首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Rosiglitazone is a peroxisome proliferator-activated receptor gamma (PPARγ) synthetic activator from the group of thiazolidinediones often used in the treatment of chronic diseases such as type 2 diabetes and other forms of insulin resistance. The present in vitro study assessed the direct effects of rosiglitazone at 25 and 50 μM doses on PPARγ gene expression, steroid secretion (progesterone [P4], androstenedione [A4], testosterone [T], and estradiol), and protein expression of PPARγ, 3βHSD, CYP17, 17βHSD, CYP19 by porcine ovarian follicles from prepubertal and cycling animals. We analyzed also steroid enzymatic activity by conversion of pregnen-3β-ol-20-one to P4, P4 to A4, and A4 to T. Our results indicated that rosiglitazone increased significantly PPARγ expression, P4 secretion, 3βHSD activity, and protein expression. Rosiglitazone decreased A4 and T secretion by reducing the expression and activity of CYP17 and 17βHSD and did not change estradiol secretion and CYP19. Similarly results was observed both in prepubertal and cycling pigs. Our results indicate that these direct effects of rosiglitazone on ovarian steroidogenesis provide a framework for testing several potential new mechanisms of PPAR-γ actions on porcine ovarian function.  相似文献   

4.
5.
6.
Hydroxysteroid (17beta) dehydrogenases (HSD17Bs) belong to the short-chain dehydrogenase/reductase family consisting of a diverse pool of enzymes with oxidoreductase activity. HSD17B enzymes catalyze the conversion between 17-keto and 17-hydroxy steroids, either activating or inactivating sex steroids. Previous studies have demonstrated a role for human HSD17B1 enzyme in estradiol (E2) biosynthesis both in gonads and extragonadal steroid target tissues and various estrogen-dependent diseases. In the present study, five transgenic (TG) mouse lines universally overexpressing human HSD17B1 were generated and characterized at fetal and adult ages, especially to study the enzyme function in vivo. Activity measurements in vivo indicated that in addition to activating estrone to E2, the enzyme is able to significantly reduce androstenedione to testosterone, and TG females presented increased testosterone concentration preceding birth. As a consequence, TG females suffered from several phenotypic features typical to enhanced fetal androgen exposure. Furthermore, the ovaries developed androgen-dependent ovarian benign serous cystadenomas at adulthood. Androgen dependency of the phenotypes was confirmed by rescuing them by antiandrogen treatment, or by transplanting wild-type ovaries to the TG females. In conclusion, the data evidently show that, in addition to activating estrone to E2, human HSD17B1 enhances androgen action in vivo. Thus, the relative amounts of androgenic and estrogenic substrates available partially determine the physiological function of the enzyme in vivo. The novel function observed for human HSD17B1 is likely to open new possibilities also for the use of HSD17B1-inhibitors as drugs against androgen-related dysfunctions in females.  相似文献   

7.
8.
You X  Yang R  Tang X  Gao L  Ni X 《Biology of reproduction》2006,74(6):1067-1072
Estrogens and corticotrophin-releasing hormone (CRH) produced by the placenta play pivotal roles in the control of parturition in human and other primates. There is a strong correlation between maternal CRH and estrogen concentrations throughout gestation. To investigate whether CRH produced locally in the placenta could modulate estrogen production, we obtained human placental trophoblasts from uncomplicated term pregnancies and cultured them for 72 h. Cells were then treated with CRH and with a CRH receptor antagonist, alpha-helical CRH9-41. The results showed that CRH stimulated, but alpha-helical CRH9-41 inhibited, the production of estradiol in a time- and dose-dependent manner. Consistent with this thesis, CRH increased whereas alpha-helical CRH decreased the mRNA levels of STS, CYP19A1, and HSD17B1, the key enzymes for estrogen synthesis. These results suggest that, in the placenta, endogenously produced CRH exhibits a tonic stimulatory effect on estrogen production.  相似文献   

