首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vitamin D, a steroid hormone and exerts its biological effects through its active metabolite 1alpha, 25 dihydroxyvitamin D3 [1,25(OH)2D3]. Like steroid hormones, 1,25(OH)2D3 is efficacious at very low concentrations and serves as a ligand for vitamin D receptors (VDR), associating with VDR very high affinity. Despite its potent property as a differentiating agent, its use in the clinical practice is hampered by the induction of hypercalcemia at a concentration required to suppress cancer cell proliferation. Therefore nearly 400 structural analogs of vitamin D3 have been synthesized and evaluated for their efficacy and toxicity. Among these analogs, relatively less toxic but highly efficacious analogs, EB1089, RO24-5531, 1alpha-hydroxyvitamin D5 and a few others have been evaluated in a preclinical toxicity and in Phase I clinical trials for dose tolerance in advanced cancer patients. Clinical trials using vitamin D analogs for prevention or therapy of cancer patients are still in their infancy. Vitamin D mediates its action by two independent pathways. Genomic pathway involves nuclear VDR and induces biological effects by interactions with hormone response elements and modulation of differential gene expressions. Evidence also suggests that vitamin D analogs also interact with steroid hormone(s) inducible genes. The non-genomic pathway is characterized by rapid actions of vitamin D. It involves interactions with membrane-VDR interactions and its interactions with protein kinase C and by altering intracellular calcium channels. Thus, the development of nontoxic analogs of vitamin D analogs and understanding of their molecular mechanism(s) of action are of significant importance in the prevention and treatment of cancer by vitamin D.  相似文献   

2.
3.
The rapid, non-genomic actions of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] have been well described, however, the role of the nuclear vitamin D receptor (VDR) in this pathway remains unclear. To address this question, we used VDR(+/+) and VDR(-/-) osteoblasts isolated from wild-type and VDR null mice to study the increase in intracellular calcium ([Ca(2+)](i)) and activation of protein kinase C (PKC) induced by 1,25(OH)(2)D(3). Within 1 min of 1,25(OH)(2)D(3) (100 nM) treatment, an increase of 58 and 53 nM in [Ca(2+)](i) (n = 3) was detected in VDR(+/+) and VDR(-/-) cells, respectively. By 5 min, 1,25(OH)(2)D(3) caused a 2.1- and 1.9-fold increase (n = 6) in the phosphorylation of PKC substrate peptide acetylated-MBP(4-14) in VDR(+/+) and VDR(-/-) osteoblasts. The 1,25(OH)(2)D(3)-induced phosphorylation was abolished by GF109203X, a general PKC inhibitor, in both cell types, confirming that the secosteroid induced PKC activity. Moreover, 1,25(OH)(2)D(3) treatment resulted in the same degree of translocation of PKC-alpha and PKC-delta, but not of PKC-zeta, from cytosol to plasma membrane in both VDR(+/+) and VDR(-/-) cells. These experiments demonstrate that the 1,25(OH)(2)D(3)-induced rapid increases in [Ca(2+)](i) and PKC activity are neither mediated by, nor dependent upon, a functional nuclear VDR in mouse osteoblasts. Thus, VDR is not essential for these rapid actions of 1,25(OH)(2)D(3) in osteoblasts.  相似文献   

4.
To improve our understanding of the cutaneous vitamin D system, we studied vitamin D receptor (VDR) gene regulation in cultured human keratinocytes. Because VDR and its ligand 1 alpha,25-dihydroxyvitamin D(3) have been implicated in epidermal growth control, we investigated VDR expression as related to cellular proliferation by using different cell cycle synchronization protocols. Keratinocytes, deprived of growth factors, were forced into quiescence and a concomitant loss of VDR expression was observed. Mitogenic stimulation of these G(0) cells however quickly upregulated VDR levels several hours ahead the G(1)-S transition point. Growth arrest at the G(1)-S border by mimosine treatment or at the metaphase by nocodazole also downregulated VDR levels but a restoration of VDR expression was again quickly achieved after reentering the cell cycle. These findings indicate that VDR expression in keratinocytes is restricted to actively cycling cells, but not limited to one particular phase of the cell cycle.  相似文献   

