首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salicylaldehyde isonicotinoyl hydrazone (SIH) is a lipophilic, orally-active tridentate iron chelator providing both effective protection against various types of oxidative stress-induced cellular injury and anticancer action. However, the major limitation of SIH is represented by its labile hydrazone bond that makes it prone to plasma hydrolysis. Recently, nine new SIH analogues derived from aromatic ketones with improved hydrolytic stability were developed. Here we analyzed their antiproliferative potential in MCF-7 breast adenocarcinoma and HL-60 promyelocytic leukemia cell lines. Seven of the tested substances showed greater selectivity than the parent agent SIH towards the latter cancer cell lines compared to non-cancerous H9c2 cardiomyoblast-derived cells. The tested chelators induced a dose-dependent dissipation of the inner mitochondrial membrane potential, an induction of apoptosis as evidenced by Annexin V positivity or significant increases of activities of caspases 3, 7, 8 and 9 and cell cycle arrest. With the exception of nitro group-bearing NHAPI, the studies of iron complexes of the chelators confirmed the crucial role of iron in the mechanism of their antiproliferative action. Finally, all the assayed chelators inhibited the oxidation of ascorbate by iron ions indicating lack of redox activity of the chelator-iron complexes. In conclusion, this study identified several important design criteria for improvement of the antiproliferative selectivity of the aroylhydrazone iron chelators. Several of the novel compounds--in particular the ethylketone-derived HPPI, NHAPI and acetyl-substituted A2,4DHAPI--merit deeper investigation as promising potent and selective anticancer agents.  相似文献   

2.
Cancer contributes to 50% of deaths worldwide and new anti-tumour therapeutics with novel mechanisms of actions are essential to develop. Metabolic inhibitors represent an important class of anti-tumour agents and for many years, agents targeting the nutrient folate were developed for the treatment of cancer. This is because of the critical need of this factor for DNA synthesis. Similarly to folate, Fe is an essential cellular nutrient that is critical for DNA synthesis. However, in contrast to folate, there has been limited effort applied to specifically design and develop Fe chelators for the treatment of cancer. Recently, investigations have led to the generation of novel di-2-pyridylketone thiosemicarbazone (DpT) and 2-benzoylpyridine thiosemicarbazone (BpT) group of ligands that demonstrate marked and selective anti-tumour activity in vitro and also in vivo against a wide spectrum of tumours. Indeed, administration of these compounds to mice did not induce whole body Fe-depletion or disturbances in haematological or biochemical indices due to the very low doses required. The mechanism of action of these ligands includes alterations in expression of molecules involved in cell cycle control and metastasis suppression, as well as the generation of redox-active Fe complexes. This review examines the alterations in Fe metabolism in tumour cells and the systematic development of novel aroylhydrazone and thiosemicarbazone Fe chelators for cancer treatment.  相似文献   

3.
A series of (3-hydroxypyridin-4-one)-coumarin hybrids were developed and investigated as potential multitargeting candidates for the treatment of Alzheimer's disease (AD) through the incorporation of iron-chelating and monoamine oxidase B (MAO-B) inhibition. This combination endowed the hybrids with good capacity to inhibit MAO-B as well as excellent iron-chelating effects. The pFe3+ values of the compounds were ranging from 16.91 to 20.16, comparable to more potent than the reference drug deferiprone (DFP). Among them, compound 18d exhibited the most promising activity against MAO-B, with an IC50 value of 87.9 nM. Moreover, compound 18d exerted favorable antioxidant activity, significantly reversed the amyloid-β1-42 (Aβ1-42) induced PC12 cell damage. More importantly, 18d remarkably ameliorated the cognitive dysfunction in a scopolamine-induced mice AD model. In brief, a series of hybrids with potential anti-AD effect were successfully obtained, indicating that the design of iron chelators with MAO-B inhibitory and antioxidant activities is an attractive strategy against AD progression.  相似文献   

4.
Structure-activity relationship studies of a new series of tripentones (thieno[2,3-b]pyrrolizin-8-ones), led us to prepare several derivatives with antiproliferative activities. The most promising 3-(3-hydroxy-4-methoxyphenyl)thieno[2,3-b]pyrrolizin-8-one 20 (leukemia L1210, IC(50)=15 nM) was shown to be a potent inhibitor of tubulin polymerization.  相似文献   

