首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Osteoporosis is a common skeletal disease characterized by low bone mass and microarchitectural deterioration of bone tissue with a consequent increase in bone fragility and susceptibility to fracture. In the past years, twin and family study have shown that this disease recognizes a strong genetic component and that genetic factors play an important role in regulating bone mineral density (BMD). While in few isolate conditions osteoporosis can be inherited in a simple Mendelian pattern, due to single gene mutations, in the majority of cases has to be considered a multifactorial polygenic disease in which genetic determinants are modulated by hormonal, environmental and nutritional factors. Given the important role that steroid hormones play in bone cell development and in the maintenance of normal bone architecture, polymorphisms at receptor of the steroid/thyroid hormone receptor superfamily, such as estrogen receptor alpha (ERalpha) and Vitamin D receptor (VDR) have been thoroughly investigated in the last years and appeared to represent important candidate genes. The individual contribution of these genetic polymorphisms to the pathogenesis of osteoporosis remains to be universally confirmed and an important aim in future work will be to define their functional molecular consequences and how these polymorphisms interact with each other and with the environment to cause the osteoporotic phenotype. A further promising application of genetic studies in osteoporosis comes from their pharmacogenomic implications, with the possibility to give a better guidance for therapeutic agents commonly used to treat this invalidating disorder or to identify target molecules for new therapeutic agents.  相似文献   

2.
The mechanisms that regulate bone mass are important in a variety of complex diseases such as osteopenia and osteoporosis. Regulation of bone mass is a polygenic trait and is also influenced by various environmental and lifestyle factors, making analysis of the genetic basis difficult. As an effort toward identifying novel genes involved in regulation of bone mass, N-ethyl-N-nitrosourea (ENU) mutagenesis in mice has been utilized. Here we describe a mouse mutant termed Yoda that was identified in an ENU mutagenesis screen for dominantly acting mutations. Mice heterozygous for the Yoda mutation exhibit craniofacial abnormalities: shortened snouts, wider skulls, and deformed nasal bones, underlined by altered morphology of frontonasal sutures and failure of interfrontal suture to close. A major feature of the mutant is reduced bone mineral density. Homozygosity for the mutation results in embryonic lethality. Positional cloning of the locus identified a missense mutation in a highly conserved region of the ankyrin repeat domain 11 gene (Ankrd11). This gene has not been previously associated with bone metabolism and, thus, identifies a novel genetic regulator of bone homeostasis.  相似文献   

3.
Fractures resulting from low bone mass and excessive skeletal fragility (osteoporosis) are common worldwide both in males and females, particularly in later years of life. Both fractures, and the most important predictor of fractures, bone mass, are now known to be strongly heritable. This fact, plus the current growth in genetic science, has led to a surge of genetic research in osteoporosis, mostly in the search for genes and their polymorphisms that are responsible for variation in bone mass. Finding the genetic basis underlying variation in bone mass will lead us to deeper understanding of the biology of bone mass accumulation, maintenance and adaptation to load. This, plus finding the genetic basis for overall variation in fracture risk per se, will facilitate the development of interventions, both pharmaceutical and non-pharmaceutical, to prevent and/or treat osteoporosis successfully. This research has produced a rather large number of gene loci that seem to influence bone mass. The challenge now is to refine the statistical genetics and the phenotypes involved so that we can confidently identify those gene loci that truly influence bone mass, and to find ways to study the genetic basis for the most direct disease outcome of interest, fracture.  相似文献   

4.
俞英  邓奕妮 《遗传》2012,(10):24-32
牛基因组中一些重要基因的DNA突变通过改变基因的表达和蛋白质功能来影响机体对疾病的抗性或易感性。控制牛疾病的DNA变异主要分为单基因座及多基因座两类。导致疾病的单基因座类型亦称因果突变,其遗传基础较简单,突变一般位于基因编码区或非编码区,多为单碱基或少数几个碱基的突变,这些突变导致氨基酸的错义突变、翻译提前终止或部分外显子缺失等。相比而言,多基因相关疾病的遗传基础较为复杂,遗传-病原体-环境间的互作是导致这类复杂疾病的主要原因。文章综述了由单基因座和多基因座遗传变异所控制的牛主要疾病的研究和应用现状,以及在牛育种及生产中为降低这些疾病的发生所采用的遗传控制策略。  相似文献   

