首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin stimulates glucose uptake into muscle and fat cells by promoting the translocation of glucose transporter 4 (GLUT4) to the cell surface. Phosphatidylinositide 3-kinase (PI3K) has been implicated in this process. However, the involvement of protein kinase B (PKB)/Akt, a downstream target of PI3K in regulation of GLUT4 translocation, has been controversial. Here we report that microinjection of a PKB substrate peptide or an antibody to PKB inhibited insulin-stimulated GLUT4 translocation to the plasma membrane by 66 or 56%, respectively. We further examined the activation of PKB isoforms following treatment of cells with insulin or platelet-derived growth factor (PDGF) and found that PKBbeta is preferentially expressed in both rat and 3T3-L1 adipocytes, whereas PKBalpha expression is down-regulated in 3T3-L1 adipocytes. A switch in growth factor response was also observed when 3T3-L1 fibroblasts were differentiated into adipocytes. While PDGF was more efficacious than insulin in stimulating PKB phosphorylation in fibroblasts, PDGF did not stimulate PKBbeta phosphorylation to any significant extent in adipocytes, as assessed by several methods. Moreover, insulin, but not PDGF, stimulated the translocation of PKBbeta to the plasma membrane and high-density microsome fractions of 3T3-L1 adipocytes. These results support a role for PKBbeta in insulin-stimulated glucose transport in adipocytes.  相似文献   

2.
Aquaporin adipose, a putative glycerol channel in adipocytes   总被引:18,自引:0,他引:18  
Adipose tissue is a major site of glycerol production in response to energy balance. However, molecular basis of glycerol release from adipocytes has not yet been elucidated. We recently cloned a novel member of the aquaporin family, aquaporin adipose (AQPap), which has glycerol permeability. The current study was designed to examine the hypothesis that AQPap serves as a glycerol channel in adipocytes. Adipose tissue expressed AQPap mRNA in high abundance, but not the mRNAs for the other aquaglyceroporins, AQP3 and AQP9, indicating that AQPap is the only known aquaglyceroporin expressed in adipose tissue. Glycerol release from 3T3-L1 cells was increased during differentiation in parallel with AQPap mRNA levels and suppressed by mercury ion, which inhibits the function of AQPs, supporting AQPap functions as a glycerol channel in adipocytes. Fasting increased and refeeding suppressed adipose AQPap mRNA levels in accordance with plasma glycerol levels and oppositely to plasma insulin levels in mice. Insulin dose-dependently suppressed AQPap mRNA expression in 3T3-L1 cells. AQPap mRNA levels and adipose glycerol concentrations measured by the microdialysis technique were increased in obese mice with insulin resistance. Accordingly, negative regulation of AQPap expression by insulin was impaired in the insulin-resistant state. Exposure of epinephrine translocated AQPap protein from perinuclear cytoplasm to the plasma membrane in 3T3-L1 adipocytes. These results strongly suggest that AQPap plays an important role in glycerol release from adipocytes.  相似文献   

3.
Glucocorticoids initiate whole body insulin resistance and the aim of the present study was to investigate effects of dexamethasone on protein expression and insulin signalling in muscle and fat tissue. Rats were injected with dexamethasone (1 mg/kg/day, i.p.) or placebo for 11 days before insulin sensitivity was evaluated in vitro in soleus and epitrochlearis muscles and in isolated epididymal adipocytes. Dexamethasone treatment reduced insulin-stimulated glucose uptake and glycogen synthesis by 30-70% in epitrochlearis and soleus, and insulin-stimulated glucose uptake by ∼40% in adipocytes. 8-bromo-cAMP-stimulated lipolysis was ∼2-fold higher in adipocytes from dexamethasone-treated rats and insulin was less effective to inhibit cAMP-stimulated lipolysis. A main finding was that dexamethasone decreased expression of PKB and insulin-stimulated Ser473 and Thr308 phosphorylation in both muscles and adipocytes. Expression of GSK-3 was not influenced by dexamethasone treatment in muscles or adipocytes and insulin-stimulated GSK-3β Ser9 phosphorylation was reduced in muscles only. A novel finding was that glycogen synthase (GS) Ser7 phosphorylation was higher in both muscles from dexamethasone-treated rats. GS expression decreased (by 50%) in adipocytes only. Basal and insulin-stimulated GS Ser641 and GS Ser645,649,653,657 phosphorylation was elevated in epitrochlearis and soleus muscles and GS fractional activity was reduced correspondingly. In conclusion, dexamethasone treatment (1) decreases PKB expression and insulin-stimulated phosphorylation in both muscles and adipocytes, and (2) increases GS phosphorylation (reduces GS fractional activity) in muscles and decreases GS expression in adipocytes. We suggest PKB and GS as major targets for dexamethasone-induced insulin resistance.  相似文献   