5.
6.
7.
Vitamin D(3) receptor ablation alters mammary gland morphogenesis   总被引:5,自引:0,他引:5  
Postnatal mammary gland morphogenesis is achieved through coordination of signaling networks in both the epithelial and stromal cells of the developing gland. While the major proliferative hormones driving pubertal mammary gland development are estrogen and progesterone, studies in transgenic and knockout mice have successfully identified other steroid and peptide hormones that impact on mammary gland development. The vitamin D(3) receptor (VDR), whose ligand 1,25-dihydroxyvitamin D(3) is the biologically active form of vitamin D(3), has been implicated in control of differentiation, cell cycle and apoptosis of mammary cells in culture, but little is known about the physiological relevance of the vitamin D(3) endocrine system in the developing gland. In these studies, we report the expression of the VDR in epithelial cells of the terminal end bud and subtending ducts, in stromal cells and in a subset of lymphocytes within the lymph node. In the terminal end bud, a distinct gradient of VDR expression is observed, with weak VDR staining in proliferative populations and strong VDR staining in differentiated populations. The role of the VDR in ductal morphogenesis was examined in Vdr knockout mice fed high dietary Ca(2+) which normalizes fertility, serum estrogen and neonatal growth. Our results indicate that mammary glands from virgin Vdr knockout mice are heavier and exhibit enhanced growth, as evidenced by higher numbers of terminal end buds, greater ductal outgrowth and enhanced secondary branch points, compared with glands from age- and weight-matched wild-type mice. In addition, glands from Vdr knockout mice exhibit enhanced growth in response to exogenous estrogen and progesterone, both in vivo and in organ culture, compared with glands from wild-type mice. Our data provide the first in vivo evidence that 1,25-dihydroxyvitamin D(3) and the VDR impact on ductal elongation and branching morphogenesis during pubertal development of the mammary gland. Collectively, these results suggest that the vitamin D(3) signaling pathway participates in negative growth regulation of the mammary gland.  相似文献   

8.
9.
The vitamin D receptor (VDR) is a member of the steroid receptor gene family. In this report, we examine the nature of specific VDR DNA binding utilizing the vitamin D-responsive element derived from the human osteocalcin promoter. Association of the VDR with the human osteocalcin 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) responsive element (VDRE) in vitro was characterized on VDRE affinity columns by both weak and strong interactions. Weak interaction was a property of the VDR itself, monomeric in nature, and determined exclusively by the VDR's DNA-binding domain. Strong interaction, in contrast, was dependent upon an intact receptor molecule as well as a heterologous mammalian cell nuclear accessory factor (NAF). Heteromeric interaction between VDR and NAF was independent of the VDR DNA-binding domain, suggesting the presence of a functional dimerization domain separate from that for DNA binding. Direct association of NAF with immobilized VDR revealed that the interaction does not require the presence of DNA. Most importantly, while occupancy of the VDR by 1,25(OH)2D3 was not required for VDR interactions with either DNA or NAF, the presence of hormone increased the apparent relative affinity of the VDR for NAF approximately 10-fold. These studies suggest that high affinity association of the VDR with DNA requires both the DNA-binding domain as well as an additional independent structure located within the steroid-binding region. This protein subdomain interacts with NAF and is regulated by 1,25(OH)2D3.  相似文献   

10.
Vitamin D through its receptor (VDR) plays a major role in bone mineral metabolism. However, VDR is also present in a variety of cell lines as well as in numerous tissues, suggesting other functions of the hormone beyond bone metabolism and mineral homeostasis. At the liver level, it has been shown that vitamin D induces numerous changes (i.e. enzyme activity level, stimulation of some metabolic pathways and stimulation of the normal liver recovery after partial hepatectomy). However, some works did not find VDR in the liver, and also used liver tissue as a negative control of VDR gene expression. In this paper, we examined fetal, neonatal and adult rat tissues for the presence of VDR using a sensitive RT-PCR technique and immunohistochemistry. We found VDR mRNA and VDR protein in rat liver at all different periods of rat life. Thus, we suggest that some of the actions of vitamin D on liver could be mediated at the genomic level through the VDR, and that the use of this tissue as a negative control of VDR gene expression is clearly inappropriate. Accepted: 7 June 1999  相似文献   

