首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shewanella violacea DSS12 is a psychrophilic facultative piezophile isolated from the deep sea. In a previous study, we have shown that the bacterium adapted its respiratory components to alteration in growth pressure. This appears to be one of the bacterial adaptation mechanisms to high pressures. In this study, we measured the respiratory activities of S. violacea grown under various pressures. There was no significant difference between the cells grown under atmospheric pressure and a high pressure of 50 MPa relative to oxygen consumption of the cell-free extracts and inhibition patterns in the presence of KCN and antimycin A. Antimycin A did not inhibit the activity completely regardless of growth pressure, suggesting that there were complex III-containing and -eliminating pathways operating in parallel. On the other hand, there was a difference in the terminal oxidase activities. Our results showed that an inhibitor- and pressure-resistant terminal oxidase was expressed in the cells grown under high pressure. This property should contribute to the high-pressure adaptation mechanisms of S. violacea.  相似文献   

2.
The identity and amounts of intracellular solutes in the deep-sea bacterium Photobacterium profundum strain SS9 were studied using nuclear magnetic resonance techniques. P. profundum strain SS9, a moderate piezophile which grows optimally at 20-30 MPa primarily accumulated glutamate and betaine, with lesser amounts of alanine, beta-hydroxybutyrate (beta-HB) and oligomers composed of the beta-HB units when grown at 0.1 MPa to early stationary phase. When grown at the optimal pressure, the cells preferentially increased intracellular concentrations of beta-HB and beta-HB oligomers, while the amino acid pools remained relatively constant. Since the organic solutes increased with increasing external NaCl in the medium, they are functioning as osmolytes. The beta-HB molecules represent a novel class of osmolytes, termed 'piezolytes,' whose cellular levels responded to hydrostatic pressure as well as osmotic pressure. Factors such as cell growth stage and temperature were also examined for their effect on the solute distribution in these cells.  相似文献   

3.
The facultative piezophile Shewanella violacea DSS12 is known to alter its respiratory components under the influence of hydrostatic pressure during growth, suggesting that it has a respiratory system that functions in adaptation to high pressure. We investigated the pressure- and temperature-dependencies of the respiratory terminal oxidase activity of the membrane of S. violacea relative to non-piezophilic Shewanella species. We observed that the activity in the membrane of S. violacea was more resistant to high pressure than those of non-piezophilic Shewanella even though DSS12 was cultured under atmospheric pressure. On the other hand, the temperature dependency of this activity was almost the same for all of the tested strain regardless of optimal growth temperature. Both high pressure and low temperature are expected to lower protein flexibility, causing a decrease in enzyme activity, but the results of this study suggest that the mechanism maintaining enzyme activity under high hydrostatic pressure is different from that at low temperature. Additionally, the responses of the activity to the pressure- and temperature-changes were independent of membrane lipid composition. Therefore, the piezotolerance of the respiratory terminal oxidases of S. violacea is perhaps dependent on the properties of the protein itself and not on the lipid composition of the membrane. Our observations suggest that S. violacea constitutively express piezotolerant respiratory terminal oxidases that serve adaptation to the deep-sea environment.  相似文献   

4.
5.
There is considerable evidence correlating the production of increased proportions of membrane unsaturated fatty acids (UFAs) with bacterial growth at low temperatures or high pressures. In order to assess the importance of UFAs to microbial growth under these conditions, the effects of conditions altering UFA levels in the psychrotolerant piezophilic deep-sea bacterium Photobacterium profundum SS9 were investigated. The fatty acids produced by P. profundum SS9 grown at various temperatures and pressures were characterized, and differences in fatty acid composition as a function of phase growth, and between inner and outer membranes, were noted. P. profundum SS9 was found to exhibit enhanced proportions of both monounsaturated (MUFAs) and polyunsaturated (PUFAs) fatty acids when grown at a decreased temperature or elevated pressure. Treatment of cells with cerulenin inhibited MUFA but not PUFA synthesis and led to a decreased growth rate and yield at low temperature and high pressure. In addition, oleic acid-auxotrophic mutants were isolated. One of these mutants, strain EA3, was deficient in the production of MUFAs and was both low-temperature sensitive and high-pressure sensitive in the absence of exogenous 18:1 fatty acid. Another mutant, strain EA2, produced little MUFA but elevated levels of the PUFA species eicosapentaenoic acid (EPA; 20:5n-3). This mutant grew slowly but was not low-temperature sensitive or high-pressure sensitive. Finally, reverse genetics was employed to construct a mutant unable to produce EPA. This mutant, strain EA10, was also not low-temperature sensitive or high-pressure sensitive. The significance of these results to the understanding of the role of UFAs in growth under low-temperature or high-pressure conditions is discussed.  相似文献   