4.
Chronic insulin exposure induces serine/threonine phosphorylation and degradation of IRS-1 through a rapamycin-sensitive pathway, which results in a down-regulation of insulin action. In this study, to investigate whether rapamycin (an mTOR inhibitor) could prevent insulin resistance induced by hyperinsulinemia, 3T3-L1 adipocytes were incubated chronically in the presence of insulin with or without the addition of rapamycin. Subsequently, the cells were washed and re-stimulated acutely with insulin. Chronic insulin stimulation caused a reduction of GLUT-4 and IRS-1 proteins with a correlated decrease in acute insulin-induced PKB and MAPK phosphorylations as well as a reduction in insulin-stimulated glucose transport. Rapamycin prevented the reduction of IRS-1 protein levels and insulin-induced PKB Ser-473 phosphorylation with a partial normalization of insulin-induced glucose transport. In contrast, rapamycin had no effect on the decrease in insulin-induced MAPK phosphorylation or GLUT-4 protein levels. These results suggest that chronic insulin exposure leads to a down-regulation of PKB and MAPK pathways through different mechanisms in adipocytes.  相似文献   

5.
Aquaglyceroporin 7 (AQP7) is a glycerol transporter expressed in adipocytes. Its expression has been shown to be modulated in obesity. Metabolic syndrome is characterized by abdominal obesity, insulin resistance, dyslipidemia, and hypertension. An animal model displaying several features of metabolic syndrome was used to study the AQP7 expression at both mRNA and protein level and glycerol flux in adipocytes. Second generation n3-PUFA depleted female rats is a good animal model for metabolic syndrome as it displays characteristic features such as liver steatosis, visceral obesity, and insulin resistance. Our data show a reduced expression of AQP7 at the protein level in adipose tissue from n3-PUFA-depleted rats, without any changes at the mRNA levels. [U-(14)C]-Glycerol uptake was not modified in adipocytes from n3-PUFA-depleted animals.  相似文献   

6.
Prolonged use of glucocorticoids induces pronounced insulin resistance in vivo. In vitro, treatment of 3T3-L1 adipocytes with dexamethasone for 48 h reduces the maximal level of insulin- and stress (arsenite)-induced glucose uptake by approximately 50%. Although phosphatidylinositol 3-kinase signaling was slightly attenuated, phosphorylation of its downstream effectors such as protein kinase B and protein kinase C-lambda remained intact. Nor was any effect of dexamethasone treatment observed on insulin- or arsenite-induced translocation of glucose transporter 4 (GLUT4) toward the plasma membrane. However, for a maximal response to either arsenite- or insulin-induced glucose uptake in these cells, functional p38 MAPK signaling is required. Dexamethasone treatment markedly attenuated p38 MAPK phosphorylation coincident with an up-regulation of the MAPK phosphatases MKP-1 and MKP-4. Employing lentivirus-mediated ectopic expression in fully differentiated 3T3-L1 adipocytes demonstrated a differential effect of these phosphatases: whereas MKP-1 was a more potent inhibitor of insulin-induced glucose uptake, MKP-4 more efficiently inhibited arsenite-induced glucose uptake. This coincided with the effects of these phosphatases on p38 MAPK phosphorylation, i.e. MKP-1 and MKP-4 attenuated p38 MAPK phosphorylation by insulin and arsenite, respectively. Taken together, these data provide evidence that in 3T3-L1 adipocytes dexamethasone inhibits the activation of the GLUT4 in the plasma membrane by a p38 MAPK-dependent process, rather than in a defect in GLUT4 translocation per se.  相似文献   