5.
Candidate gene and genome-wide association studies have led to the discovery of nine loci involved in Mendelian forms of obesity and 58 loci contributing to polygenic obesity. These loci explain a small fraction of the heritability for obesity and many genes remain to be discovered. However, efforts in obesity gene identification greatly modified our understanding of this disorder. In this review, we propose an overlook of major lessons learned from 15 years of research in the field of genetics and obesity. We comment on the existence of the genetic continuum between monogenic and polygenic forms of obesity that pinpoints the role of genes involved in the central regulation of food intake and genetic predisposition to obesity. We explain how the identification of novel obesity predisposing genes has clarified unsuspected biological pathways involved in the control of energy balance that have helped to understand past human history and to explore causality in epidemiology. We provide evidence that obesity predisposing genes interact with the environment and influence the response to treatment relevant to disease prediction.  相似文献   

6.
Williams-Beuren syndrome (WBS), due to a contiguous gene deletion of approximately 1.5 Mb at 7q11.23, is a complex developmental disorder with multisystemic manifestations including supravalvular aortic stenosis (SVAS) and a specific cognitive phenotype. Large repeats containing genes and pseudogenes flank the deletion breakpoints, and the mutation mechanism commonly appears to be unequal meiotic crossover. Except for elastin, hemizygosity of which is associated with supravalvular aortic stenosis, it is unknown which of the 18 genes in the deletion area contributes to the phenotype. Here, we report the identification and characterization of two novel genes, WBSCR20 and WBSCR22, which map to the common WBS deletion region. WBSCR22 encodes a putative methyltransferase protein strongly expressed in heart, skeletal muscle and kidney. WBSCR20 encodes a novel protein expressed in skeletal muscle with similarity to p120 (NOL1), a 120-kDa proliferation-associated nucleolar antigen, a member of an evolutionarily conserved protein family. A highly similar putative gene, WBSCR20B, flanks the WBS deletion at the telomeric side. Hemizygous deletion of either of the novel genes might contribute to the growth retardation, the myopathy or the premature aging effects in the pathogenesis of WBS.  相似文献   

7.
Genetic studies recently unraveled the genetic cause of sclerosteosis, a rare skeletal dysplasia characterized by a generalized increase in bone mass. Different loss-of-function mutations were identified in SOST, a gene with no homology to any known gene. This SOST gene is also involved in the pathogenesis of van Buchem disease, a disorder closely resembling sclerosteosis, since a 52-kb deletion located downstream of SOST is found in patients diagnosed with this condition. Molecular studies showed a very restricted expression pattern of SOST and its gene product, sclerostin, with areas in the bone tissue, more precisely in cells of the osteoblast lineage, being the major sites of expression. Sclerostin is a secreted protein with a cysteine knot motif. In vitro studies demonstrated that sclerostin acts as a modulator of BMP signaling by binding to different members of the BMP growth factor family and acting on downstream BMP signal transduction events. The important function of sclerostin in bone metabolism has also been proven in vivo by the osteopenic phenotype of transgenic mice overexpressing SOST in bone. The identification of sclerostin as an important protein in bone metabolism opens new perspectives for the development of anabolic therapeutics to prevent and treat osteoporosis.  相似文献   

8.
African Pygmies are hunter-gatherer populations from the equatorial rainforest that present the lowest height averages among humans. The biological basis and the putative adaptive role of the short stature of Pygmy populations has been one of the most intriguing topics for human biologists in the last century, which still remains elusive. Worldwide convergent evolution of the Pygmy size suggests the presence of strong selective pressures on the phenotype. We developed a novel approach to survey the genetic architecture of phenotypes and applied it to study the genomic covariation between allele frequencies and height measurements among Pygmy and non-Pygmy populations. Among the regions that were most associated with the phenotype, we identified a significant excess of genes with pivotal roles in bone homeostasis, such as PPPT3B and the height associated SUPT3H-RUNX2. We hypothesize that skeletal remodeling could be a key biological process underlying the Pygmy phenotype. In addition, we showed that these regions have most likely evolved under positive selection. These results constitute the first genetic hint of adaptive evolution in the African Pygmy phenotype, which is consistent with the independent emergence of the Pygmy height in other continents with similar environments.  相似文献   

