首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
While most indirect-developing echinoderms (possessing a feeding larval stage) form a hollow, smooth-walled blastula, most direct-developing species form a wrinkled blastula. The process of wrinkled blastula formation was examined in the direct-developing sea urchin, Heliocidaris erythrogramma . Approximately 5 hrs after fertilization the blastula epithelium contains folds along one, two or three orthogonal planes, which superficially appear like 2-, 4- or 8-cell stages, respectively. Microinjection of fluorescent dye into individual blastomeres of 2-, 4- and 8-cell embryos revealed that the wrinkles correspond with the first, second and third cleavage planes. Two factors appear to generate the wrinkled blastula epithelium. First, blastomeres undergo a partial separation along the first, second and third cleavage planes during early cleavage. Subsequent cell divisions are oriented such that the blastula epithelium is constructed with deep creases along these planes of cell separation. Second, there is no room for the expansion of the developing blastoderm within the tightly fitting fertilization envelope. Prior to hatching from the fertilization envelope, wrinkles in the blastula epithelium disappear, due to an increased packing and elongation of the cells. In addition, a substantial volume of cellular material is removed as lipids are secreted into the blastocoel in an apocrine fashion.  相似文献   

2.
Relaxation of tensions of the surface of Xenopus laevisembryos at the late blastula stage leads to deep and diverse developmental defects and increased variability in mutual position and volume ratios of the axial rudiments. Here, we demonstrate that the development of such embryos was markedly normalized if the relaxed tensions were restored in one of two ways: (1) isotropic stretching of the blastocoel roof induced by the incubation of relaxed embryos in a hypotonic medium or (2) anisotropic stretching of embryos on two needles. In the latter case, we succeeded in restoring the morphological axis not only after longitudinal stretching but also after transverse stretching, and the new axis had signs of anteroposterior polarity. The role of isotropic and anisotropic tensions in organization of the early amphibian development is discussed.  相似文献   

3.
Like many echinoderms, the seastar, Patiriella exigua has a wrinkled blastula rather than the smooth-walled blastula typical of most phyla. The cellular events of wrinkled blastula formation in P. exigua were documented using light, confocal and electron microscopy. Wrinkled blastulae have a highly infolded epithelium. Prior to wrinkling, the blastomeres are cuboidal with lipid droplets and yolk granules distributed throughout their cytoplasm. During wrinkling, the cells become columnar and the lipid and yolk reserves become redistributed to the basal and apical ends of the cells, respectively. Gastrulae have a tall columnar epithelium, with a basal accumulation of lipid. Interdigitation of numerous cell projections, including short lateral processes, basal lamellipodia and apical filopodia, assists in maintaining epithelial integrity during wrinkling. Apical filopodia have not been observed in other echinoderm embryos. Although 1 M urea caused elevation of the fertilization envelope, the embryos did not expand into the newly-created space. This is suggested to be due to the adhesive properties of the hyaline layer. Embryos removed from their envelope were enlarged with shallower and fewer wrinkles compared with controls. It appears that the integrity of the hyaline layer and fertilization envelope both influence the compact wrinkled profile of P. exigua blastulae.  相似文献   

4.
In this paper, a simpler method of microinjecting sea urchin embryos without using the conventional microinjection chamber designed by Kiehart is reported. A trough was made on a surface of 0.6% agarose gel dissolved in artificial sea water. Approximately fifty hatched embryos could be loaded in the trough and, consequently, swimming embryos were trapped in the trough. Monoclonal antibody (mAB) 1223 which blocks spiculogenesis in vitro was delivered into the blastocoels of sea urchin embryos to test whether this antibody inhibits spiculogenesis in vivo and also, whether this new technique is effective for the microinjection of the sea urchin embryos. The embryos were injected with mAB1223 at the hatched blastula, early mesenchyme blastula and early gastrula stages, and 63%, 90% and 97% of the embryos did not form spicules at the late gastrula stage, respectively. Therefore, mAB1223 was shown to also block spiculogenesis in vivo. From the fact that spiculogenesis occurred at a lower rate when mAB1223 was injected at the hatched blastula stage than at later stages, it may be speculated that endogenous proteases degraded the injected antibodies. Using this technique, extracellular events in the blastocoel or the function of certain molecules expressed in blastocoel can be easily investigated in vivo.  相似文献   