7.
Overexpression of the Homo sapiens LYR motif containing 1 (LYRM1) causes mitochondrial dysfunction and induces insulin resistance in 3T3-L1 adipocytes. α-Lipoic acid (α-LA), a dithiol compound with antioxidant properties, improves glucose transport and utilization in 3T3-L1 adipocytes. The aim of this study was to investigate the direct effects of α-LA on reactive oxygen species (ROS) production and insulin sensitivity in LYRM1 overexpressing 3T3-L1 adipocytes and to explore the underlying mechanism. Pretreatment with α-LA significantly increased both basal and insulin-stimulated glucose uptake and insulin-stimulated GLUT4 translocation, while intracellular ROS levels in LYRM1 overexpressing 3T3-L1 adipocytes were decreased. These changes were accompanied by a marked upregulation in expression of insulin-stimulated tyrosine phosphorylation of IRS-1 and serine phosphorylation of Akt following treatment with α-LA. These results indicated that α-LA protects 3T3-L1 adipocytes from LYRM1-induced insulin resistance partially via its capacity to restore mitochondrial function and/or increase phosphorylation of IRS-1 and Akt.  相似文献   

8.
Adipose tissue is a source of hepatocyte growth factor (HGF), and circulating HGF levels have been associated with elevated body mass index in human. However, the effects of HGF on adipocyte functions have not yet been investigated. We show here that in 3T3-L1 adipocytes HGF stimulates the phosphatidylinositol (PI) 3-kinase-dependent protein kinase B (PKB) activity, AS160 phosphorylation, Glut4 translocation, and consequently, glucose uptake. The initial steps involved in HGF- and insulin-induced glucose uptake are different. HGF enhanced the tyrosine phosphorylation of Gab1, leading to the recruitment of the p85-regulated subunit of PI 3-kinase, whereas p85 was exclusively recruited by IRS1 in response to insulin. In adipocytes rendered insulin-resistant by a long-lasting tumor necrosis factor alpha treatment, the protein level of Gab1 was strongly decreased, and HGF-stimulated PKB activation and glucose uptake were also altered. Moreover, treatment of 3T3-L1 adipocytes with thiazolidinedione, an anti-diabetic drug, enhanced the expression of both HGF and its receptor. These data provide the first evidence that in vitro HGF promotes glucose uptake through a Gab1/PI 3-kinase/PKB/AS160 pathway which was altered in tumor necrosis factor alpha-treated adipocytes.  相似文献   

9.
The plasma membrane aquaporin-7 (AQP7) has been shown to be expressed in adipose tissue and its role in glycerol release/uptake in adipocytes has been postulated and correlated with obesity onset. However, some studies have contradicted this view. Based on this situation, we have re-assessed the precise localization of AQP7 in adipose tissue and analyzed its function as a water and/or glycerol channel in adipose cells. Fractionation of mice adipose tissue revealed that AQP7 is located in both adipose and stromal vascular fractions. Moreover, AQP7 was the only aquaglyceroporin expressed in adipose tissue and in 3T3-L1 adipocytes. By overexpressing the human AQP7 in 3T3-L1 adipocytes it was possible to ascertain its role as a water and glycerol channel in a gain-of-function scenario. AQP7 expression had no effect in equilibrium cell volume but AQP7 loss of function correlated with higher triglyceride content. Furthermore it is also reported for the first time a negative correlation between water permeability and the cell non-osmotic volume supporting the observation that AQP7 depleted cells are more prone to lipid accumulation. Additionally, the strong positive correlation between the rates of water and glycerol transport highlights the role of AQP7 as both a water and a glycerol channel and reflects its expression levels in cells. In all, our results clearly document a direct involvement of AQP7 in water and glycerol transport, as well as in triglyceride content in adipocytes.  相似文献   

10.
Aquaporins are channels that allow the movement of water across the cell membrane. Some members of the aquaporin family, the aquaglyceroporins, also allow the transport of glycerol, which is involved in the biosynthesis of triglycerides and the maintenance of fasting glucose levels. Aquaporin-7 (AQP7) is a glycerol channel mainly expressed in adipocytes. The deletion of AQP7 gene in mice leads to obesity and type 2 diabetes. AQP7 modulates adipocyte glycerol permeability thereby controlling triglyceride accumulation and fat cell size. Furthermore, the coordinated regulation of fat-specific AQP7 and liver-specific AQP9 may be key to determine glucose metabolism in insulin resistance.  相似文献   