9.
Trisomy 21 affects virtually every organ system and results in the complex clinical presentation of Down syndrome (DS). Patterns of differences are now being recognized as patients' age and these patterns bring about new opportunities for disease prevention and treatment. Low bone mineral density (BMD) has been reported in many studies of males and females with DS yet the specific effects of trisomy 21 on the skeleton remain poorly defined. Therefore we determined the bone phenotype and measured bone turnover markers in the murine DS model Ts65Dn. Male Ts65Dn DS mice are infertile and display a profound low bone mass phenotype that deteriorates with age. The low bone mass was correlated with significantly decreased osteoblast and osteoclast development, decreased bone biochemical markers, a diminished bone formation rate and reduced mechanical strength. The low bone mass observed in 3 month old Ts65Dn mice was significantly increased after 4 weeks of intermittent PTH treatment. These studies provide novel insight into the cause of the profound bone fragility in DS and identify PTH as a potential anabolic agent in the adult low bone mass DS population.  相似文献   

10.
11.
Mice carrying two pink-eyed dilution (p) locus heterozygous deletions represent a novel polygenic mouse model of type 2 diabetes associated with obesity. Atp10c, a putative aminophospholipid transporter on mouse chromosome 7, is a candidate for the phenotype. The phenotype is diet-induced. As a next logical step in the validation and characterization of the model, experiments to analyze metabolic abnormalities associated with these mice were carried out. Results demonstrate that mutants (inheriting the p deletion maternally) heterozygous for Atp10c are hyperinsulinemic, insulin-resistant and have an altered insulin-stimulated response in peripheral tissues. Adipose tissue and the skeletal muscle are the targets, and GLUT4-mediated glucose uptake is the specific metabolic pathway associated with Atp10c deletion. Insulin resistance primarily affects the adipose tissue and the skeletal muscle, and the effect in the liver is secondary. Gene expression profiling using microarray and real-time PCR show significant changes in the expression of four genes — Vamp2, Dok1, Glut4 and Mapk14 — involved in insulin signaling. The expression of Atp10c is also significantly altered in the adipose tissue and the soleus muscle. The most striking observation is the loss of Atp10c expression in the mutants, specifically in the soleus muscle, after eating the high-fat diet for 12 weeks. In conclusion, experiments suggest that the target genes and/or their cognate factors in conjunction with Atp10c presumably affect the normal translocation and sequestration of GLUT4 in both the target tissues.  相似文献   

12.
Defects in cilia formation and function result in a range of human skeletal and visceral abnormalities. Mutations in several genes have been identified to cause a proportion of these disorders, some of which display genetic (locus) heterogeneity. Mouse models are valuable for dissecting the function of these genes, as well as for more detailed analysis of the underlying developmental defects. The short-rib polydactyly (SRP) group of disorders are among the most severe human phenotypes caused by cilia dysfunction. We mapped the disease locus from two siblings affected by a severe form of SRP to 2p24, where we identified an in-frame homozygous deletion of exon 5 in WDR35. We subsequently found compound heterozygous missense and nonsense mutations in WDR35 in an independent second case with a similar, severe SRP phenotype. In a mouse mutation screen for developmental phenotypes, we identified a mutation in Wdr35 as the cause of midgestation lethality, with abnormalities characteristic of defects in the Hedgehog signaling pathway. We show that endogenous WDR35 localizes to cilia and centrosomes throughout the developing embryo and that human and mouse fibroblasts lacking the protein fail to produce cilia. Through structural modeling, we show that WDR35 has strong homology to the COPI coatamers involved in vesicular trafficking and that human SRP mutations affect key structural elements in WDR35. Our report expands, and sheds new light on, the pathogenesis of the SRP spectrum of ciliopathies.  相似文献   