9.
Two 17β-hydroxysteroid dehydrogenases (17HSDs), type 1 and type 7, are enzymes of estradiol biosynthesis, in addition to which rodent type 1 enzymes are also able to catalyze androgens. Both of the 17HSDs are abundantly expressed in ovaries, the type 1 enzyme in granulosa cells and type 7 in luteinized cells. The expression of 17HSD7, which has also been described as a prolactin receptor-associated protein (PRAP), is particularly up-regulated in corpus luteum during the second half of rodent pregnancy. A moderate or slight signal for mouse 17HSD7/PRAP mRNA has also been demonstrated in samples of placenta and mammary gland, for example. Human, but not rodent, 17HSD1 is expressed in placenta, breast epithelium and endometrium in addition to ovaries. A cell-specific enhancer, silencer and promoter in the hHSD17B1 gene participate in the regulation of type 1 enzyme expression. The enhancer consists of several subunits, including a retinoic acid response element, the silencer has a binding motif for GATA factors, and the proximal promoter contains adjacent and competing AP-2 and Sp binding sites.  相似文献   

10.
Two 17β-hydroxysteroid dehydrogenases (17HSDs), type 1 and type 7, are enzymes of estradiol biosynthesis, in addition to which rodent type 1 enzymes are also able to catalyze androgens. Both of the 17HSDs are abundantly expressed in ovaries, the type 1 enzyme in granulosa cells and type 7 in luteinized cells. The expression of 17HSD7, which has also been described as a prolactin receptor-associated protein (PRAP), is particularly up-regulated in corpus luteum during the second half of rodent pregnancy. A moderate or slight signal for mouse 17HSD7/PRAP mRNA has also been demonstrated in samples of placenta and mammary gland, for example. Human, but not rodent, 17HSD1 is expressed in placenta, breast epithelium and endometrium in addition to ovaries. A cell-specific enhancer, silencer and promoter in the hHSD17B1 gene participate in the regulation of type 1 enzyme expression. The enhancer consists of several subunits, including a retinoic acid response element, the silencer has a binding motif for GATA factors, and the proximal promoter contains adjacent and competing AP-2 and Sp binding sites.  相似文献   

11.
Human cytochrome P450c17 (17alpha-hydroxylase, 17,20-lyase) (CYP17) and cytochrome P450c21 (21-hydroxylase) (CYP21) differ by only 14 amino acids in length and share 29% amino acid identity. Both enzymes hydroxylate progesterone at carbon atoms that lie only 2.6A apart, but CYP17 also metabolizes other steroids and demonstrates additional catalytic activities. To probe the active site topologies of these related enzymes, we synthesized the enantiomer of progesterone and determined if ent-progesterone is a substrate or inhibitor of CYP17 and CYP21. Neither enzyme metabolizes ent-progesterone; however, ent-progesterone is a potent competitive inhibitor of CYP17 (K(I)=0.2 microM). The ent-progesterone forms a type I difference spectrum with CYP17, but molecular dynamics simulations suggest different binding orientations for progesterone and its enantiomer. The ent-progesterone also inhibits CYP21, with weaker affinity than for CYP17. We conclude that CYP17 accommodates the stereochemically unnatural ent-progesterone better than CYP21. Enantiomeric steroids can be used to probe steroid binding sites, and these compounds may be effective inhibitors of steroid biosynthesis.  相似文献   

12.
17-beta hydroxysteroid dehydrogenase type 2 (HSD17B2) oxidizes estradiol to estrone, testosterone to androstenedione, and 20 alpha-dihydroprogesterone to progesterone. HSD17B2 is highly expressed in human placental tissue where it is localized to placental endothelial cells lining the fetal compartment. The aim of this study was to investigate the effects of potential regulatory factors including progesterone, estradiol, and retinoic acid (RA) onHSD17B2 expression in primary human placental endothelial cells in culture.HSD17B2 mRNA expression was not regulated by progesterone, the progesterone agonist R5020, or estradiol treatment. RA significantly induced HSD17B2 mRNA levels and enzyme activity in a dose- and time-dependent manner. Maximal stimulation occurred at Hour 48 at an RA concentration of 10(-6) M. Both retinoic acid receptor alpha (RARA) and retinoid X receptor alpha (RXRA) were readily detected by immunoblotting in isolated placental endothelial cells. RNA interference directed against RARA or RXRA led to reduced basal levels of HSD17B2 mRNA levels and significantly abolished RA-stimulated HSD17B2 expression. Together, these data indicate that regulation of HSD17B2 mRNA levels and enzymatic activity by RA in the placenta is mediated by RARA and RXRA.  相似文献   