5.
In this, the first fine structural study of sea cucumber embryology, eggs and embryos of Stichopus tremulus developing at 7.5°C are described from spawning through hatched blastulae. Spawned eggs are at about first meiotic metaphase and are surrounded by a jelly layer that remains around the embryos until hatching. No vitelline coat can be demonstrated, but whether it is truly absent or removed by electron microscopic processing is not known. Insemination initiates a rapid cortical reaction, completed within 2 min., which involves a wave of cortical granule exocytosis and fertilization envelope formation. The compactly fibrous fertilization envelope is about 50 nm thick and appears to consist entirely of ejected cortical granule material (if one assumes that there is no vitelline coat). As the fertilization envelope elevates, no hyaline layer appears in the perivitelline space. The first and second polar bodies are emitted, respectively, at about 9 and 15 min. after insemination. The first seven or so cleavages are equal, radial, and occur approximately every 4 hr. The blastocoel opens up at the four-cell stage and, during the earlier cleavages, remains connected with the perivitelline space via numerous gaps between the roughly spherical blastomeres. At the 64-cell stage, these gaps begin to close as the blastomeres start to become cuboidal; in addition, an embryonic cuticle is produced on the apical surface of each blastomere. In embryos of several hundred cells, the blastomeres become associated apicolaterally by junctional complexes, each consisting of a zonula adherens and a septate junction. Several hours before hatching, a single cilium is produced at the apical surface of most blastomeres. At hatching (about 50 hr after insemination), the ciliated blastula leaves behind the fertilization envelope and jelly layer. Swimming blastulae soon begin to elongate in the animal-vegetal axis, and a basal lamina develops on blastomere surfaces facing the blastocoel. The discussion includes a fine structural comparison of egg coats among the five classes of the phylum Echinodermata.  相似文献   

6.
Development of the Asian amphioxus, Branchiostoma belcheri tsingtauense, was investigated by scanning and transmission electron microscopy (SEM and TEM) from the fertilized egg through the blastula stage. The fertilized egg is spherical (mean diameter 115 μm after SEM preparation) and is covered with microvilli. Throughout cleavage, the second polar body remains attached to the animal pole. The cleavage type in this species is essentially radial, as revealed by SEM observations. At the third cleavage or 8-cell stage, and at later stages, a size difference between blastomeres in the animal and the vegetal halves is clearly discernible, but less marked than that reported for the European amphioxus, B. lanceolatum. During the period spanning the third to the fifth cleavage (8–32-cell) stages, blastomeres are arranged in tiers along the animal-vegetal axis. After the sixth cleavage, or 64-cell stage, the tiered arrangement of the blastomeres is no longer seen. At the 4-cell stage, the blastocoel or cleavage cavity is seen as an intercellular space, opening to the outside. The blastocoel remains open at the animal and the vegetal poles in later stages. Throughout early development, the cytoplasm of the blastomeres includes yolk granules, mitochondria, Golgi complexes, and rough and smooth endoplasmic reticulum. Chromatin in the interphase nucleus is not clearly demonstrated, and chromosomes in the mitotic phase are also extremely difficult to detect. As yet, regional differences have not been found in distribution and organization of cytoplasmic components with respect to prospective ectodermal, mesodermal, and endodermal areas in the fertilized egg and later cleaved embryos, although there are possibly fewer yolk granules in the region of the animal pole than in the vegetal polar zone.  相似文献   

7.
A scanning electron-microscopic study was carried out on the extracellular matrices (ECMs) in freeze-dried newt embryos from the cleavage to the gastrula stage. The results revealed the appearance, accumulation and distribution of two types of ECMs, a fibrillar ECM in the blastocoel and an amorphous ECM on the inner surface of the blastocoelic wall (BW). The fibrillar ECM first appeared in the blastocoel at the cleavage stage and increased notably in quantity at the blastula and gastrula stages. On the other hand, the amorphous ECM was initially detected on the inner surface of the BW at the beginning of gastrulation and it increased in quantity during gastrulation. With the progress of archenteron invagination, the amorphous ECM was found to be deposited in the space between the BW and migrating cells.  相似文献   