6.
7.
Shewanella violacea DSS12 is facultative piezophile isolated from the deep-sea. The expression of cydDC genes (required for d-type cytochrome maturation) of the organism is regulated by hydrostatic pressure. In this study, we analyzed the nucleotide sequence upstream of cydDC in detail and found that there are putative binding sites for the NarL protein which is part of a two-component regulatory system also containing the sensor protein NarX. Furthermore, we identified the narQP genes (homologues of narXL) from S. violacea DSS12 and demonstrated the heterologous expression of narP in Escherichia coli. These results will be helpful in examining pressure regulation of gene expression in S. violacea at the molecular level.  相似文献   

8.
Shewanella violacea DSS12, a deep-sea bacterium, produces eicosapentaenoic acid (EPA) as a component of membrane phospholipids. Although various isolates from the deep sea, such as Photobacterium profundum SS9, Colwellia psychrerythraea 34H and various Shewanella strains, produce EPA- or docosahexaenoic acid-containing phospholipids, the physiological role of these polyunsaturated fatty acids remains unclear. In this article, we illustrate the physiological importance of EPA for high-pressure adaptation in strain DSS12 with the help of an EPA-deficient mutant (DSS12(pfaA)). DSS12(pfaA) showed significant growth retardation at 30 MPa, but not at 0.1 MPa. We also found that DSS12(pfaA) grown at 30 MPa forms filamentous cells. When an EPA-containing phospholipid (sn-1-oleoly-sn-2-eicosapentaenoyl phosphatidylethanolamine) was supplemented, the growth retardation and the morphological defect of DSS12(pfaA) were suppressed, indicating that the externally added EPA-containing phospholipid compensated for the loss of endogenous EPA. In contrast, the addition of an oleic acid-containing phospholipid (sn-1,2-dioleoyl phosphatidylethanolamine) did not affect the growth and the morphology of the cells. Immunofluorescent microscopic analysis with anti-FtsZ antibody revealed a number of Z-rings and separated nucleoids in DSS12(pfaA) grown at 30 MPa. These results demonstrate the physiological importance of EPA for the later step of Z-ring formation of S. violacea DSS12 under high-pressure conditions.  相似文献   

9.
10.
The facultative piezophile Shewanella violacea DSS12 is known to have respiratory components that alter under the influence of hydrostatic pressure during growth, suggesting that its respiratory system is adapted to high pressure. We analyzed the expression of the genes encoding terminal oxidases and some respiratory components of DSS12 under various growth conditions. The expression of some of the genes during growth was regulated by both the O2 concentration and hydrostatic pressure. Additionally, the activities of cytochrome c oxidase and quinol oxidase of the membrane fraction of DSS12 grown under various conditions were measured under high pressure. The piezotolerance of cytochrome c oxidase activity was dependent on the O2 concentration during growth, while that of quinol oxidase was influenced by pressure during growth. The activity of quinol oxidase was more piezotolerant than that of cytochrome c oxidase under all growth conditions. Even in the membranes of the non-piezophile Shewanella amazonensis, quinol oxidase was more piezotolerant than cytochrome c oxidase, although both were highly piezosensitive as compared to the activities in DSS12. By phylogenetic analysis, piezophile-specific cytochrome c oxidase, which is also found in the genome of DSS12, was identified in piezophilic Shewanella and related genera. Our observations suggest that DSS12 constitutively expresses piezotolerant respiratory terminal oxidases, and that lower O2 concentrations and higher hydrostatic pressures induce higher piezotolerance in both types of terminal oxidases. Quinol oxidase might be the dominant terminal oxidase in high-pressure environments, while cytochrome c oxidase might also contribute. These features should contribute to adaptation of DSS12 in deep-sea environments.  相似文献   