13.
Genetic susceptibility and environmental estrogen-like compounds   总被引:4,自引:0,他引:4  
Environmental chemicals with estrogenic activities have been suggested to be able to interact with the endocrine system. Endogenous estrogen is synthesized in the ovarian theca cells of premenopausal women or in the stromal adipose cells of the breast of postmenopausal women and minor quantities in peripheral tissue. These cells, as well as breast tissue, express all the necessary enzymes for this synthesis, CYP17, CYP11a, CYP19, 17-beta-hydroxysteroid hydrogenase, steroid sulfatase as well as enzymes further hydroxylating estradiol, such as CYP1A1, CYP3A4, CYP1B1, catechol-o-methyltransferase (COMT). Polymorphisms in these enzymes may have a possible role in the link between environmental estrogens and hormone-like substances and the interindividual risk of breast cancer.  相似文献   

14.
Cortisol-based therapy is one of the most potent anti-inflammatory treatments available for skin conditions including psoriasis and atopic dermatitis. Previous studies have investigated the steroidogenic capabilities of keratinocytes, though none have demonstrated that these skin cells, which form up to 90% of the epidermis are able to synthesise cortisol. Here we demonstrate that primary human keratinocytes (PHK) express all the elements required for cortisol steroidogenesis and metabolise pregnenolone through each intermediate steroid to cortisol. We show that normal epidermis and cultured PHK express each of the enzymes (CYP11A1, CYP17A1, 3βHSD1, CYP21 and CYP11B1) that are required for cortisol synthesis. These enzymes were shown to be metabolically active for cortisol synthesis since radiometric conversion assays traced the metabolism of [7-3H]-pregnenolone through each steroid intermediate to [7-3H]-cortisol in cultured PHK. Trilostane (a 3βHSD1 inhibitor) and ketoconazole (a CYP17A1 inhibitor) blocked the metabolism of both pregnenolone and progesterone. Finally, we show that normal skin expresses two cholesterol transporters, steroidogenic acute regulatory protein (StAR), regarded as the rate-determining protein for steroid synthesis, and metastatic lymph node 64 (MLN64) whose function has been linked to cholesterol transport in steroidogenesis. The expression of StAR and MLN64 was aberrant in two skin disorders, psoriasis and atopic dermatitis, that are commonly treated with cortisol, suggesting dysregulation of epidermal steroid synthesis in these patients. Collectively these data show that PHK are capable of extra-adrenal cortisol synthesis, which could be a fundamental pathway in skin biology with implications in psoriasis and atopic dermatitis.  相似文献   