11.
BACKGROUND/AIMS: Hypocalcemic vitamin D-resistant rickets (HVDRR) is a rare autosomal recessive disorder characterized by severe rickets, hypocalcemia, secondary hyperparathyroidism, elevated levels of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], and occasionally, alopecia. In most cases, the disease is associated with mutations in the gene of the vitamin D receptor (VDR), the mediator of 1,25(OH)(2)D(3) action. The apparently healthy HVDRR heterozygotes express both normal and mutant VDR alleles, and they present higher levels of 1,25(OH)(2)D(3) than their respective controls. Because VDR function, except for the disease-causative mutations, might be influenced by the presence of certain polymorphisms, we investigated the distribution of four common VDR polymorphisms--BsmI, ApaI, TaqI and FokI--in HVDRR carriers compared with their respective controls. METHODS: Sixty-seven relatives of 2 HVDRR patients, all members of an extended Greek kindred, were included in the study. VDR allelic polymorphisms were assessed by restriction fragment length polymorphisms after specific polymerase chain reaction amplification. RESULTS: The distribution of genotypic and allelic frequencies differed between HVDRR carriers and their respective controls regarding BsmI and TaqI polymorphisms. The bb genotype and the T allele (presence of BsmI and absence of TaqI polymorphisms) were less frequent in the HVDRR carrier group than in the control group in a statistically significant manner (p = 0.029 and p = 0.025, respectively). CONCLUSIONS: Our findings showed that the apparently healthy HVDRR carriers present a different distribution of BsmI and TaqI VDR polymorphisms than their controls, suggesting that further investigation of the HVDRR carrier population may elucidate the implication of VDR alleles in VDR function and the vitamin D endocrine system.  相似文献   

12.
The vitamin D-activating enzyme 1α-hydroxylase (CYP27B1) and vitamin D receptor (VDR) support anti-inflammatory responses to vitamin D in many tissues. Given the high basal expression of CYP27B1 and VDR in trophoblastic cells from the placenta, we hypothesized that anti-inflammatory effects of vitamin D may be particularly important in this organ. Pregnant wild type (WT) mice i.p. injected with LPS showed elevated expression of mouse Cyp27b1 (4-fold) and VDR (6-fold). Similar results were also obtained after ex vivo treatment of WT placentas with LPS. To assess the functional impact of this, we carried out ex vivo studies using placentas -/- for fetal (trophoblastic) Cyp27b1 or VDR. Vehicle-treated -/- placentas showed increased expression of IFN-γ and decreased expression of IL-10 relative to +/+ placentas. LPS-treated -/- placentas showed increased expression of TLR2, IFN-γ, and IL-6. Array analyses identified other inflammatory factors that are dysregulated in Cyp27b1(-/-) versus Cyp27b1(+/+) placentas after LPS challenge. Data highlighted enhanced expression of IL-4, IL-15, and IL-18, as well as several chemokines and their receptors, in Cyp27b1(-/-) placentas. Similar results for IL-6 expression were observed with placentas -/- for trophoblastic VDR. Finally, ex vivo treatment of WT placentas with the substrate for Cyp27b1, 25-hydroxyvitamin D(3), suppressed LPS-induced expression of IL-6 and the chemokine Ccl11. These data indicate that fetal (trophoblastic) vitamin D plays a pivotal role in controlling placental inflammation. In humans, this may be a key factor in placental responses to infection and associated adverse outcomes of pregnancy.  相似文献   

13.
Preeclampsia, a hypertensive disorder in pregnancy develops in 2–8% of pregnancies worldwide. Winter season and vitamin D deficiency have been associated with its onset.

Objective

To investigate the influence of season on maternal vitamin D status and placental vitamin D metabolism.

Methods

25-OH vitamin D and 1,25-(OH)2 vitamin D were measured in maternal serum obtained during the winter or summer months from 63 pregnant women at delivery (43 healthy, 20 preeclampsia). In a subgroup, mRNA expression of CYP24A1 (24-hydroxylase), CYP27B1 (1α-hydroxylase) and VDR (vitamin D receptor) were quantified by real time PCR in placental samples of 14 women with normal pregnancies and 13 with preeclampsia.