11.
12.
13.
14.
Shewanella violacea DSS12 is a psychrophilic piezophile that optimally grows at 30MPa. It contains a substantial amount of eicosapentaenoic acid (EPA) in the membrane. Despite evidence linking increased fatty acid unsaturation and bacterial growth under high pressure, little is known of how the physicochemical properties of the membrane are modulated by unsaturated fatty acids in vivo. By means of the newly developed system performing time-resolved fluorescence anisotropy measurement under high pressure (HP-TRFAM), we demonstrate that the membrane of S. violacea is highly ordered at 0.1MPa and 10°C with the order parameter S of 0.9, and the rotational diffusion coefficient D(w) of 5.4μs(-1) for 1-[4-(trimethylamino)pheny]-6-phenyl-1,3,5-hexatriene in the membrane. Deletion of pfaA encoding the omega-3 polyunsaturated fatty acid synthase caused disorder of the membrane and enhanced the rotational motion of acyl chains, in concert with a 2-fold increase in the palmitoleic acid level. While the wild-type membrane was unperturbed over a wide range of pressures with respect to relatively small effects of pressure on S and D(w), the ΔpfaA membrane was disturbed judging from the degree of increased S and decreased D(w). These results suggest that EPA prevents the membrane from becoming hyperfluid and maintains membrane stability against significant changes in pressure. Our results counter the generally accepted concept that greater fluidity is a membrane characteristic of microorganisms that inhabit cold, high-pressure environments. We suggest that retaining a certain level of membrane physical properties under high pressure is more important than conferring membrane fluidity alone.  相似文献   

15.
The rpoE gene encoding an RNA polymerase sigmaE subunit was isolated from a gamma-phage library of the deep-sea piezophilic and psychrophilic bacterium Shewanella violacea strain DSS12. Structual analysis showed that the gene organization of the fragment containing S. violacearpoE was the l-aspartate oxidase-coding gene, rpoE, rseA, rseB and rseC in that order, the same as in the case of Photobacterium profundum SS9 and Escherichia coli K-12. The cloned gene, 576 bp in length, was found to encode a protein consisting of 192 amino acid residues with a molecular mass of 21,806 Da. Amino acid alignment of the RpoE protein showed that the functional domains responsible for DNA recognition, DNA melting, core binding, and RseA interaction were highly conserved. We purified hexahistidine-fused RpoE protein by constructing an overexpression plasmid. Core-binding analysis revealed that the cloned RpoE protein has the ability to bind with core RNA polymerase as a sigma factor.  相似文献   

16.
Several piezophilic bacteria have been isolated from deep-sea environments under high hydrostatic pressure. Taxonomic studies of the isolates showed that the piezophilic bacteria are not widely distributed in terms of taxonomic positions, and all were assigned to particular branches of the Proteobacteria gamma-subgroup. A pressure-regulated operon from piezophilic bacteria of the genus Shewanella, S. benthica and S. violacea, was cloned and sequenced, and downstream of this operon another pressure regulated operon, cydD-C, was found. The cydD gene was found to be essential for the bacterial growth under high-pressure conditions, and the product of this gene was found to play a role in their respiratory system. Results obtained later indicated that the respiratory system in piezophilic bacteria may be important for survival in a high-pressure environment, and more studies focusing on other components of the respiratory chain have been conducted. These studies suggested that piezophilic bacteria are capable of changing their respiratory system in response to pressure conditions, and a proposed respiratory chain model has been suggested in this regard.  相似文献   

17.
A genomic library derived from the deep-sea bacterium Photobacterium profundum SS9 was conjugally delivered into a previously isolated pressure-sensitive SS9 mutant, designated EC1002 (E. Chi and D. H. Bartlett, J. Bacteriol. 175:7533-7540, 1993), and exconjugants were screened for the ability to grow at 280-atm hydrostatic pressure. Several clones were identified that had restored high-pressure growth. The complementing DNA was localized and in all cases found to possess strong homology to recD, a DNA recombination and repair gene. EC1002 was found to be deficient in plasmid stability, a phenotype also seen in Escherichia coli recD mutants. The defect in EC1002 was localized to a point mutation that created a stop codon within the recD gene. Two additional recD mutants were constructed by gene disruption and were both found to possess a pressure-sensitive growth phenotype, although the magnitude of the defect depended on the extent of 3' truncation of the recD coding sequence. Surprisingly, the introduction of the SS9 recD gene into an E. coli recD mutant had two dramatic effects. At high pressure, SS9 recD enabled growth in the E. coli mutant strain under conditions of plasmid antibiotic resistance selection and prevented cell filamentation. Both of these effects were recessive to wild-type E. coli recD. These results suggest that the SS9 recD gene plays an essential role in SS9 growth at high pressure and that it may be possible to identify additional aspects of RecD function through the characterization of this activity.  相似文献   

