首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The phylum Streptophyta comprises all land plants and six monophyletic groups of charophycean green algae (Mesostigmatales, Chlorokybales, Klebsormidiales, Zygnematales, Coleochaetales, and Charales). Phylogenetic analyses of four genes encoded in three cellular compartments suggest that the Charales are sister to land plants and that charophycean green algae evolved progressively toward an increasing cellular complexity. To validate this phylogenetic hypothesis and to understand how and when the highly conservative pattern displayed by land plant chloroplast DNAs (cpDNAs) originated in the Streptophyta, we have determined the complete chloroplast genome sequence (184,933 bp) of a representative of the Charales, Chara vulgaris, and compared this genome to those of Mesostigma (Mesostigmatales), Chlorokybus (Chlorokybales), Staurastrum and Zygnema (Zygnematales), Chaetosphaeridium (Coleochaetales), and selected land plants. The phylogenies we inferred from 76 cpDNA-encoded proteins and genes using various methods favor the hypothesis that the Charales diverged before the Coleochaetales and Zygnematales. The Zygnematales were identified as sister to land plants in the best tree topology (T1), whereas Chaetosphaeridium (T2) or a clade uniting the Zygnematales and Chaetosphaeridium (T3) occupied this position in alternative topologies. Chara remained at the same basal position in trees including more land plant taxa and inferred from 56 proteins/genes. Phylogenetic inference from gene order data yielded two most parsimonious trees displaying the T1 and T3 topologies. Analyses of additional structural cpDNA features (gene order, gene content, intron content, and indels in coding regions) provided better support for T1 than for the topology of the above-mentioned four-gene tree. Our structural analyses also revealed that many of the features conserved in land plant cpDNAs were inherited from their green algal ancestors. The intron content data predicted that at least 15 of the 21 land plant group II introns were gained early during the evolution of streptophytes and that a single intron was acquired during the transition from charophycean green algae to land plants. Analyses of genome rearrangements based on inversions predicted no alteration in gene order during the transition from charophycean green algae to land plants.  相似文献   

3.
It is fundamentally important to assess the fit of data to model in phylogenetic and evolutionary studies. Phylogenetic methods using molecular sequences typically start with a multiple alignment. It is possible to measure the fit of data to model expectations of data, for example, via the likelihood-ratio (G) test or the X(2) test, if all sites in all sequences have an unambiguous residue. However, nearly all alignments of interest contain sites (columns of the alignment) with missing data, that is, ambiguous nucleotides, gaps, or unsequenced regions, which must presently be removed before using the above tests. Unfortunately, this is often either undesirable or impractical, as it will discard much of the data. Here, we show how iterative ML estimators may directly estimate the site-pattern probabilities for columns with missing data, given only standard i.i.d. assumptions. The optimization may use an EM or Newton algorithm, or any other hill-climbing approach. The resulting optimal likelihood under the unconstrained or multinomial model may be compared directly with the likelihood of the data coming from the model (a G statistic). Alternatively the modified observed and the expected frequencies of site patterns may be compared using a X(2) test. The distribution of such statistics is best assessed using appropriate simulations. The new method is applicable to models using codons or paired sites. The methods are also useful with Hadamard conjugations (spectral analysis) and are illustrated with these and with ML evolutionary models that allow site-rate variability.  相似文献   

4.
5.
6.

Background

Phototropism is the response a plant exhibits when it is faced with a directional blue light stimulus. Though a seemingly simple differential cell elongation response within a responding tissue that results in organ curvature, phototropism is regulated through a complex set of signal perception and transduction events that move from the plasma membrane to the nucleus. In nature phototropism is one of several plant responses that have evolved to optimize photosynthesis and growth.

Objective

In the present work we will review the state of the field with respect to the molecules and mechanisms associated with phototropism in land plants.

Methods

A systematic literature search was done to identify relevant advances in the field. Though we tried to focus on literature within the past decade (1998-present), we have discussed and cited older literature where appropriate because of context or its significant impact to the present field. Several previous review articles are also cited where appropriate and readers should seek those out.

Results

A total of 199 articles are cited that fulfill the criteria listed above.