Results

In patients with preeclampsia,25-OH vitamin D levels were lower, but differed significantly from controls only in summer (18.21±17.1 vs 49.2±29.2 ng/mL, P<0.001), whereas 1,25-(OH)2 vitamin D levels were significantly lower only in winter (291±217 vs 612.3±455 pmol/mL, P<0.05). A two-factorial analysis of variance produced a statistically significant model (P<0.0001) with an effect of season (P<0.01) and preeclampsia (P = 0.01) on maternal 25-OH vitamin D levels, as well as a significant interaction between the two variables (P = 0.02). Placental gene expression of CYP24A1, CYP27B1, and VDR did not differ between groups or seasons. A negative correlation between placental gene expression of CYP24A1 and CYP27B1 was observed only in healthy controls (r = −0.81, P<0.0001).

Summary

Patients with preeclampsia displayed lower vitamin D serum levels in response to seasonal changes.The regulation of placental CYP24A1, but not of the VDR or CYP27B1 might be altered in preeclampsia.  相似文献   

14.
It has been reported that vitamin K deficiency in the rat markedly increases the 1,25-dihydroxyvitamin D3 receptor (VDR) binding to DNA and that vitamin K-dependent gamma-carboxylation of endogenous substrates of the intestinal and renal cytosol, also containing VDR, sharply reduced that binding (Sergeev, I.N., and Spirichev, V.B. (1989) Nutr. Res. 9, 725-733). In the present study we have evaluated vitamin K-dependent 14CO2 incorporation to VDR quantitated by immunoprecipitation with anti-VDR monoclonal antibodies. The results obtained strongly suggest that VDR in vitro can undergo gamma-carboxylation in the presence of vitamin K1 and that 15-25% of Glu residues in the VDR are carboxylated in vivo. Taking into account our earlier findings, it is likely that the VDR gamma-carboxylation modulates its binding to DNA.  相似文献   

15.
1,25(OH)(2)D(3), the active form of vitamin D, is a central player in calcium and bone metabolism. More recently, important immunomodulatory effects have been attributed to this hormone. The widespread presence of the vitamin D receptor (VDR) in the immune system and the expression of the enzymes responsible for the synthesis of the active 1,25(OH)(2)D(3) regulated by specific immune signals, even suggest a paracrine immunomodulatory role for 1,25(OH)(2)D(3). Additionally, the different molecular mechanisms used by 1,25(OH)(2)D(3) to exert its immunomodulatory effects prove of a broad action radius for this compound. Both, the effects of vitamin D deficiency and/or absence of the VDR as well as intervention with pharmacological doses of 1,25(OH)(2)D(3) or one of its less-calcemic analogs, affects immune system behavior in different animal models of immune-mediated disorders, such as type 1 diabetes. This review aims to summarize the data as they stand at the present time on the role of vitamin D in the pathogenesis of immune-mediated disorders, with special focus on type 1 diabetes, and on the therapeutic opportunities for vitamin D in the prevention and treatment of this autoimmune disease in mouse models and humans.  相似文献   

16.
Allelic variation at the 3'-end of the vitamin D receptor (VDR) gene has been associated with a 3-5-fold increased risk of developing prostate cancer and with differences in bone mineralization. This genetic diversity does not alter the VDR protein structurally, but instead may be a marker(s) of other, nearby polymorphisms that influence message stability or translation. The work reported here was instigated to identify additional VDR 3'-UTR polymorphisms that may have functional significance and to then test whether these genetic variants alter message stability. Initially, four novel, frequently occurring sequence variants were identified that associated with two common haplotypes that were described previously. These common sequence variants were not found within three message-destabilizing elements that we mapped within the 3'-UTR of the vitamin D receptor mRNA. Furthermore, the two VDR 3'-UTR haplotypes conferred an identical half-life on a heterologous beta-globin reporter gene, in an in vitro assay. We therefore conclude that common polymorphisms within the VDR 3'-UTR do not influence message stability.  相似文献   