5.
The current solution to iron-mediated damage in transfusional iron overload disorders is decorporation of excess unmanaged metal, chelation therapy. The clinical development of the tridentate chelator deferitrin (1, Table 1) was halted due to nephrotoxicity. It was then shown by replacing the 4′-(HO) of 1 with a 3,6,9-trioxadecyloxy group, the nephrotoxicity could be ameliorated. Further structure–activity relationship studies have established that the length and the position of the polyether backbone controlled: (1) the ligand’s iron clearing efficiency (ICE), (2) chelator tissue distribution, (3) biliary ferrokinetics, and (4) tissue iron reduction. The current investigation compares the ICE and tissue distribution of a series of (S)-4,5-dihydro-2-[2-hydroxy-4-(polyether)phenyl]-4-methyl-4-thiazolecarboxylic acids (Table 1, 35) and the (S)-4,5-dihydro-2-[2-hydroxy-3-(polyether)phenyl]-4-methyl-4-thiazolecarboxylic acids (Table 1, 810). The three most effective polyether analogues, in terms of performance ratio (PR), defined as mean ICEprimate/ICErodent, are 3 (PR 1.1), 8, (PR 1.5), and 9, now in human trials, (PR 2.2). At the onset of the clinical trial on 9, no data were available for ligand 3 or 8. This is unfortunate, as 3 has many advantages over 9, e.g., the ICE of 3 in rats is 2.5-fold greater than that of 9 and analogue 3 achieves very high levels in the liver, pancreas, and heart, the organs most affected by iron overload. Finally, the impact of 3 on the urinary excretion of kidney injury molecule-1 (Kim-1), an early diagnostic biomarker for monitoring acute kidney toxicity, has been carried out in rats; no evidence of nephrotoxicity was found. Overall, the results suggest that 3 would be a far superior clinical candidate to 9.  相似文献   

6.
Ischemia-induced brain iron delocalization: Effect of iron chelators   总被引:5,自引:0,他引:5  
Tissue damage in cerebral ischemia may be produced by acidosis-induced delocalization of intracellular iron which acts as a catalyst in oxidative reactions. Acidosis was induced either by homogenization and incubation of rat cortical homogenates in acidified buffers or by submitting hyperglycemic rats to complete ischemia, a procedure that leads to intracellular lactic acidosis. The level of low molecular weight species (LMWS) iron was measured after filtration of tissue homogenates through a 10,000 Mr ultrafiltration membrane. When cortical tissue was homogenized in buffer pH 7, the level of LMWS iron was equal to 0.21 μg/g. It was significantly enhanced by acidification of the homogenization medium, reaching 0.34 μg/g at pH 6 and 0.75 μg/g at pH 5. When the tissue was homogenized in water, the LMWS iron level reached 0.17 μg/g in normoglycemic rats and 0.38 μg/g (p < 0.5) in hyperglycemic rats. Both aerobic incubation of homogenates for 1 h at 37°C and inclusion of EDTA in the homogenization medium led to further increases in the iron level. In order to demonstrate the deleterious role of iron in brain ischemia, the effect of treatment with bipyridyl, an iron-chelating agent, was assessed by measuring regional brain edema by the specific gravity method, 24 h following induction of thrombotic brain infarction. The treatment significantly attenuated the development of brain edema, reducing the water content of the infarcted area by about 2.5%. Taken together, these results support the hypothesis that a significant component of brain ischemic injury involves an iron-dependent mechanism.  相似文献   

7.
The aim of this study is to synthesize chalcone-polyamine conjugates in order to enhance bioavailability and selectivity of chalcone core towards cancer cells, using polyamine-based vectors. 3-hydroxy-3′,4,4′,5′-tetramethoxychalcone (1) and 3′,4,4′,5′-tetramethoxychalcone (2) were selected as parent chalcones since they were found to be efficient anti-proliferative agents on various cancer cells. A series of ten chalcone-polyamine conjugates was obtained by reacting carboxychalcones with different polyamine tails. Chalcones 1 and 2 showed a strong cytotoxic activity against two prostatic cancer (PC-3 and DU-145) and two colorectal cancer (HT-29 and HCT-116) cell lines. Then, chalcone-spermine conjugates 7d and 8d were shown to be the most active of the series and could be considered as promising compounds for colon and prostatic cancer adjuvant therapy.  相似文献   