8.
The distribution of fibronectin in situ in the sea urchin embryo was examined by using indirect immunofluorescence with an antibody raised against human plasma fibronectin. Fibronectin was detected on the surfaces of primary mesenchyme cells in the mid-mesenchyme blastula stage, when these cells are migratory. However, it was not detected on these cells at the early mesenchyme blastula or early gastrula stages. Also, it was not detected in the blastocoel nor on the basal surface of the blastular wall. The migration of the primary mesenchyme cells is therefore correlated with a stage-dependent occurrence of cell surface-associated fibronectin.  相似文献   

9.
The distribution of fibronectin in situ in the sea urchin embryo was examined by using indirect immunofluorescence with an antibody raised against human plasma fibronectin. Fibronectin was detected on the surfaces of primary mesenchyme cells in the mid-mesenchyme blastula stage, when these cells are migratory. However, it was not detected on these cells at the early mesenchyme blastula or early gastrula stages. Also, it was not detected in the blastocoel nor on the basal surface of the blastular wall. The migration of the primary mesenchyme cells is therefore correlated with a stage-dependent occurrence of cell surface-associated fibronectin.  相似文献   

10.
Elongated Microvilli on Vegetal Pole Cells in Sea Urchin Embryos   总被引:1,自引:1,他引:0  
The ultrastructure of cells in the vegetal pole region of sea urchin embryos during early development to the mesenchyme blastula stage was examined by scanning electron microscopy. Vegetal pole cells in the ectoderm with longer microvilli than those of neighboring cells were first detectable at the early blastula stage just before hatching. These cells with elongated microvilli remained in the central region of the vegetal plate when most vegetal plate cells ingressed into the blastocoel to form primary mesenchyme. When first detectable in the sea urchin, Anthocidaris crassispina , four vegetal pole cells had elongated microvilli, but at the time of primary mesenchyme cell ingression, the number of cells with elongated microvilli had increased to eight, apparently by cell division. These vegetal pole cells were wedge-shaped with a broad surface adhering to the hyaline layer at the time of primary mesenchyme cell ingression. SEM observation of the outer surface of embryos showed that the microvilli extended into the hyaline layer. The reinforced attachment of vegetal pole cells to the hyaline layer through their elongated microvilli may explain why these cells could remain at the vegetal pole when the surrounding cells ingressed into the blastocoel as primary mesenchyme cells.  相似文献   

11.
The transparent sea urchin embryo provides a laboratory for study of morphogenesis. The calcareous endoskeleton is formed by a syncytium of mesenchyme cells in the blastocoel. The locations of mesenchyme in the blastocoel, the size of the skeleton, and even the branching pattern of the skeletal rods, are governed by interactions with the blastula wall. Now Guss and Ettensohn(1) show that the rate of deposition of CaCO3 in the skeleton is locally controlled in the mesenchymal syncytium, as is the pattern of expression of three genes involved in skeleton formation. They propose that short range signals emanating from the blastula wall regulate many aspects of the biomineralization process.  相似文献   

12.
N D Holland 《Tissue & cell》1978,10(1):93-112
The fine structure of the early embryo of Comanthus has been described by scanning and transmission electron microscopy at approximately 20-min intervals from zygote (20 min) through early gastrula (260 min). In normally developing (and presumably monospermic) embryos, some non-fertilizing sperm were invariably trapped in the perivitelline space; this suggests that there is an effective block to polyspermy at the level of the plasma membrane. No trace of a hyaline layer is encountered in the pervitelline space. At first cleavage, which begins unilaterally at the animal pole, the contractile ring filaments are rather thick (50–150 Å) in comparison to those known for other marine invertebrates. From first cleavage through early gastrula, the lateral surfaces of the blastomeres are broadly adherent, and there is an intercellular material, presumably an adhesive, in the intercellular space. The blastocoel first appears during the four-cell stage. From the eight-cell stage through the start of gastrulation, only one opening, the vegetal pore, connects the blastocoel with the perivitelline space. Gastrulation begins at the 50–100-cell stage, while the vegetal pore is still open, and a clearly defined blastula stage is bypassed. Gastrulation is by a novel process, which I have called holoblastic involution. At gastrulation the eight most vegetal blastomeres, which encircle the vegetal pore, shoot out erect, unbranched filopodia for many microns through the blastocoel. The filopodia adhere to the blastocoelic surfaces of the animal blastomeres and contract, pulling the vegetal blastomeres into the blastocoel. The migrated vegetal blastomeres adhere to one another, forming the entoderm in the vegetal region of the embryo; the remaining blastomeres become the ectoderm. Soon after the completion of cell migration, the entodermal blastomeres appear to cast off their contractile microappendages and adhesive membranes into the blastocoel.  相似文献   