11.
体外培养3T3-L1细胞分化模型,研究不同浓度胰岛素及慢性胰岛素刺激对3T3-L1脂肪细胞中极低密度脂蛋白受体(VLDLR)基因表达的影响.在不同浓度胰岛素及胰岛素慢性刺激的干预下,用半定量RT-PCR检测细胞VLDLR mRNA水平的变化.微量化GOD-PAP法检测培养基中残存的葡萄糖.在细胞诱导分化过程中,胰岛素浓度的增高促进VLDLR的表达;胰岛素慢性刺激下,VLDLR表达因浓度差异呈现不同变化.研究结果表明,胰岛素的浓度及慢性刺激对3T3-L1脂肪细胞的成熟和VLDLR基因的表达有显著作用,而胰岛素抵抗明显减低成熟脂肪细胞VLDLR的表达.  相似文献   

12.
目的 研究灵芝多糖对3T3-L1胰岛素抵抗细胞模型PI-3K p85和GLUT4蛋白表达的影响,探讨灵芝多糖改善胰岛素抵抗的分子机制.方法 3T3-L1前脂肪细胞经1-甲基-3-异丁基-黄嘌呤、地塞米松、胰岛素诱导分化成3T3-L1脂肪细胞,以葡萄糖氧化酶法测定培养液中残余的葡萄糖含量.比较二甲双胍组,检测培养液中葡萄糖含量及PI-3K p85和GLUT4蛋白表达变化.结果 地塞米松联合胰岛素诱导3T3-L1脂肪细胞产生胰岛素抵抗,细胞对葡萄糖的摄取量减少.灵芝多糖可改善3T3-L1脂肪细胞胰岛素抵抗.胰岛素抵抗细胞的PI-3K p85和GLUT4蛋白表达明显减少;应用灵芝多糖后,相关蛋白表达增加.结论 灵芝多糖通过提高PI-3K p85和GLUT4蛋白的表达,参与胰岛素抵抗状态下3T3-L1细胞的葡萄糖代谢.  相似文献   

13.
Diabetes Mellitus is a chronic metabolic disease marked by altered glucose homeostasis and insulin resistance. The phosphatase PTEN antagonizes the insulin-induced-PI3K-driven cascade that normally leads to GLUT4 membrane translocation. This study investigates the effect of Phenylbutyric Acid (PBA), a chemical chaperone and a potential mediator of PTEN activity, on glucose uptake in differentiated 3T3-L1 adipocytes. Adipocyte differentiation status was quantified by Oil Red O staining and the expression of AP2. Baseline and insulin-induced adipocyte glucose uptake were assayed with and without PBA treatment. Expression of GLUT1, GLUT4, PIP3, pAkt, pPTEN, and PARK-7 was examined by western blot. Plasma membrane expression of GLUT4 was determined using immunofluorescence. Leptin and adiponectin secretion was measure by enzyme-linked immunosorbent assay. PBA treatment, alone or with insulin induction, significantly increased glucose uptake in 3T3-L1 adipocytes. PBA significantly increased GLUT1 but not GLUT4 total protein expression. However, a significant increase in membrane GLUT4 protein translocation was observed. The expression of PIP3 and pAkt increased indicating enhanced PI3k pathway activity. There was a significant decrease in PTEN activity as evident by a rise in the phosphorylated form of this protein. PARK7 protein expression increased with PBA. Treating differentiated adipocytes with PBA did not alter their differentiation status, but decreased the leptin to adiponectin ratio. Conclusion: this study showed that PBA enhances adipocyte glucose uptake potentially through its effect on glucose transporter expression and/or trafficking via the PI3K signaling pathway; suggesting PBA as a possible candidate for the ancillary management of diabetes.  相似文献   

