首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current treatments for Alzheimer's disease involve inhibiting cholinesterases. Conversely, cholinesterase stimulation may be deleterious. Homocysteine is a known risk factor for Alzheimer's and vascular diseases and its active metabolite, homocysteine thiolactone, stimulates butyrylcholinesterase. Considering the opposing effects on butyrylcholinesterase of homocysteine thiolactone and cholinesterase inhibitors, understanding how these molecules alter this enzyme may provide new insights in the management of dementia. Butyrylcholinesterase does not strictly adhere to Michaelis-Menten parameters since, at higher substrate concentrations, enzyme activation occurs. The substrate activation equation for butyrylcholinesterase does not describe the effects of inhibitors or non-substrate activators. To address this, global data fitting was used to generate a flexible equation based on Michaelis-Menten principles. This methodology was first tested to model complexities encountered in inhibition by imidazole of beta-galactosidase, an enzyme that obeys Michaelis-Menten kinetics. The resulting equation was sufficiently flexible to permit expansion for modeling activation or inhibition of butyrylcholinesterase, while accounting for substrate activation of this enzyme. This versatile equation suggests that both the inhibitor and non-substrate activator examined here have little effect on the substrate-activated form of butyrylcholinesterase. Given that butyrylcholinesterase inhibition can antagonize stimulation of this enzyme by homocysteine thiolactone, cholinesterase inhibition may have a role in treating Alzheimer and vascular diseases related to hyperhomocysteinemia.  相似文献   

2.

Background  

Alzheimer's disease, known to be associated with the gradual loss of memory, is characterized by low concentration of acetylcholine in the hippocampus and cortex part of the brain. Inhibition of acetylcholinesterase has successfully been used as a drug target to treat Alzheimer's disease but drug resistance shown by butyrylcholinesterase remains a matter of concern in treating Alzheimer's disease. Apart from the many other reasons for Alzheimer's disease, its association with the genesis of fibrils by β-amyloid plaques is closely related to the increased activity of butyrylcholinesterase. Although few data are available on the inhibition of butyrylcholinesterase, studies have shown that that butyrylcholinesterase is a genetically validated drug target and its selective inhibition reduces the formation of β-amyloid plaques.  相似文献   

3.
Carbamates are used to treat Alzheimer's disease. These compounds inhibit acetylcholinesterase and butyrylcholinesterase. The goal of this work is to use the substrate analogs of butyrylcholinesterase, 3,3-dimethylbutyl-N-n-butylcarbamate (1) and 2-trimethylsilyl-ethyl-N-n-butylcarbamate (2) to probe the substrate activation mechanism of butyrylcholinesterase. Compounds 1 and 2 are characterized as the pseudo substrate inhibitors of acetylcholinesterase; however, compounds 1 and 2 are characterized as the essential activators of butyrylcholinesterase. Therefore, compounds 1 and 2 mimic the substrate in the acetylcholinesterase-catalyzed reactions, but the behavior of compounds 1 and 2 mimics the substrate activation in the butyrylcholinesterase-catalyzed reactions.  相似文献   

4.
Eight inhibitors of acetylcholinesterase (AChE), tacrine, bis-tacrine, donepezil, rivastigmine, galantamine, heptyl-physostigmine, TAK-147 and metrifonate, were compared with regard to their effects on AChE and butyrylcholinesterase (BuChE) in normal human brain cortex. Additionally, the IC50 values of different molecular forms of AChE (monomeric, G1, and tetrameric, G4) were determined in the cerebral cortex in both normal and Alzheimer's human brains. The most selective AChE inhibitors, in decreasing sequence, were in order: TAK-147, donepezil and galantamine. For BuChE, the most specific was rivastigmine. However, none of these inhibitors was absolutely specific for AChE or BuChE. Among these inhibitors, tacrine, bis-tacrine, TAK-147, metrifonate and galantamine inhibited both the G1 and G4 AChE forms equally well. Interestingly, the AChE molecular forms in Alzheimer samples were more sensitive to some of the inhibitors as compared with the normal samples. Only one inhibitor, rivastigmine, displayed preferential inhibition for the G1 form of AChE. We conclude that a molecular form-specific inhibitor may have therapeutic applications in inhibiting the G1 form, which is relatively unchanged in Alzheimer's brain.  相似文献   

5.
Kinetic parameters of the effect of tacrine as a cholinesterase inhibitor have been studied in two different sources: snake venom (Bungarus sindanus) acetylcholinesterase (AChE) and human serum butyrylcholinesterase (BChE). Tacrine inhibited both venom acetylcholinesterase (AChE) as well as human serum butyrylcholinesterase (BChE) in a concentration-dependent manner. Kinetic studies indicated that the nature of inhibition was mixed for both enzymes, i.e. Km values increase and Vmax decrease with the increase of the tacrine concentration. The calculated IC50 for snake venom and for human serum were 31 and 25.6 nM, respectively. Ki was observed to be 13 nM for venom acetylcholinesterase (AChE) and 12 nM for serum butyrylcholinesterase (BChE). KI (constant of AChE-ASCh-tacrine complex into AChE-ASCh complex and tacrine) was estimated to be 20 nM for venom and 10 nM for serum butyrylcholinesterase (BChE), while the gammaKm (dissociation constant of AChE-ASCh-tacrine complex into AChE-tacrine complex and ASCh) were 0.086 and 0.147 mM for snake venom AChE and serum BChE, respectively. The present results suggest that this therapeutic agent used for the treatment of Alzheimer's disease can also be considered an inhibitor of snake venom and human serum butyrylcholinesterase. Values of Ki and KI show that tacrine had more affinity with these enzymes as compared with other cholinesterases from the literature.  相似文献   

