首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
2.
3.
4.
Epithelial cell movements, such as those that occur during cell intercalation, largely contribute to the formation of epithelial structures during the morphogenesis of multicellular organisms. As the architecture of epithelial tissues relies on strong adhesion between cells at adherens junctions (AJs), the intercalation or rearrangements of epithelial cells might be controlled by modulating the adhesion dynamics of the AJs by internal or external forces. In this review, we describe recent progress in understanding cell rearrangements during epithelial tube remodelling and discuss several models that might account for the developmental control of the spatial dynamics of AJs.  相似文献   

5.
6.
The Drosophila retina has a precise repeating structure based on the unit eye, or ommatidium. This review summarizes studies of the cell proliferation and survival episodes that affect the number of cells available to make each ommatidium. Late in larval development, as differentiation and patterning begin, the retinal epithelium exhibits striking regulation of the cell cycle including a transient G1 arrest of all cells, followed by a "Second Mitotic Wave" cell cycle that is regulated at the G2/M transition by local intercellular signals. Reiterated episodes of cell death also contribute to precise regulation of retinal cell number. The EGF receptor homolog has multiple roles in retinal proliferation and survival.  相似文献   

7.
The correct organization of cells within an epithelium is essential for proper tissue and organ morphogenesis. The role of Decapentaplegic/Bone morphogenetic protein (Dpp/BMP) signaling in cellular morphogenesis during epithelial development is poorly understood. In this paper, we used the developing Drosophila pupal retina--looking specifically at the reorganization of glial-like support cells that lie between the retinal ommatidia--to better understand the role of Dpp signaling during epithelial patterning. Our results indicate that Dpp pathway activity is tightly regulated across time in the pupal retina and that epithelial cells in this tissue require Dpp signaling to achieve their correct shape and position within the ommatidial hexagon. These results point to the Dpp pathway as a third component and functional link between two adhesion systems, Hibris-Roughest and DE-cadherin. A balanced interplay between these three systems is essential for epithelial patterning during morphogenesis of the pupal retina. Importantly, we identify a similar functional connection between Dpp activity and DE-cadherin and Rho1 during cell fate determination in the wing, suggesting a broader link between Dpp function and junctional integrity during epithelial development.  相似文献   

8.
The Drosophila retina has a precise repeating structure based on the unit eye, or ommatidium. This review summarizes studies of the cell proliferation and survival episodes that affect the number of cells available to make each ommatidium. Late in larval development, as differentiation and patterning begin, the retinal epithelium exhibits striking regulation of the cell cycle including a transient G1 arrest of all cells, followed by a ‘Second Mitotic Wave’ cell cycle that is regulated at the G2/M transition by local intercellular signals. Reiterated episodes of cell death also contribute to precise regulation of retinal cell number. The EGF receptor homolog has multiple roles in retinal proliferation and survival.  相似文献   

9.
Cell constriction promotes epithelial sheet invagination during embryogenesis across phyla. However, how this cell response is linked to global patterning information during organogenesis remains unclear. To address this issue, we have used the Drosophila eye and studied the formation of the morphogenetic furrow (MF), which is characterized by cells undergoing a synchronous apical constriction and apicobasal contraction. We show that this cell response relies on microtubules and F-actin enrichment within the apical domain of the constricting cell as well as on the activation of nonmuscle myosin. In the MF, Hedgehog (Hh) signaling is required to promote cell constriction downstream of cubitus interruptus (ci), and, in this context, Ci155 functions redundantly with mad, the main effector of dpp/BMP signaling. Furthermore, ectopically activating Hh signaling in fly epithelia reveals a direct relationship between the duration of exposure to this signaling pathway, the accumulation of activated Myosin II, and the degree of tissue invagination.  相似文献   

