNP-16. Hence, we have identified a novel molecule (MNP-16) which could be of great clinical relevance in cancer therapeutics.  相似文献   

13.
Several novel 1-substituted-phenyl beta-carbolines bearing the 2-substituted-1,3,4-oxadiazol-5-yl and 5-substituted-1,2,4-triazol-3-yl groups at C-3 were synthesized and evaluated for their in vitro anticancer activity. The assay results pointed thirteen compounds with growth inhibition effect (GI(50)<100 microM) for all eight different types of human cancer cell lines tested. The beta-carbolines 7a and 7h, bearing the 3-(2-metylthio-1,3,4-oxadiazol-5-yl) group, displayed high selectivity and potent anticancer activity against ovarian cell line with GI(50) values lying in the nanomolar concentration range (GI(50)=10 nM for both compounds). The 1-(N,N-dimethylaminophenyl)-3-(5-thioxo-1,2,4-triazol-3-yl) beta-carboline (8g) was the most active compound, showing particular effectiveness on lung (GI(50)=0.06 microM), ovarian and renal cell lines. The potent anticancer activity presented for synthesized compounds 7a, 7h, and 8g, together with their easiness of synthesis, makes these compounds promising anticancer agents.  相似文献   

14.
A series of 1-[1,2,4-triazol-3-yl] and 1-[1,3,4-thiadiazol-2-yl]-3-methylthio-6,7-dihydrobenzo[c]thiophen-4(5H)ones were synthesized and tested to demonstrate in vitro antimicrobial activity. Some of these compounds exhibited a good activity against Staphylococcus aureus, S. epidermidis and Bacillus subtilis.  相似文献   

15.
In the present study, new Schiff’s base derivatives: (Z)-4-amino-5-(2-(3- fluorobenzylidene)hydrazinyl)-4H-1,2,4-triazole-3-thiol (Y1), (Z)-3-((2-(4-amino-5- mercapto-4H-1,2,4-triazol-3-yl)hydrazono)methyl)phenol (Y2), (Z)-2-((2-(4-amino-5- mercapto-4H-1,2,4-triazol-3-yl)hydrazono)methyl)phenol (Y3) and 3-((Z)-(2-(4- (((E)-3-hydroxybenzylidene)amino)-5-mercapto-4H-1,2,4-triazol-3-yl)hydrazono)methyl)phenol (Y4) were synthesized and their structures were characterized by LC-MS, IR and 1H NMR. The inhibitory effects of these compounds on tyrosinase activites were evaluated. Compounds Y1, Y2 and Y3 showed potent inhibitory effects with respective IC50 value of 12.5, 7.0 and 1.5 μM on the diphenolase activities. Moreover, the inhibition mechanisms were determined to be reversible and mixed types. Interactions of the compounds with tyrosinase were further analyzed by fluorescence quenching, copper interaction, and molecular simulation assays. The results together with the anti-tyrosinase activities data indicated that substitution on the second position of benzene ring showed superior ant-ityrosinase activities than that on third position, and that hydroxyl substitutes were better than fluorine substitutes. In addition, two benzene rings connecting to the triazole ring would produce larger steric hindrance, and affect the bonding between tyrosinase and inhibitors to decrease the inhibitory effects. The anti-tyrosinase effects of these compounds were in contrast to their antioxidant activities. In summary, this research will contribute to the development and design of antityrosinase agents.  相似文献   