Conclusions

Though important numerous and significant advances have been made in our understanding of the molecular, biochemical, cell biological and physiologic mechanisms underlying phototropism in land plants over the past decade, there are many remaining unanswered questions. The future is indeed bright for researchers in the field and we look forward to the next decade worth of discoveries.
  相似文献   

7.
Mathews S 《Molecular ecology》2006,15(12):3483-3503
Phytochromes are photoreceptors that provide plants with circadian, seasonal, and positional information critical for the control of germination, seedling development, shade avoidance, reproduction, dormancy, and sleep movements. Phytochromes are unique among photoreceptors in their capacity to interconvert between a red-absorbing form (absorption maximum of approximately 660 nm) and a far-red absorbing form (absorption maximum of approximately 730 nm), which occur in a dynamic equilibrium within plant cells, corresponding to the proportions of red and far-red energy in ambient light. Because pigments in stems and leaves absorb wavelengths below about 700 nm, this provides plants with an elegant system for detecting their position relative to other plants, with which the plants compete for light. Certain aspects of phytochrome-mediated development outside of flowering plants are strikingly similar to those that have been characterized in Arabidopsis thaliana and other angiosperms. However, early diverging land plants have fewer distinct phytochrome gene lineages, suggesting that both diversification and subfunctionalization have been important in the evolution of the phytochrome gene family. There is evidence that subfunctionalization proceeded by the partitioning among paralogues of photosensory specificity, physiological response modes, and light-regulated gene expression and protein stability. Parallel events of duplication and functional divergence may have coincided with the evolution of canopy shade and the increasing complexity of the light environment. Within angiosperms, patterns of functional divergence are clade-specific and the roles of phytochromes in A. thaliana change across environments, attesting to the evolutionary flexibility and contemporaneous plasticity of phytochrome signalling in the control of development.  相似文献   

8.
Inference and missing data   总被引:85,自引:0,他引:85  
RUBIN  DONALD B. 《Biometrika》1976,63(3):581-592
  相似文献   

9.

Background

Untargeted mass spectrometry (MS)-based metabolomics data often contain missing values that reduce statistical power and can introduce bias in biomedical studies. However, a systematic assessment of the various sources of missing values and strategies to handle these data has received little attention. Missing data can occur systematically, e.g. from run day-dependent effects due to limits of detection (LOD); or it can be random as, for instance, a consequence of sample preparation.

Methods

We investigated patterns of missing data in an MS-based metabolomics experiment of serum samples from the German KORA F4 cohort (n?=?1750). We then evaluated 31 imputation methods in a simulation framework and biologically validated the results by applying all imputation approaches to real metabolomics data. We examined the ability of each method to reconstruct biochemical pathways from data-driven correlation networks, and the ability of the method to increase statistical power while preserving the strength of established metabolic quantitative trait loci.

Results

Run day-dependent LOD-based missing data accounts for most missing values in the metabolomics dataset. Although multiple imputation by chained equations performed well in many scenarios, it is computationally and statistically challenging. K-nearest neighbors (KNN) imputation on observations with variable pre-selection showed robust performance across all evaluation schemes and is computationally more tractable.

Conclusion

Missing data in untargeted MS-based metabolomics data occur for various reasons. Based on our results, we recommend that KNN-based imputation is performed on observations with variable pre-selection since it showed robust results in all evaluation schemes.
  相似文献   

10.
A widely held view of land plant relationships places liverworts as the first branch of the land plant tree, whereas some molecular analyses and a cladistic study of morphological characters indicate that hornworts are the earliest land plants. To help resolve this conflict, we used parsimony and likelihood methods to analyze a 6, 095-character data set composed of four genes (chloroplast rbcL and small-subunit rDNA from all three plant genomes) from all major land plant lineages. In all analyses, significant support was obtained for the monophyly of vascular plants, lycophytes, ferns (including PSILOTUM: and EQUISETUM:), seed plants, and angiosperms. Relationships among the three bryophyte lineages were unresolved in parsimony analyses in which all positions were included and weighted equally. However, in parsimony and likelihood analyses in which rbcL third-codon-position transitions were either excluded or downweighted (due to apparent saturation), hornworts were placed as sister to all other land plants, with mosses and liverworts jointly forming the second deepest lineage. Decay analyses and Kishino-Hasegawa tests of the third-position-excluded data set showed significant support for the hornwort-basal topology over several alternative topologies, including the commonly cited liverwort-basal topology. Among the four genes used, mitochondrial small-subunit rDNA showed the lowest homoplasy and alone recovered essentially the same topology as the multigene tree. This molecular phylogeny presents new opportunities to assess paleontological evidence and morphological innovations that occurred during the early evolution of terrestrial plants.  相似文献   