8.
Selenium analogues (4b-4h, and 4j) of two known sulfur compounds were synthesized and tested their anticancer activities. The selenium compound 4b had comparable activity with its sulfur analogue 4a, while DNA-binding study showed these two compounds had similar interaction with ct-DNA, the K(b) was 8.23 and 2.36, respectively. The primary results showed that most compounds had moderate anticancer activities with IC(50) values between 10(-6) and 10(-5) M. Another selenium analogue 4j showed the highest activity with the IC(50) values around 5.3 μM against K562 and MCF-7 cell lines. More importantly, the organochalcogen compounds exhibited stronger anticancer activities against K562 cell line than the other cell lines tested.  相似文献   

9.
Oxidative stress is a common denominator of numerous cardiovascular disorders. Free cellular iron catalyzes the formation of highly toxic hydroxyl radicals, and iron chelation may thus be an effective therapeutic approach. However, using classical iron chelators in diseases without iron overload poses risks that necessitate more advanced approaches, such as prochelators that are activated to chelate iron only under disease-specific oxidative stress conditions. In this study, three cell-membrane-permeable iron chelators (clinically used deferasirox and experimental SIH and HAPI) and five boronate-masked prochelator analogs were evaluated for their ability to protect cardiac cells against oxidative injury induced by hydrogen peroxide. Whereas the deferasirox-derived agents TIP and TRA-IMM displayed negligible protection and even considerable toxicity, the aroylhydrazone prochelators BHAPI and BSIH-PD provided significant cytoprotection and displayed lower toxicity after prolonged cellular exposure compared to their parent chelators HAPI and SIH, respectively. Overall, the most favorable properties in terms of protective efficiency and low inherent cytotoxicity were observed with the aroylhydrazone prochelator BSIH. BSIH efficiently protected both H9c2 rat cardiomyoblast-derived cells and isolated primary rat cardiomyocytes against hydrogen peroxide-induced mitochondrial and lysosomal dysregulation and cell death. At the same time, BSIH was nontoxic at concentrations up to its solubility limit (600 μM) and in 72-h incubation. Hence, BSIH merits further investigation for prevention and/or treatment of cardiovascular disorders associated with a known (or presumed) component of oxidative stress.  相似文献   

10.
Beta-thalassaemia is an inherited blood disorder which through repeated blood transfusions and enhanced iron uptake from the gastrointestinal tract, results in marked iron overload. Untreated, the iron accumulation results in the dysfunction of vital organs such as the heart and liver. At present, the most effective treatment for beta-thalassaemia is the use of the iron chelator, desferrioxamine, which is expensive, orally inactive and requires long subcutaneous infusions. In this concise review, we will focus on novel chelators which show therapeutic potential to replace desferrioxamine. Furthermore, we will discuss the potential of combined iron chelation therapy and the principle that, in the future, the use of more than just one chelator may be beneficial in tailoring individual iron chelation regimens.  相似文献   

11.
A generally applicable synthetic approach to dipeptide-DOTAM conjugates has been developed which is based on the peralkylation of 1,4,7,10-tetraazacyclododecane (cyclen) with protected N-iodoacetyl dipeptides. Standardized procedures were used for the alkylation, metalation, and purification of the resultant lanthanide complexes. Using this approach, we have been able to rapidly and reliably prepare and screen five different ligands each with up to six lanthanide ions. This preliminary investigation has identified several paramagnetic compounds with strong chemical exchange saturation transfer (PARACEST) properties in water at physiological temperature and pH. Extension of the synthetic approach to a wide variety of amino acids is possible.  相似文献   