16.
In this contribution, the synthesis and characterisation of a series of complexes of the type [Ru(L-L′)(CO)2Cl2] are reported, where L-L′ are the chelating ligands L1-L8, 2-(4H-[1,2,4]triazol-3′-yl)-pyridine (L1); 2-(4H-[1,2,4]triazol-3′-yl)-pyrazine; (L2); 2-(1-methyl-4H-[1,2,4]-triazol-3-yl)pyridine (L3); 2-(5-pyridin-2-yl-4H-[1,2,4]-triazole-3-yl)phenol (L4); 3-(5-methylphenyl)-pyridin-2-yl-1,2,4-triazole (L5); 3-(4-methylphenyl)-pyridin-2-yl-1,2,4-triazole (L6); 3-(4-methoxyphenyl)-pyridin-2-yl-1,2,4-triazole (L7); 3,6-bis[(4-methoxyphenyl)iminomethyl]pyridazine (L8). L1-L7 are triazole-based ligands, which provide two distinct bidentate coordinate modes (via N2 or N4 of the triazole) whereas L8 is pyridazine-based and contains two identical bidentate binding pockets. The products obtained are analysed using infrared and NMR spectroscopy. The X-ray and molecular structures of the complexes with the ligands L2, L6, L7 and L8 are reported. These structures are the first to be reported for triazole based ruthenium chloro and ruthenium pyridazine imine complexes. The data show that the triazole ring in L2, L6 and L7 is coordinated via the N2 atom, and that the pyridazine-based ligand L8 uses only one binding pocket hence accommodating only one ruthenium(II) centre. For all compounds the cis(CO)transCl conformation is obtained. The results obtained are compared with those obtained for other similar compounds.  相似文献   

17.
The influence of (1H-1,2,3-triazol-1-yl)-1,2,5-oxadiazole derivatives: 4-amino-3-(5-methyl-4-ethoxycarbonyl-(1H-1,2,3-triazol-1-yl)-1,2,5-oxadiazole (TF4CH3) and 4,4′-bis(5-methyl-4-ethoxycarbo-nyl-1H-1,2,3-triazol-1-yl)-3,3′-azo-1,2,5-oxadiazole (2TF4CH3) on stimulation of human platelet soluble guanylate cyclase by YC-1, NO donors (sodium nitroprusside, SNP, and spermine NONO) and on a synergistic increase of NO-dependent activation of the enzyme in the presence of YC-1 has been investigated. Both compounds increased guanylate cyclase activation by YC-1, potentiated guanylate cyclase stimulation by NO donors and increased the synergistic effect of YC-1 on the NO-dependent activation of soluble guanylate cyclase. The similarity in the properties of the examined 1,2,3-triazol-1-yl-1,2,5-oxadiazole derivatives with that of YC-1 and a possible mechanism underlying the recognized properties of compounds used are discussed.  相似文献   

18.
Copper(I)-catalyzed addition of alkynes to methyl 3-azido-3-deoxy-1-thio-beta-D-galactopyranoside afforded stable and structurally simple 3-deoxy-3-(1H-1,2,3-triazol-1-yl)-1-thio-galactosides carrying a panel of substituents at the triazole C4 in high yields. The 3-(1H-[1,2,3]-triazol-1-yl)-1-thio-galactoside collection synthesized contained inhibitors of the tumor- and inflammation-related galectin-3 with Kd values as low as 107 microM, which is as potent as the natural disaccharide inhibitors lactose and N-acetyllactosamine.  相似文献   

19.
Structure–activity relationship studies in a series of diarylpyrazolyl thiadiazoles identified cannabinoid-1 receptor antagonists with excellent potency and selectivity. Based on its exceptional in vivo efficacy in animal models and its favorable pharmacokinetic and toxicological profiles, 2-(4-((1H-1,2,4-triazol-1-yl)methyl)-5-(4-bromophenyl)-1-(2-chlorophenyl)-1H-pyrazol-3-yl)-5-tert-butyl-1,3,4-thiadiazole (GCC2680) was selected as a preclinical candidate for the treatment of obesity.  相似文献   

20.
2-[(4-Methyl-4H-1,2,4-triazol-3-yl)sulfanyl]acetamide derivatives were synthesized and their structures were confirmed by 1H NMR, IR, and elemental analysis. Cytotoxicity of the compounds towards HEK-293 and GMK cells was evaluated. Moreover, the antiviral and virucidal activities of these compounds against human adenovirus type 5 and ECHO-9 virus were assessed. Some of the newly synthesized derivatives have the potential to reduce the viral replication of both tested viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号