13.
We have used amphibian gastrulation as a model system to study the action of the extracellular matrix (ECM) glycoprotein tenascin on mesodermal cell migration. Tenascin function was assayed in vitro during spreading of isolated cells from the dorsal marginal zone (DMZ) and during cell migration from DMZ explants. Plastic coated with bovine fibronectin or gastrula ECM was used as a substratum. In both cases, tenascin added to the medium inhibited spreading and migration of mesodermal cells. In addition, a substratum coated with a mixture of fibronectin and tenascin was found to prevent mesodermal cell migration. Tenascin was also microinjected into the blastocoel cavity of living embryos at the late blastula stage. This led to a complete arrest of gastrulation in more than 80% of the cases. Scanning electron microscopy of fractures from arrested gastrulae showed that mesodermal cell migration was blocked. Similar injection experiments carried out at the middle gastrula stage demonstrated that tenascin is able to inhibit cell migration after cells have already contacted the ECM. Mesodermal cell migration in the presence of tenascin could be restored in vitro and in vivo by the monoclonal antibody mAb Tn68 which is known to mask a cell binding site of the molecule. Finally, tenascin microinjected into the blastocoel of blastula or gastrula stage embryos bound within 15 min to the ECM fibrils at all the stages studied. Our results show that exogenous tenascin can be incorporated into embryonic ECM and interferes in vivo with the interactions of cells with a fibronectin-rich matrix.  相似文献   

14.
Summary Bufo arenarum eggs at late blastula and gastrula were treated with tunicamycin, an inhibitor of glycoprotein glycosylation, to investigate its effects on morphogenesis and neural induction. Because of the low permeability of the amphibian egg to a number of drugs, the blastocoel was opened surgically prior to treatment. Almost all of the eggs treated with the antimetabolite, at a concentration of 10 g/ml, from late blastula stage for 24h exhibited exogastrulation. The effect is dose- and stage-dependent as shown by the lower proportion of exogastrulae obtained when eggs are treated at a lower concentration (5 g/ml) or after the onset of gastrulation. Treatment with the antimetabolite did not interfere with neural induction, as partial exogastrulae developed a small neural tube. The most striking biochemical effect was an enhanced uptake of glucose, mannose and leucine. The incorporation of mannose into acid-insoluble material was severely inhibited by tunicamycin, with a concomitant decrease of leucine incorporation into the acid-soluble pool.  相似文献   

15.
The relationship between 35SO4 incorporation into acid mucopolysaccharides and the appearance and activity of the primary mesenchyme cells has been studied in the sea urchin, Lytechinus pictus. The ratio of the uptake of 35SO4 to its incorporation into cetylpyridinium chloride precipitable material varies over a wide range during early development, with the smallest ratio, therefore the greatest sulfation activity, being found at the early mesenchyme blastula stage. The types of mucopolysaccharides produced have not been identified, but are heterogeneous. At the mesenchyme blastula stage nearly 90% of the polysaccharides produced become sulfated. When embryos develop in sulfate-free sea water to the mesenchyme blastula stage there is a 70% decrease in the incorporation of 3H-acetate into polysaccharides and a 13-fold decrease in the ratio of sulfated to nonsulfated polysaccharides produced. Embryos raised in sulfate-free sea water develop normally to the mesenchyme blastula stage at which time there is an accumulation in the blastocoel of primary mesenchyme cells that do not migrate. The surface of the primary mesenchyme cells of sulfate-deficient embryos has a smooth appearance in the scanning electron microscope, while the surface of these cells in control embryos is rough, possibly reflecting the presence of an extracellular coat. It is suggested that there is a correlation between sulfated polysaccharide synthesis, cell surface morphology and cell movement.  相似文献   

16.
The fibronectin fibril matrix on the blastocoel roof of the Xenopus gastrula contains guidance cues that determine the direction of mesoderm cell migration. The underlying guidance-related polarity of the blastocoel roof is established in the late blastula under the influence of an instructive signal from the vegetal half of the embryo, in particular from the mesoderm. Formation of an oriented substratum depends on functional activin and FGF signaling pathways in the blastocoel roof. Besides being involved in tissue polarization, activin and FGF also affect fibronectin matrix assembly. Activin treatment of the blastocoel roof inhibits fibril formation, whereas FGF modulates the structure of the fibril network. The presence of intact fibronectin fibrils is permissive for directional mesoderm migration on the blastocoel roof extracellular matrix.  相似文献   