14.
15.
In the present study, we have examined whether IKKβ [IκB (inhibitor of nuclear factor κB) kinase β] plays a role in feedback inhibition of the insulin signalling cascade. Insulin induces the phosphorylation of IKKβ, in vitro and in vivo, and this effect is dependent on intact signalling via PI3K (phosphoinositide 3-kinase), but not PKB (protein kinase B). To test the hypothesis that insulin activates IKKβ as a means of negative feedback, we employed a variety of experimental approaches. First, pharmacological inhibition of IKKβ via BMS-345541 did not potentiate insulin-induced IRS1 (insulin receptor substrate 1) tyrosine phosphorylation, PKB phosphorylation or 2-deoxyglucose uptake in differentiated 3T3-L1 adipocytes. BMS-345541 did not prevent insulin-induced IRS1 serine phosphorylation on known IKKβ target sites. Secondly, adenovirus-mediated overexpression of wild-type IKKβ in differentiated 3T3-L1 adipocytes did not suppress insulin-stimulated 2-deoxyglucose uptake, IRS1 tyrosine phosphorylation, IRS1 association with the p85 regulatory subunit of PI3K or PKB phosphorylation. Thirdly, insulin signalling was not potentiated in mouse embryonic fibroblasts lacking IKKβ. Finally, insulin treatment of 3T3-L1 adipocytes did not promote the recruitment of IKKβ to IRS1, supporting our findings that IKKβ, although activated by insulin, does not promote direct serine phosphorylation of IRS1 and does not contribute to the feedback inhibition of the insulin signalling cascade.  相似文献   

16.
tub encodes a protein of poorly understood function, but one implicated strongly in the control of energy balance and insulin sensitivity. Whilst tub expression is particularly prominent in neurones it is also detectable in extraneuronal tissues. We show here, for the first time, expression of TUB protein in rat adipocytes and the murine adipocyte model 3T3-L1 and demonstrate that insulin induces its tyrosine phosphorylation and association with the insulin receptor. TUB expression is regulated developmentally during adipogenic differentiation of 3T3-L1 cells and in response to cell treatment with thyroid hormone or induction of insulin resistance. TUB was upregulated 5- to 10-fold in adipocytes from obese Zucker rats and 3T3-L1 adipocytes that had been rendered insulin resistant, a response that could be antagonised by rosiglitasone, an insulin-sensitising drug. Our data are consistent with a previously unforeseen role for TUB in insulin signalling and fuel homeostasis in adipocytes.  相似文献   

17.
We examined the effect of glucose concentration on insulin-induced 3T3-L1 adipose cell differentiation. Oil Red O staining of neutral lipid, cellular triglyceride mass, and glycerol phosphate dehydrogenase (GPDH) activity, were greater in 3T3-L1 cells cultured at 5 mM vs. 25 mM glucose. GPDH activity was 2- to 4-fold higher at 5 mM vs. 25 mM glucose over a range of insulin concentrations (0. 1 to 100 nM). Insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) was 1. 7-fold greater, and insulinstimulated phosphoinositide 3-kinase association with IRS-1 was 2. 3-fold higher, at 5 mM vs. 25 mM glucose. These effects of glucose were not caused by alterations in IRS-1 mass or cell-surface insulin binding. In preadipose cells at 5 mM glucose, expression of the leukocyte antigen-related (LAR) protein tyrosine phosphatase (negative regulator of insulin signaling) was 63% of the level at 25 mM glucose. Our data demonstrate that glucose concentration affects insulin-induced 3T3-L1 adipose cell differentiation as well as differentiation-directed insulin signaling pathways. Alterations in LAR expression potentially may be involved in modulating these responses.  相似文献   

18.
Non-esterified fatty acids are thought to be one of the causes for insulin resistance. However, the molecular mechanism of fatty acid-induced insulin resistance is not clearly known. In this study, we first examined the effect of palmitate on insulin signaling in 3T3-L1 adipocytes. We found that 1h treatment with 1 mmol/l palmitate had no effect on insulin binding, tyrosine phosphorylation of insulin receptors, 185 kDa proteins and Shc, and PI3 kinase activity in 3T3-L1 adipocytes. Then, the effects of palmitate on MAP kinase activity and glucose uptake in fully differentiated 3T3-L1 adipocytes were compared with those in poorly differentiated 3T3-L1 cells and in HIRc-B cells. Palmitate treatment had no effect on MAP kinase activity in fully differentiated 3T3-L1 adipocytes, while it inhibited MAP kinase in poorly differentiated 3T3-L1 cells and HIRc-B cells. Glucose transport in 3T3-L1 adipocytes treated with palmitate for 1 h, 4 h and 16 h was higher than that in control cells, but palmitate treatment caused a rightward shift of the insulin-dose responsive curve for glucose uptake in HIRc-B cells. Palmitate treatment did not significantly affect basal and insulin-stimulated GLUT4 translocation. When the cells were treated with PD98059, a specific MEK inhibitor, insulin-stimulated glucose uptake was not affected in 3T3-L1 adipocytes, while it was almost completely inhibited in HIRc-B cells. These results suggest the primary effect of palmitate on adipocytes may not involve insulin resistance of adipocytes themselves.  相似文献   