15.
Steroidogenesis in the placenta has been studied widely, but little is known about steroid metabolism in ectopic pregnancy. Previous studies have indicated that trophoblast invasion and placentation in the uterus and the fallopian tube may be controlled by similar mechanisms. As far as 17β-estradiol (E2) production is concerned, it has been well demonstrated that its biosynthesis in the placenta involves the action of P450 aromatase (P450arom) and 17β-hydroxysteroid dehydrogenase type 1 (17HSD1). The purpose of this study was to characterize the expression pattern of P450arom and 17HSD1 at the fetal–maternal interface, particularly in various trophoblast cells, in tubal pregnancy. Using in situ hybridization, P450arom mRNA was localized in syncytiotrophoblast (ST) cells, which are mainly responsible for hormone production during pregnancy, whereas no signal was detected in villous cytotrophoblast (VCT), column CT and extravillous CT (EVCT) cells. Immunohistochemical assays revealed that 17HSD1 is present in ST cells, a large portion of EVCT cells and 20% of column CT cells. On the other hand, no expression of 17HSD1 was detected in VCT cells. In addition, 17HSD1 was found in epithelial cells of the fallopian tube. Interestingly, the expression level of 17HSD1 in fallopian tube epithelium during tubal pregnancy was significantly higher than that during normal cycle. Our data provide the first evidence that normal and tubal pregnancies possess identical expression of P450arom and 17HSD1 in ST cells and therefore, similar E2 production in the placenta. Further, the association of 17HSD1 with EVCT cells indicates that 17HSD1 perhaps play a role in trophoblast invasion. Finally, increased expression of 17HSD1 in epithelial cells of fallopian tube may lead to a local E2 supply sufficient for the maintenance of tubal pregnancy.  相似文献   

16.
Steroids are potentially important mediators in the pathophysiology of ocular diseases. In this study, we report on the gene expression in the human eye of a group of enzymes, the 17beta-hydroxysteroid dehydrogenases (17HSDs), involved in the biosynthesis and inactivation of sex steroid hormones. In the eye, the ciliary epithelium, a neuroendocrine secretory epithelium, co-expresses the highest levels of 17HSD2 and 5 mRNAs, and in lesser level 17HSD7 mRNA. The regulation of gene expression of these enzymes was investigated in vitro in cell lines, ODM-C4 and chronic open glaucoma (GCE), used as cell models of the human ciliary epithelium. The estrogen, 17beta-estradiol (10(-7) M) and androgen agonist, R1881 (10(-8) M) elicited in ODM-C4 and GCE cells over a 24 h time course a robust up-regulation of 17HSD7 mRNA expression. 17HSD2 was up-regulated by estradiol in ODM-C4 cells, but not in GCE cells. Under steady-state conditions, ODM-C4 cells exhibited a predominant 17HSD2 oxidative enzymatic activity. In contrast, 17HSD2 activity was low or absent in GCE cells. Our collective data suggest that cultured human ciliary epithelial cells are able to metabolize estrogen, androgen and progesterone, and that 17HSD2 and 7 in these cells are sex steroid hormone-responsive genes and 17HSD7 is responsible to keep on intra/paracrine estrogenic milieu.  相似文献   

17.
Microsomes isolated from complete hydatidiform moles (CHM) were able to convert [3H]pregnenolone to [3H]progesterone which indicates the presence of 3 beta-hydroxysteroid dehydrogenase/isomerase (3 beta-HSD) activity. The kinetic parameters found (Km = 0.63 microM and Vmax = 1-3.05 nmol/min/mg of protein) were like those observed in microsomes from normal early placenta (NEP) of similar gestational age (herein) and term placenta suggesting that the enzymes from the three sources are kinetically similar. Testosterone, progesterone and estradiol in a dose range of 0.05-5 mumol/l inhibited differently the in vitro conversion of [3H]pregnenolone to [3H]progesterone in a dose-dependent manner. The steroid concentrations necessary to inhibit the conversion of pregnenolone to progesterone by 50% (ID50) in CHM were 0.1 microM for testosterone, 0.6 microM for progesterone and 3 microM for estradiol, whereas in NEP they were 2.5, 1 and 5 microM respectively. The Ki values calculated from these ID50 in CHM together with the reported levels of endogenous steroids indicate that the accumulation of testosterone and progesterone inside the molar vesicle could physiologically regulate the rate of further conversion of pregnenolone to progesterone. The present findings could provide an explanation for the low level of progesterone in patients with CHM in the second trimester of pregnancy which in turn may directly or indirectly affect the spontaneous expulsion of this aberrant tissue.  相似文献   