12.
Primary leaves of 7- to 9-day-old etiolated seedlings of Phaseolus vulgaris L. var. Red Kidney infiltrated in darkness with aqueous solutions of alpha, alpha'-dipyridyl, o-phenanthroline, pyridine-2-aldoxime, pyridine-2-aldehyde, 8-hydroxyquinoline, or picolinic acid synthesize large amounts of magnesium protoporphyrin monomethyl ester and lesser amounts of magnesium protoporphyrin, protoporphyrin, and protochlorophyllide. Pigment formation proceeds in a linear manner for up to 21 hours after vacuum infiltration with 10 mm alpha, alpha'-dipyridyl. Etiolated tissues of Zea mays L., Cucumis sativus L., and Pisum sativum L. respond in the same way to dipyridyl treatment. Compounds active in eliciting this response are aromatic heterocyclic nitrogenous bases which also act as bidentate chelators and form extremely stable complexes with iron; other metal ion chelators, such as ethylenediaminetetraacetic acid, salicylaldoxime, and sodium diethyldithiocarbamate, do not elicit any pigment synthesis. The ferrous, ferric, cobaltous, and zinc chelates of alpha, alpha'-dipyridyl are similarly ineffective. If levulinic acid is supplied to etiolated bean leaves together with alpha, alpha'-dipyridyl, porphyrin production is inhibited and delta-aminolevulinic acid accumulates in the tissue. Synthesis of porphyrins proceeds in the presence of 450 micrograms per milliliter chloramphenicol or 50 micrograms per milliliter cycloheximide with only partial diminution. We propose that heme or an iron-protein complex blocks the action of the enzyme(s) governing the synthesis of delta-aminolevulinic acid in etiolated leaves in the dark and that iron chelators antagonize this inhibition, leading to the biosynthesis of delta-aminolevulinic acid and porphyrins.  相似文献   

13.
Coumarin-based different series of hydrazone derivatives were synthesized and evaluated for anticancer activity against four different human cancer cell lines. The activity of the compounds were compared with doxorubicin as a standard drug and all the compounds exhibited good to moderate cytotoxicity with IC50 values ranging from 6.07 to 60.45 µM against all the examined cancer cell lines. Based on the screening results, it was concluded that the compounds 12a and 18a were the most promising medicinal entities. In vitro tubulin polymerisation inhibition assay was performed for the compounds 12a and 18a and these two compounds displayed good potency when compared with colchicine as the standard drug. The interaction of these compounds with tubulin protein was also studied with the help of molecular docking technique using Discovery studio software. Furthermore, the molecular and ADMET properties of the compounds were computed with Osiris property software and PreADMET server. The compounds exhibited exciting in vitro and in silico results. Hence we propose that the compounds 12a and 18a could be developed as tubulin targeted potential antiproliferative agents.  相似文献   

14.
Fourteen naphthoquinone derivatives (1-14) were designed based on a putative proteasome inhibitor PI-083. These compounds were synthesized and evaluated against A549, DU145, KB, and KBvin tumor cell lines. Six compounds (2, 4, 8, 9, 10, and 13) showed antiproliferative activities comparable to that of PI-083. Among them, compound 8 was confirmed as a 20S proteasome inhibitor in both in vitro and cell-based assays. These findings endorse further optimization efforts based on this structural phenotype to develop potential anticancer drug candidates.  相似文献   

15.
Although there is no shortage of potential drug targets, there are only a handful known low-molecular-weight inhibitors of protein-protein interactions (PPIs). One problem is that current efforts are dominated by low-yield high-throughput screening, whose rigid framework is not suitable for the diverse chemotypes present in PPIs. Here, we developed a novel pharmacophore-based interactive screening technology that builds on the role anchor residues, or deeply buried hot spots, have in PPIs, and redesigns these entry points with anchor-biased virtual multicomponent reactions, delivering tens of millions of readily synthesizable novel compounds. Application of this approach to the MDM2/p53 cancer target led to high hit rates, resulting in a large and diverse set of confirmed inhibitors, and co-crystal structures validate the designed compounds. Our unique open-access technology promises to expand chemical space and the exploration of the human interactome by leveraging in-house small-scale assays and user-friendly chemistry to rationally design ligands for PPIs with known structure.  相似文献   

16.
Using haloperidol as a scaffold, new agents were designed to investigate the structural contributions of various groups to binding at CNS receptors associated with atypical antipsychotic pharmacology. It is clear that each pharmacophoric group, the butyrophenone, the piperidine and the 4-chlorophenyl moieties contributes to changes in binding to the receptors of interest. This strategy has resulted in the identification of several new agents, compounds 16, 18, 19, 23, 24 and 25, with binding profiles which satisfy our stated criteria for agents to act as potential atypical antipsychotics. This research demonstrates that haloperidol can serve as a useful lead in the identification and design of new agents that target multiple receptors associated with antipsychotic pharmacology.  相似文献   