11.
12.
The CD genome species in the genus Oryza are endemic to Latin America, including O. alta, O. grandiglumis and O. latifolia. Origins and phylogenetic relationship of these species have long been in dispute and are still ambiguous due to their homogeneous genome type, similar morphological characteristics and overlapping distribution. In the present study, we sequenced two chloroplast fragments (matK and trnL-trnF) and portions of three nuclear genes (Adh1, Adh2 and GPA1) from sixteen accessions representing seven species with the C, CD, and E genomes, as well as one G genome species as the outgroup. Phylogenetic analyses using parsimony and distance methods strongly supported that the CD genome originated from a single hybridization event, and that the C genome species (O. officinalis or O. rhizomatis instead of O. eichingeri) served as the maternal parent while the E genome species (O. australiensis) was the paternal donor during the formation of CD genome. In addition, the consistent phylogenetic relationships among the CCDD species indicated that significant divergence existed between O. latifolia and the other two (O. alta and O. grandiglumis), which corroborated the suggestion of treating the latter two as a single species or as taxa within species.We thank Tao Sang of Michigan State University (East Lansing, USA) and Bao-rong Lu of Fudan University (Shanghai, China) for their encouragement and assistance. We are also grateful to the International Rice Research Institute (Manila, Philippines) for providing plant material for this study. This research was supported by the Chinese Academy of Sciences (kscxz-sw-101A), the National Natural Science Foundation of China (30025005) and the Program for Key International S & T Cooperation Project of P. R. China (2001CB711103).  相似文献   

13.
The phylogenetic positions of bryophytes and charophytes, together with their genome features, are important for understanding early land plant evolution. Here we report the complete nucleotide sequence (105,340 bp) of the circular-mapping mitochondrial DNA of the moss Physcomitrella patens. Available evidence suggests that the multipartite structure of the mitochondrial genome in flowering plants does not occur in Physcomitrella. It contains genes for 3 rRNAs (rnl, rns, and rrn5), 24 tRNAs, and 42 conserved mitochondrial proteins (14 ribosomal proteins, 4 ccm proteins, 9 nicotinamide adenine dinucleotide dehydrogenase subunits, 5 ATPase subunits, 2 succinate dehydrogenase subunits, apocytochrome b, 3 cytochrome oxidase subunits, and 4 other proteins). We estimate that 5 tRNA genes are missing that might be encoded by the nuclear genome. The overall mitochondrial genome structure is similar in Physcomitrella, Chara vulgaris, Chaetosphaeridium globosum, and Marchantia polymorpha, with easily identifiable inversions and translocations. Significant synteny with angiosperm and chlorophyte mitochondrial genomes was not detected. Phylogenetic analysis of 18 conserved proteins suggests that the moss-liverwort clade is sister to angiosperms, which is consistent with a previous analysis of chloroplast genes but is not consistent with some analyses using mitochondrial sequences. In Physcomitrella, 27 introns are present within 16 genes. Nine of its intron positions are shared with angiosperms and 4 with Marchantia, which in turn shares only one intron position with angiosperms. The phylogenetic analysis as well as the syntenic structure suggest that the mitochondrial genomes of Physcomitrella and Marchantia retain prototype features among land plant mitochondrial genomes.  相似文献   

14.
Similarities in chromosome banding patterns and hornologies in DNA sequence between chromosomes of the great apes and humans have suggested that human chromosome 2 originated through the fusion of two ancestral ape chromosomes. A lot of work has been directed at understanding the nature and mechanism of this fusion. The recent availability of the human chrornosome-2-specific alpha satellite DNA probe D2Z and the human chromosome-2p-specific subtelomeric DNA probe D2S445 prompted us to attempt cross-hybridization with chromosomes of the chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla) and orangutan (Pongo pygmaeus) to search for equivalent locations in the great apes and to comment on the origin of human chromosome 2. The probes gave different results. No hybridization to the chromosome-2-specific alpha satellite DNA probe was observed on the presumed homologous great ape chromosomes using both high-stringency and low-stringency post-hybridization washes, whereas the subtelomeric-DNA probe specific for chromosome 2p hybridized to telomeric sites of the short arm of chromosome 12 of all three great apes. These observations suggest an evolutionary difference in the number of alpha satellite DNA repeat units in the equivalent ape chromosomes presumably involved in the chromosome fusion. Nevertheless, complete conservation of DNA sequence of the subtelomeric repeat sequence D2S445 in the ape chromosomes is demonstrated.  相似文献   