10.
11.
12.
13.
In the developing retina, neurogenesis and cell differentiation are coupled with cell proliferation. However, molecular mechanisms that coordinate cell proliferation and differentiation are not fully understood. In this study, we found that retinal neurogenesis is severely delayed in the zebrafish stem-loop binding protein (slbp) mutant. SLBP binds to a stem-loop structure at the 3′-end of histone mRNAs, and regulates a replication-dependent synthesis and degradation of histone proteins. Retinal cell proliferation becomes slower in the slbp1 mutant, resulting in cessation of retinal stem cell proliferation. Although retinal stem cells cease proliferation by 2 days postfertilization (dpf) in the slbp mutant, retinal progenitor cells in the central retina continue to proliferate and generate neurons until at least 5 dpf. We found that this progenitor proliferation depends on Notch signaling, suggesting that Notch signaling maintains retinal progenitor proliferation when faced with reduced SLBP activity. Thus, SLBP is required for retinal stem cell maintenance. SLBP and Notch signaling are required for retinal progenitor cell proliferation and subsequent neurogenesis. We also show that SLBP1 is required for intraretinal axon pathfinding, probably through morphogenesis of the optic stalk, which expresses attractant cues. Taken together, these data indicate important roles of SLBP in retinal development.  相似文献   

14.
15.
Cadherin cell-cell adhesion molecules are important determinants of morphogenesis and tissue patterning. C-cadherin plays a key role in the cell-upon-cell movements seen during Xenopus gastrulation. In particular, regulated changes in C-cadherin adhesion critically influence convergence-extension movements, thereby determining organization of the body plan. It is also predicted that remodelling of cadherin adhesive contacts is important for such cell-on-cell movements to occur. The recent demonstration that Epithelial (E-) cadherin is capable of undergoing endocytic trafficking to and from the cell surface presents a potential mechanism for rapid remodelling of such adhesive contacts. To test the potential role for C-cadherin endocytosis during convergence-extension, we expressed in early Xenopus embryos a dominantly-inhibitory mutant of the GTPase, dynamin, a key regulator of clathrin-mediated endocytosis. We report that this dynamin mutant significantly blocked the elongation of animal cap explants in response to activin, accompanied by inhibition of C-cadherin endocytosis. We propose that dynamin-dependent endocytosis of C-cadherin plays an important role in remodelling adhesive contacts during convergence-extension movements in the early Xenopus embryo.  相似文献   

16.
17.
18.
Developmental control of cell morphogenesis: a focus on membrane growth   总被引:1,自引:0,他引:1  
To date, the role of transport and insertion of membrane in the control of membrane remodelling during cell and tissue morphogenesis has received little attention. In contrast, the contributions of cytoskeletal rearrangements and both intercellular and cell-substrate attachments have been the focus of many studies. Here, we review work from many developmental systems that highlights the importance of polarized membrane growth and suggests a general model for the role of endocytic recycling during cell morphogenesis. We also address how the spatio-temporal control of membrane insertion during development can account for various classes of tissue rearrangements. We suggest that tubulogenesis, tissue spreading and cell intercalation stem mostly from a remarkably small number of cell intrinsic surface remodelling events that confer on cells different modes of migratory behaviours.  相似文献   

19.
Retinoic acid (RA) signaling is necessary for proper patterning and morphogenesis during embryonic development. Tissue-specific RA signaling requires precise spatial and temporal synthesis of RA from retinal by retinaldehyde dehydrogenases (Raldh) and the conversion of retinol to retinal by retinol dehydrogenases (Rdh) of the short-chain dehydrogenase/reducatase gene family (SDR). The SDR, retinol dehydrogenase 10 (RDH10), is a major contributor to retinal biosynthesis during mid-gestation. We have identified a missense mutation in the Rdh10 gene (Rdh10(m366Asp) ) using an N-ethyl-N-nitrosourea-induced forward genetic screen that result in reduced RA levels and signaling during embryonic development. Rdh10(m366Asp) mutant embryos have unique phenotypes, such as edema, a massive midline facial cleft, and neurogenesis defects in the forebrain, that will allow the identification of novel RA functions.  相似文献   

20.
Cell death in normal and rough eye mutants of Drosophila.   总被引:7,自引:0,他引:7  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号