17.
2-Pyridinecarbaldehyde isonicotinoyl hydrazone (HPCIH) and di-2-pyridylketone isonicotinoyl hydrazone (HPKIH) are two Fe chelators with contrasting biological behavior. HPCIH is a well-tolerated Fe chelator with limited antiproliferative activity that has potential applications in the treatment of Fe-overload disease. In contrast, the structurally related HPKIH ligand possesses significant antiproliferative activity against cancer cells. The current work has focused on understanding the mechanisms of the Fe mobilization and antiproliferative activity of these hydrazone chelators by synthesizing new analogs (based on 2-acetylpyridine and 2-benzoylpyridine) that resemble both series and examining their Fe coordination and redox chemistry. The Fe mobilization activity of these compounds is strongly dependent on the hydrophobicity and solution isomeric form of the hydrazone (E or Z). Also, the antiproliferative activity of the hydrazone ligands was shown to be influenced by the redox properties of the Fe complexes. This indicated that toxic Fenton-derived free radicals are important for the antiproliferative activity for some hydrazone chelators. In fact, we show that any substitution of the H atom present at the imine C atom of the parent HPCIH analogs leads to an increase in antiproliferative efficacy owing to an increase in redox activity. These substituents may deactivate the imine R–C=N–Fe (R is Me, Ph, pyridyl) bond relative to when a H atom is present at this position preventing nucleophilic attack of hydroxide anion, leading to a reversible redox couple. This investigation describes novel structure–activity relationships of aroylhydrazone chelators that will be useful in designing new ligands or fine-tuning the activity of others. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
A new hybrid template has been designed by integrating the structural features of nimesulide and the 1,2,3-triazole moiety in a single molecular entity at the same time eliminating the problematic nitro group of nimesulide. The template has been used for the generation of a library of molecules as potential anticancer agents. A mild and greener CuAAC approach has been used to synthesize these compounds via the reaction of 4-azido derivative of nimesulide and terminal alkynes in water. Three of these compounds showed promising growth inhibition (IC50 ~6–10 μM) of A549, HepG2, HeLa and DU145 cancer cell lines but no significant effects on HEK293 cell line. They also inhibited PDE4B in vitro (60–70% at 10 μM) that was supported by the docking studies (PLP score 87–94) in silico.  相似文献   

19.
In this study, a set of novel benzoxazole derivatives were designed, synthesised, and biologically evaluated as potential VEGFR-2 inhibitors. Five compounds (12d, 12f, 12i, 12l, and 13a) displayed high growth inhibitory activities against HepG2 and MCF-7 cell lines and were further investigated for their VEGFR-2 inhibitory activities. The most potent anti-proliferative member 12 l (IC50 = 10.50 μM and 15.21 μM against HepG2 and MCF-7, respectively) had the most promising VEGFR-2 inhibitory activity (IC50 = 97.38 nM). A further biological evaluation revealed that compound 12l could arrest the HepG2 cell growth mainly at the Pre-G1 and G1 phases. Furthermore, compound 12l could induce apoptosis in HepG2 cells by 35.13%. likely, compound 12l exhibited a significant elevation in caspase-3 level (2.98-fold) and BAX (3.40-fold), and a significant reduction in Bcl-2 level (2.12-fold). Finally, docking studies indicated that 12l exhibited interactions with the key amino acids in a similar way to sorafenib.  相似文献   

20.
The role of iron and iron chelators in the initiation of microsomal lipid peroxidation has been investigated. It is shown that an Fe3+ chelate in order to be able to initiate enzymically induced lipid peroxidation in rat liver microsomes has to fulfill three criteria: (a) reducibility by NADPH; (b) reactivity of the Fe2+ chelate with rat liver microsomes has to fulfill three criteria: (a) reducibility by NADPH; (b) reactivity of the Fe2+ chelate with O2; and (c) formation of a relatively stable perferryl radical. NADH can support lipid peroxidation in the presence of ADP-Fe3+ or oxalate-Fe3+ at rates comparable to those obtained with NADPH but requires 10 to 15 times higher concentrations of the Fe3+ chelates for maximal activity. The results are discussed in relation to earlier proposed mechanisms of microsomal lipid peroxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号