15.
CO2 and plants: revisited   总被引:1,自引:0,他引:1  
Dahlman  Roger C. 《Plant Ecology》1993,(1):339-355
The decade-long USA research program on the direct effects of CO2 enrichment on vegetation has achieved important milestones and has produced a number of interesting and exciting findings. Research beginning in 1980 focused on field experiments to determine whether phenomena observed in the laboratory indeed occurred in natural environments. The answer is yes. Data obtained from numerous field studies show mixed response of crop and native species to CO2 enrichment however. Nearly all experiments demonstrate that plants exhibit positive gain when grown at elevated CO2; although the magnitude varies greatly. Most crop responses range from 30 to 50 % increase in yield. Results from long-term experiments with woody species and ecosystems are even more variable. Huge growth responses (100 to nearly 300 % increase relative to controls) are reported from several tree experiments and the salt-marsh ecosystem experiment. Other results from experiments with woody species and the tundra ecosystem suggest little no effect of CO2 on physiology, growth or productivity. Numerous studies of the physiology of the CO2 effect are continuing in attempts to understand controlling mechanisms and to explain the variable growth responses. Particular emphasis needs to be given to physiological measures of interactions involving the CO2 effect and other environmental influences, and to the wide-ranging observations of photosynthesis acclimation to CO2. Prospects for future research are identified.  相似文献   

16.
17.
18.
Eukaryotes contain a chimeric assembly of genomes, each localized in a specialized subcellular compartment. The successful survival of an organism requires that these sequestered genomes be viewed as dependent variables in a coevolutionary complex. This discussion focuses on chloroplast evolution. A selected review of information available on chloroplast diversity is presented, followed by an analysis of the genetic modifications which may have occurred in the conversion of a free-living ancestral photosynthetic prokaryote into an organelle that has an obligately dependent and highly efficient interplay with the nuclear genome.  相似文献   

19.
The family Brassicaceae comprises 3710 species in 338 genera, 25 recently delimited tribes, and three major lineages based on phylogenetic results from the chloroplast gene ndhF. To assess the credibility of the lineages and newly delimited tribes, we sequenced an approximately 1.8-kb region of the nuclear phytochrome A (PHYA) gene for taxa previously sampled for the chloroplast gene ndhF. Using parsimony, likelihood, and Bayesian methods, we reconstructed the phylogeny of the gene and used the approximately unbiased (AU) test to compare phylogenetic results from PHYA with findings from ndhF. We also combined ndhF and PHYA data and used a Bayesian mixed model approach to infer phylogeny. PHYA and combined analyses recovered the same three large lineages as those recovered in ndhF trees, increasing confidence in these lineages. The combined tree confirms the monophyly of most of the recently delimited tribes (only Alysseae, Anchonieae, and Descurainieae are not monophyletic), while 13 of the 23 sampled tribes are monophyletic in PHYA trees. In addition to phylogenetic results, we documented the trichome branching morphology of species across the phylogeny and explored the evolution of different trichome morphologies using the AU test. Our results indicate that dendritic, medifixed, and stellate trichomes likely evolved independently several times in the Brassicaceae.  相似文献   

20.
Molecular adaptation and the origin of land plants   总被引:5,自引:0,他引:5  
The origin and diversification of land plants was one of the most important biological radiations. Land plants are crucial components of all modern terrestrial ecosystems. The first land plants had to adapt to a wide array of new environmental challenges including desiccation, varying temperatures, and increased UV radiation. There have been numerous studies of the morphological adaptations to life on land. However the molecular adaptations to life on land have only recently gained attention. These studies have greatly benefited from the recent advances in our understanding of the phylogenetic relationships between and among the charophycean algae and the basal land plant groups. In this review I summarize the current knowledge of a variety of physiological and biochemical adaptations to land including plant growth hormones, isoprene, phenolics, and heat shock proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号