17.
In the present paper we established the ganglioside composition of the blastula and gastrula stages of the anuran amphibian Bufo arenarum, two relevant stages characterized by dynamic changes in morphology and cellular rearrangements. Densitometric studies evidenced that GD1a and GT1b were the more abundant gangliosides of the blastula embryos whereas GM1 and GM2 were the predominant species in gastrula embryos. Analysis of ganglioside abundance indicates that the "a" and "b" synthesis pathways perform similar biosynthetic activities in the blastula stage, in contrast to the gastrula stage in which a marked predominance of the "a" pathway occurred. The spatio-temporal expression of GM1 and of polygangliotetraosyl ceramides (pGTC) was investigated by wholemount immunocytochemistry using cholera toxin B subunit (CTB) and an affinity purified human anti-GM1 antibody. The pGTC were detected as GM1 after treatment with neuraminidase. Blastomeres from the inner surface of the blastocoelic roof (BCR) of blastula embryos were GM1 and pGTC positive. At midgastrula stage, embryos showed an increased labeling on the inner surface of BCR. To establish whether the GM1 ganglioside was involved in the gastrulation processes, CTB, anti-GM1 antibodies and anti-GM1 Fab' fragments were microinjected into the blastocoel cavity of blastula embryos. Treatment with the probes blocked gastrulation. Scanning electron microscopy analysis of blocked embryos revealed that mesodermal cell migration, radial interdigitation, and convergent extension movements were affected. The blocking of gastrulation was correlated with the absence of fibronectin and EP3/EP4 on the inner surface of blastocoelic roof of CTB- or anti-GM1 treated embryos. Results show that the GM1 ganglioside is differentially expressed by embryonic cells and participates in the morphogenetic processes of amphibian gastrulation. J. Exp. Zool. 286:457-472, 2000.  相似文献   

18.
During early development of the urodele Ambystoma maculatum, the appearance and distribution of fibronectin-containing fibrillar extracellular materials were studied by immunocytochemistry. Fibronectin (FN) first appears in the early blastula (stage 7) as thin punctate fibrils on the cell surface concentrated in the marginal zone. In late blastula (stage 9), thin fibrils are found throughout the blastocoel roof. Early gastrulae (stage 10) have numerous fibrils and multifibrillar strands concentrated in the dorsal lip region and oriented preferentially along a line parallel to the dorsal lip-animal pole axis. There is a striking increase in the amount of FN fibrils during the rest of gastrulation. This FN-containing network can be transferred to plastic substrata with preservation of the preferential orientation observed in vivo. Dorsal marginal zone explants placed on such conditioned substrata show polarized outgrowth toward the animal pole region of conditioned areas when placed on the dorsal lip side or the ventral marginal zone side of conditioned substrata. This outgrowth occurs symmetrically on bovine plasma FN-coated substrata, is prevented by Fab' fragments of antibodies to FN but fails to occur on laminin coated substrata. When migrating mesodermal cells from early gastrulae are cultured on substrata conditioned by deposition of the fibrillar matrix, these cells exhibit striking contact inhibition of locomotion, a phenomenon that may explain dispersal of migrating mesodermal cells across the blastocoel roof. When leading edges of mesodermal cells collide, cells abruptly change direction. When leading edges collide with trailing edges, the trailing edges detach from the substratum and cells move apart in the direction of the leading edge.  相似文献   

19.
20.
Belousov LV  Ermakov AS 《Ontogenez》2001,32(4):288-294
Relaxation of tensions of the surface of Xenopus laevis embryos at the late blastula stage leads to deep and diverse developmental defects and increased variability in mutual position and volume ratios of the axial rudiments. Here, we demonstrate that the development of such embryos was markedly normalized if the relaxed tensions were restored in one of two ways: (1) isotropic stretching of the blastocoel roof induced by incubation of relaxed embryos in a hypotonic medium or (2) anisotropic stretching of embryos on two needles. In the latter case, we succeeded in restoring the morphological axis not only after longitudinal stretching, but also after transverse stretching, and the new axis had signs of anteroposterior polarity. The role of isotropic and anisotropic tensions in organization of the early amphibian development is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号