17.
18.
In hypocalcaemia, elevated parathyroid hormone transitorily down-regulates the kidney vitamin D receptor, which returns to normal levels with the rise in serum extracellular calcium [Ca(2+)](e). In this study, we investigated the mechanism that underlies VDR increase in kidney in association with elevated [Ca(2+)](e). Examination of MAP kinase signals in a proximal tubule human kidney (HK-2G) epithelial cell line showed that treatment of [Ca(2+)](e) in the culture medium elevated phosphorylation of both ERK and p38 MAPKs. Blockade of p38 phosphorylation with SB203580 or SB202190 in turn abolished [Ca(2+)](e)-mediated VDR protein increase, while treatment with PD98059 and U0126, specifically blocked ERK phosphorylation, but had no effect on VDR stimulation by [Ca(2+)](e). Furthermore, SB203580 treatment potently repressed [Ca(2+)](e)-mediated activation of VDR promoter. We also demonstrate that si-RNA knock down of p38alpha completely diminished high [Ca(2+)](e)-mediated VDR induction. Direct CaSR involvement was demonstrated by using an si-RNA of CaSR that impeded [Ca(2+)](e)-mediated induction of VDR. In conclusion, a high extracellular [Ca(2+)](e) concentration in the physiological range is capable of directly increasing renal proximal VDR expression, and the induction mechanism requires activation of the CaSR and signal mediation by the p38alpha MAP kinase pathway.  相似文献   

19.
Mice lacking the vitamin D receptor (VDR) are resistant to airway inflammation. Pathogenic immune cells capable of transferring experimental airway inflammation to wildtype (WT) mice are present and primed in the VDR KO mice. Furthermore, the VDR KO immune cells homed to the WT lung in sufficient numbers to induce symptoms of asthma. Conversely, WT splenocytes, Th2 cells and hematopoetic cells induced some symptoms of experimental asthma when transferred to VDR KO mice, but the severity was less than that seen in the WT controls. Interestingly, experimentally induced vitamin D deficiency failed to mirror the VDR KO phenotype suggesting there might be a difference between absence of the ligand and VDR deficiency. Lipopolysaccharide (LPS) induced inflammation in the lungs of VDR KO mice was also less than in WT mice. Together the data suggest that vitamin D and the VDR are important regulators of inflammation in the lung and that in the absence of the VDR the lung environment, independent of immune cells, is less responsive to environmental challenges.  相似文献   

20.
Although vitamin D has been implicated in cardiovascular protection, few studies have addressed the role of vitamin D receptor (VDR) in atherosclerosis. Here we investigate the effect of inactivation of the VDR signaling on atherogenesis and the antiatherosclerotic mechanism of vitamin D. Low density lipoprotein receptor (LDLR)(-/-)/VDR(-/-) mice exhibited site-specific accelerated atherogenesis, accompanied by increases in adhesion molecules and proinflammatory cytokines in the aorta and cholesterol influx in macrophages. Macrophages showed marked renin up-regulation in the absence of VDR, and inhibition of renin by aliskiren reduced atherosclerosis in LDLR(-/-)/VDR(-/-) mice, suggesting that the renin-angiotensin system (RAS) promotes atherosclerosis in the absence of VDR. LDLR(-/-) mice receiving LDLR(-/-)/VDR(-/-) BMT developed larger lesions than LDLR(-/-) BMT controls. Moreover, LDLR(-/-) mice receiving Rag-1(-/-)/VDR(-/-) BMT, which were unable to generate functional T and B lymphocytes, still had more severe atherosclerosis than Rag-1(-/-) BMT controls, suggesting a critical role of macrophage VDR signaling in atherosclerotic suppression. Aliskiren treatment eliminated the difference in lesions between Rag-1(-/-)/VDR(-/-) BMT and Rag-1(-/-) BMT recipients, indicating that local RAS activation in macrophages contributes to the enhanced atherogenesis seen in Rag-1(-/-)/VDR(-/-) BMT mice. Taken together, these observations provide evidence that macrophage VDR signaling, in part by suppressing the local RAS, inhibits atherosclerosis in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号