19.
Insulin signaling through protein kinase Akt/protein kinase B (PKB), a downstream element of the phosphatidylinositol 3-kinase (PI3K) pathway, regulates diverse cellular functions including metabolic pathways, apoptosis, mitogenesis, and membrane trafficking. To identify Akt/PKB substrates that mediate these effects, we used antibodies that recognize phosphopeptide sites containing the Akt/PKB substrate motif (RXRXX(p)S/T) to immunoprecipitate proteins from insulin-stimulated adipocytes. Tryptic peptides from a 250-kDa immunoprecipitated protein were identified as the protein kinase WNK1 (with no lysine) by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, consistent with a recent report that WNK1 is phosphorylated on Thr60 in response to insulin-like growth factor I. Insulin treatment of 3T3-L1 adipocytes stimulated WNK1 phosphorylation, as detected by immunoprecipitation with antibody against WNK1 followed by immunoblotting with the anti-phosphoAkt substrate antibody. WNK1 phosphorylation induced by insulin was unaffected by rapamycin, an inhibitor of p70 S6 kinase pathway but abolished by the PI3K inhibitor wortmannin. RNA interference-directed depletion of Akt1/PKB alpha and Akt2/PKB beta attenuated insulin-stimulated WNK1 phosphorylation, but depletion of protein kinase C lambda did not. Whereas small interfering RNA-induced loss of WNK1 protein did not significantly affect insulin-stimulated glucose transport in 3T3-L1 adipocytes, it significantly enhanced insulin-stimulated thymidine incorporation by about 2-fold. Furthermore, depletion of WNK1 promoted serum-stimulated cell proliferation of 3T3-L1 preadipocytes, as evidenced by a 36% increase in cell number after 48 h in culture. These data suggest that WNK1 is a physiologically relevant target of insulin signaling through PI3K and Akt/PKB and functions as a negative regulator of insulin-stimulated mitogenesis.  相似文献   

20.
Recent studies have indicated that insulin activates endothelial nitric-oxide synthase (eNOS) by protein kinase B (PKB)-mediated phosphorylation at Ser1177 in endothelial cells. Because hyperglycemia contributes to endothelial dysfunction and decreased NO availability in types 1 and 2 diabetes mellitus, we have studied the effects of high glucose (25 mM, 48 h) on insulin signaling pathways that regulate NO production in human aortic endothelial cells. High glucose inhibited insulin-stimulated NO synthesis but was without effect on NO synthesis stimulated by increasing intracellular Ca2+ concentration. This was accompanied by reduced expression of IRS-2 and attenuated insulin-stimulated recruitment of PI3K to IRS-1 and IRS-2, yet insulin-stimulated PKB activity and phosphorylation of eNOS at Ser1177 were unaffected. Inhibition of insulin-stimulated NO synthesis by high glucose was unaffected by an inhibitor of PKC. Furthermore, high glucose down-regulated the expression of CAP and Cbl, and insulin-stimulated Cbl phosphorylation, components of an insulin signaling cascade previously characterized in adipocytes. These data suggest that high glucose specifically inhibits insulin-stimulated NO synthesis and down-regulates some aspects of insulin signaling, including the CAP-Cbl signaling pathway, yet this is not a result of reduced PKB-mediated eNOS phosphorylation at Ser1177. Therefore, we propose that phosphorylation of eNOS at Ser1177 is not sufficient to stimulate NO production in cells cultured at 25 mM glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号