18.
The human steroidogenic cytochromes P450 CYP17A1 (P450c17, 17α-hydroxylase/17,20-lyase) and CYP21A2 (P450c21, 21-hydroxylase) are required for the biosynthesis of androgens, glucocorticoids, and mineralocorticoids. Both enzymes hydroxylate progesterone at adjacent, distal carbon atoms and show limited tolerance for substrate modification. Halogenated substrate analogs have been employed for many years to probe cytochrome P450 catalysis and to block sites of reactivity, particularly for potential drugs. Consequently, we developed efficient synthetic approaches to introducing one or more halogen atom to the 17- and 21-positions of progesterone and pregnenolone. In particular, novel 21,21,21-tribromoprogesterone and 21,21,21-trichloroprogesterone were synthesized using the nucleophilic addition of either bromoform or chloroform anion onto an aldehyde precursor as the key step to introduce the trihalomethyl moieties. When incubated with microsomes from yeast expressing human CYP21A2 or CYP17A1 with P450-oxidoreductase, CYP21A2 metabolized 17-fluoroprogesterone to a single product, whereas incubations with CYP17A1 gave no products. Halogenated steroids provide a robust system for exploring the substrate tolerance and catalytic plasticity of human steroid hydroxylases.  相似文献   

19.

Background

The objective of the study was to investigate the role of genes (HSD3B1, CYP17A1, CYP19A1, HSD17B2, HSD17B1) involved in the steroid hormone biosynthesis pathway and progesterone receptor (PGR) in the etiology of gastric cancer in a population-based two-phase genetic association study.

Methods

In the discovery phase, 108 candidate SNPs in the steroid hormone biosynthesis pathway related genes and PGR were analyzed in 76 gastric cancer cases and 322 controls in the Korean Multi-Center Cancer Cohort. Statistically significant SNPs identified in the discovery phase were re-evaluated in an extended set of 386 cases and 348 controls. Pooled- and meta-analyses were conducted to summarize the results.

Results

Of the 108 SNPs in steroid hormone biosynthesis pathway related genes and PGR analyzed in the discovery phase, 23 SNPs in PGR in the recessive model and 10 SNPs in CYP19A1 in the recessive or additive models were significantly associated with increased gastric cancer risk (p<0.05). The minor allele frequencies of the SNPs in both the discovery and extension phases were not statistically different. Pooled- and meta-analyses showed CYP19A1 rs1004982, rs16964228, and rs1902580 had an increased risk for gastric cancer (pooled OR [95% CI] = 1.22 [1.01–1.48], 1.31 [1.03–1.66], 3.03 [1.12–8.18], respectively). In contrast, all PGR SNPs were not statistically significantly associated with gastric cancer risk.

Conclusions

Our findings suggest CYP19A1 that codes aromatase may play an important role in the association of gastric cancer risk and be a genetic marker for gastric cancer susceptibility.  相似文献   

20.
A family history and estrogen exposure are well-known risk factors for breast cancer. Members of the 17β-hydroxysteroid dehydrogenase family are responsible for important steps in the metabolism of androgens and estrogens in peripheral tissues, including the mammary gland. The crucial biological function of 17β-HSDs renders these genes good candidates for being involved in breast cancer etiology. This study screened for mutations in HSD17B7 and HSD17B12 genes, which encode enzymes involved in estradiol biosynthesis and in AKR1C3, which codes for 17β-HSD type 5 enzyme involved in androgen and progesterone metabolism, to assess whether high penetrance allelic variants in these genes could be involved in breast cancer susceptibility. Mutation screening of 50 breast cancer cases from non-BRCA1/2 high-risk French Canadian families failed to identify germline likely high-risk mutations in HSD17B7, HSD17B12 and AKR1C3 genes. However, 107 sequence variants were identified, including seven missense variants. Assessment of the impact of missense variants on enzymatic activity of the corresponding enzymes revealed no difference in catalytic properties between variants of 17β-HSD types 7 and 12 and wild-type enzymes, while variants p.Glu77Gly and p.Lys183Arg in 17β-HSD type 5 showed a slightly decreased activity. Finally, a haplotype-based approach was used to determine tagging SNPs providing valuable information for studies investigating associations of common variants in these genes with breast cancer risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号