13.
14.
Significant advances have been made in the discovery of genes affecting bone mineral density (BMD); however, our understanding of its genetic basis remains incomplete. In the current study, genome-wide association (GWA) and co-expression network analysis were used in the recently described Hybrid Mouse Diversity Panel (HMDP) to identify and functionally characterize novel BMD genes. In the HMDP, a GWA of total body, spinal, and femoral BMD revealed four significant associations (-log10P>5.39) affecting at least one BMD trait on chromosomes (Chrs.) 7, 11, 12, and 17. The associations implicated a total of 163 genes with each association harboring between 14 and 112 genes. This list was reduced to 26 functional candidates by identifying those genes that were regulated by local eQTL in bone or harbored potentially functional non-synonymous (NS) SNPs. This analysis revealed that the most significant BMD SNP on Chr. 12 was a NS SNP in the additional sex combs like-2 (Asxl2) gene that was predicted to be functional. The involvement of Asxl2 in the regulation of bone mass was confirmed by the observation that Asxl2 knockout mice had reduced BMD. To begin to unravel the mechanism through which Asxl2 influenced BMD, a gene co-expression network was created using cortical bone gene expression microarray data from the HMDP strains. Asxl2 was identified as a member of a co-expression module enriched for genes involved in the differentiation of myeloid cells. In bone, osteoclasts are bone-resorbing cells of myeloid origin, suggesting that Asxl2 may play a role in osteoclast differentiation. In agreement, the knockdown of Asxl2 in bone marrow macrophages impaired their ability to form osteoclasts. This study identifies a new regulator of BMD and osteoclastogenesis and highlights the power of GWA and systems genetics in the mouse for dissecting complex genetic traits.  相似文献   

15.
For methodological or other reasons, a variety of skeletal elements are analyzed and subsequently used as a basis for describing general bone loss and mass. However, bone loss and mass may not be uniform within and among skeletal elements of the same individual because of biomechanical factors. We test the hypothesis that a homogeneity in bone mass exists among skeletal elements of the same individual. Measures indicative of bone mass were calculated from the midshafts of six skeletal elements from the same individuals (N = 41). The extent of intraskeletal variability in bone mass (relative cortical area) was then examined for the entire sample, according to age, sex, and pathological status. The results of the analysis showed that all measures reflect a heterogeneity in bone mass (P 相似文献   

16.
Understanding the genetic architecture of quantitative traits can provide insights into the mechanisms driving phenotypic evolution. Bill morphology is an ecologically important and phenotypically variable trait, which is highly heritable and closely linked to individual fitness. Thus, bill morphology traits are suitable candidates for gene mapping analyses. Previous studies have revealed several genes that may influence bill morphology, but the similarity of gene and allele effects between species and populations is unknown. Here, we develop a custom 200K SNP array and use it to examine the genetic basis of bill morphology in 1857 house sparrow individuals from a large‐scale, island metapopulation off the coast of Northern Norway. We found high genomic heritabilities for bill depth and length, which were comparable with previous pedigree estimates. Candidate gene and genomewide association analyses yielded six significant loci, four of which have previously been associated with craniofacial development. Three of these loci are involved in bone morphogenic protein (BMP) signalling, suggesting a role for BMP genes in regulating bill morphology. However, these loci individually explain a small amount of variance. In combination with results from genome partitioning analyses, this indicates that bill morphology is a polygenic trait. Any studies of eco‐evolutionary processes in bill morphology are therefore dependent on methods that can accommodate polygenic inheritance of the phenotype and molecular‐scale evolution of genetic architecture.  相似文献   

17.
Natural populations of the fruit fly, Drosophila melanogaster, segregate genetic variation that leads to cardiac disease phenotypes. One nearly isogenic line from a North Carolina peach orchard, WE70, is shown to harbor two genetically distinct heart phenotypes: elevated incidence of arrhythmias, and a dramatically constricted heart diameter in both diastole and systole, with resemblance to restrictive cardiomyopathy in humans. Assuming the source to be rare variants of large effect, we performed Bulked Segregant Analysis using genomic DNA hybridization to Affymetrix chips to detect single feature polymorphisms, but found that the mutant phenotypes are more likely to have a polygenic basis. Further mapping efforts revealed a complex architecture wherein the constricted cardiomyopathy phenotype was observed in individual whole chromosome substitution lines, implying that variants on both major autosomes are sufficient to produce the phenotype. A panel of 170 Recombinant Inbred Lines (RIL) was generated, and a small subset of mutant lines selected, but these each complemented both whole chromosome substitutions, implying a non-additive (epistatic) contribution to the “disease” phenotype. Low coverage whole genome sequencing was also used to attempt to map chromosomal regions contributing to both the cardiomyopathy and arrhythmia, but a polygenic architecture had to be again inferred to be most likely. These results show that an apparently simple rare phenotype can have a complex genetic basis that would be refractory to mapping by deep sequencing in pedigrees. We present this as a cautionary tale regarding assumptions related to attempts to map new disease mutations on the assumption that probands carry a single causal mutation.  相似文献   