18.
Sineva EV  Davydov DR 《Biochemistry》2010,49(50):10636-10646
We report cloning, expression in Escherichia coli, and purification of cytochrome P450 from a deep-sea bacterium Photobacterium profundum strain SS9 (P450-SS9). The enzyme, which is predominately high spin (86%) in the absence of any added ligand, binds fatty acids and their derivatives and exhibits the highest affinity for myristic acid. Binding of the majority of saturated fatty acids displaces the spin equilibrium further toward the high-spin state, whereas the interactions with unsaturated fatty acids and their derivatives (arachidonoylglycine) have the opposite effect. Pressure perturbation studies showed that increasing pressure fails to displace the spin equilibrium completely to the low-spin state in the ligand-free P450-SS9 or in the complexes with either myristic acid or arachidonoylglycine. Stabilization of high-spin P450-SS9 signifies a pressure-induced transition to a state with reduced accessibility of the active site. This transition, which is apparently associated with substantial hydration of the protein, is characterized by the reaction volume change (ΔV) around -100 to -200 mL/mol and P(1/2) of 300-800 bar, which is close to the pressure of habitation of P. profundum. The transition to a state with confined water accessibility is hypothesized to represent a common feature of cytochromes P450 that serves to coordinate heme pocket hydration with ligand binding and the redox state. Displacement of the conformational equilibrium toward the "closed" state in P450-SS9 (even ligand-free) may have evolved to allow the protein to adapt to enhanced protein hydration at high hydrostatic pressures.  相似文献   

19.
There is considerable evidence correlating the production of increased proportions of membrane unsaturated fatty acids (UFAs) with bacterial growth at low temperatures or high pressures. In order to assess the importance of UFAs to microbial growth under these conditions, the effects of conditions altering UFA levels in the psychrotolerant piezophilic deep-sea bacterium Photobacterium profundum SS9 were investigated. The fatty acids produced by P. profundum SS9 grown at various temperatures and pressures were characterized, and differences in fatty acid composition as a function of phase growth, and between inner and outer membranes, were noted. P. profundum SS9 was found to exhibit enhanced proportions of both monounsaturated (MUFAs) and polyunsaturated (PUFAs) fatty acids when grown at a decreased temperature or elevated pressure. Treatment of cells with cerulenin inhibited MUFA but not PUFA synthesis and led to a decreased growth rate and yield at low temperature and high pressure. In addition, oleic acid-auxotrophic mutants were isolated. One of these mutants, strain EA3, was deficient in the production of MUFAs and was both low-temperature sensitive and high-pressure sensitive in the absence of exogenous 18:1 fatty acid. Another mutant, strain EA2, produced little MUFA but elevated levels of the PUFA species eicosapentaenoic acid (EPA; 20:5n-3). This mutant grew slowly but was not low-temperature sensitive or high-pressure sensitive. Finally, reverse genetics was employed to construct a mutant unable to produce EPA. This mutant, strain EA10, was also not low-temperature sensitive or high-pressure sensitive. The significance of these results to the understanding of the role of UFAs in growth under low-temperature or high-pressure conditions is discussed.  相似文献   

20.
We have isolated the genes for quinol oxidase from a deep-sea piezophilic bacterium, Shewanella violacea. Analysis of the deduced amino acid sequences of the cyo subunits showed that this oxidase has high similarity to Escherichia coli bo-type quinol oxidase. Northern blot analysis showed that these genes are expressed at a high level when the bacterium is grown at elevated pressure. Upstream in the cyo-operon, a sigma54-binding motif and an octamer sequence unit were found, suggesting that these elements may play a role in regulation of expression of the cyo-operon in response to changes in pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号