18.
We have isolated a recessive rice mutant,designated as indeterminate growth(ing),which displays creeping and apparent heterochronic phenotypes in the vegetative period with lanky and winding culms.Rough mapping and subsequent molecular characterization revealed that the ing mutant carries a large deletion,which corresponds to a 103 kb region in the Nipponbare genome,containing nine annotated genes on chromosome 3.Of these annotated genes,the SLRI gene encoding a DELLA protein is the only one that is well characterized in its function,and its null mutation,which is caused by a single base deletion in the middle of the intronless SLR1 gene,confers a slender phenotype that bears close resemblance to the ing mutant phenotype.The primary cause of the ing mutant phenotype is the deletion of the SLR1 gene,and the ing mutant appears to be the first characterized mutant having the entire SLRI sequence deleted.Our results also suggest that the deleted region of 103 kb does not contain an indispensable gene,whose dysfunction must result in a lethal phenotype.  相似文献   

19.
《PLoS genetics》2020,16(12)
The genetic landscape of diseases associated with changes in bone mineral density (BMD), such as osteoporosis, is only partially understood. Here, we explored data from 3,823 mutant mouse strains for BMD, a measure that is frequently altered in a range of bone pathologies, including osteoporosis. A total of 200 genes were found to significantly affect BMD. This pool of BMD genes comprised 141 genes with previously unknown functions in bone biology and was complementary to pools derived from recent human studies. Nineteen of the 141 genes also caused skeletal abnormalities. Examination of the BMD genes in osteoclasts and osteoblasts underscored BMD pathways, including vesicle transport, in these cells and together with in silico bone turnover studies resulted in the prioritization of candidate genes for further investigation. Overall, the results add novel pathophysiological and molecular insight into bone health and disease.  相似文献   

20.
The rationale for use of inbred strains of mice in bone research is well recognized and includes: a) practical factors (economics of scale, rapid development of adult status, pre-existing knowledge, down-sized technologies) and b) proven methodologies for genetic studies (polygenic trait analyses, mapping tools, genomic sequencing, methods for gene manipulation). Initial investigations of inbred strains of mice showed that femoral and lumbar vertebral volumetric bone mineral density (BMD, mg/mm(3)) by pQCT varied in excess of 50% for femurs and 9% in vertebral BMD. Two strains - low BMD C57BL/6J (B6) mice and high BMD C3H/HeJ (C3H) - were investigated for insights to their BMD diversity. B6C3F2 females derived from intercrossing B6C3F1s were raised to adult skeletal status at 4 months, then necropsied for phenotyping of bone and genotyping of genomic DNA. 1000 F2 females were genotyped for PCR product polymorphisms on all 19 autosomes at approximately 15 cM. Genome wide analyses for genotype-phenotype correlations showed 10 chromosomes (Chrs) carried genes for femoral and 7 Chrs for vertebral BMD. LOD scores ranged from 2.90 to 24.4, and percent of F2 variance accounted for ranged from 1 to 10%. Analyses of main effects revealed both dominant-recessive and additive inheritance patterns. Both progenitor strains carried alleles with positive and negative effects on BMD of each bone sites. A remarkable array of additonal skeletal phenotypes (femur and vertebral geometry, strength measures, serum markers) also proved polygenic in nature, with complex segregation patterns. Verification of BMD quantitative trait loci (QTLs) was undertaken by creating congenic B6 strains carrying individual QTL regions from C3H. Following 6 cycles of backcrossing a QTL-containing region from C3H to the B6 strain, N6F2 congenic strain mice were aged to 4 months, then genotyped for the QTL region and phenotyped for skeletal traits. Comparison of mice homozygous for C3H alleles versus homozygous for B6 alleles in the QTL regions showed that femoral BMD increased or decreased significantly in congenic strains, as was predicted from F2 data. Gender differences specific to BMD QTLs have been revealed, as have more than 30 additional phenotypes associated with cortical and trabecular structural parameters and biomechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号