6.
Cholinesterases, in addition to their well-known esterase action, also show an aryl acylamidase (AAA) activity whereby they catalyze the hydrolysis of amides of certain aromatic amines. The biological function of this catalysis is not known. Furthermore, it is not known whether the esterase catalytic site is involved in the AAA activity of cholinesterases. It has been speculated that the AAA activity, especially that of butyrylcholinesterase (BuChE), may be important in the development of the nervous system and in pathological processes such as formation of neuritic plaques in Alzheimer's disease (AD). The substrate generally used to study the AAA activity of cholinesterases is N-(2-nitrophenyl)acetamide. However, use of this substrate requires high concentrations of enzyme and substrate, and prolonged periods of incubation at elevated temperature. As a consequence, difficulties in performing kinetic analysis of AAA activity associated with cholinesterases have hampered understanding this activity. Because of its potential biological importance, we sought to develop a more efficient and specific substrate for use in studying the AAA activity associated with BuChE, and for exploring the catalytic site for this hydrolysis. Here, we describe the structure-activity relationships for hydrolysis of anilides by cholinesterases. These studies led to a substrate, N-(2-nitrophenyl)trifluoroacetamide, that was hydrolyzed several orders of magnitude faster than N-(2-nitrophenyl)acetamide by cholinesterases. Also, larger N-(2-nitrophenyl)alkylamides were found to be more rapidly hydrolyzed by BuChE than N-(2-nitrophenyl)acetamide and, in addition, were more specific for hydrolysis by BuChE. Thus, N-(2-nitrophenyl)alkylamides with six to eight carbon atoms in the acyl group represent suitable specific substrates to investigate further the function of the AAA activity of BuChE. Based on the substrate structure-activity relationships and kinetic studies, the hydrolysis of anilides and esters of choline appears to utilize the same catalytic site in BuChE.  相似文献   

7.
Trichlorfon is a specific inhibitor of cholinesterases. It was typically used as an insecticide; however, trichlorfon was described as useful for symptomatic treatment of Alzheimer's disease some years ago. The presented study is aimed at reactivation of trichlorfon-inhibited butyrylcholinesterase since this enzyme play an important role in Alzheimer's disease as deputy for acetylcholinesterase and furthermore it could be applied as a scavenger in case of overdosing. We used in vitro reactivation test for considering only reactivation efficacy of butyrylcholinesterase that is inhibited by trichlorfon and not reactivation of butyrylcholinesterase inhibited by trichlorfon metabolic products. Four reactivators were used: HI-6, pralidoxime, obidoxime, and K048. Although all of the reactivators seem to be effective at 1 mM concentration, a lower concentration was not able ensure sufficient reactivation. There was also an observed lowering of reactivation efficacy when butyrylcholinesterase was exposed to trichlorfon for a longer time interval.  相似文献   

8.
In Alzheimer's disease, cerebral cortical butyrylcholinesterase (BChE) activity is reported to be elevated. Our aim was to develop a novel (18)F-labeled tracer for quantifying cerebral BChE activity by positron emission tomography. With in vitro screening of N-[(14)C]ethylpiperidin-3- and 4-ylmethyl esters, N-[(14)C]ethylpiperidin-4-ylmethyl butyrate was selected as a lead for (18)F-labeling, affording N-[(18)F]fluoroethylpiperidin-4-ylmethyl butyrate. The (18)F-labeled butyrate showed the required properties for in vivo BChE measurement, that is, the lipophilic nature of the authentic ester, high specificity to BChE, a moderate hydrolysis rate, and the hydrophilic nature of the metabolite.  相似文献   

9.
Quinolinyl sulfonamides, such as N-(quinolin-8-yl)methanesulfonamide (10) and N-(5-chloroquinolin-8-yl)methanesulfonamide (11), were identified as potent methionine aminopeptidase (MetAP) inhibitors by high throughput screening of a diverse chemical library of small organic compounds. They showed different inhibitory potencies on Co(II)-, Ni(II)-, Fe(II)-, Mn(II)-, and Zn(II)-forms of Escherichia coli MetAP, and their inhibition is dependent on metal concentration. X-ray structures of E. coli MetAP complexed with 10 revealed that the inhibitor forms a metal complex with the residue H79 at the enzyme active site; the complex is further stabilized by an extended H-bond and metal interaction network. Analysis of the inhibition of MetAP by these inhibitors indicates that this is a typical mechanism of inhibition for many non-peptidic MetAP inhibitors and emphasizes the importance of defining in vitro conditions for identifying and evaluating MetAP inhibitors that will be capable of giving information relevant to the in vivo situation.  相似文献   

10.
Current treatments for Alzheimer's disease involve inhibiting cholinesterases. Conversely, cholinesterase stimulation may be deleterious. Homocysteine is a known risk factor for Alzheimer's and vascular diseases and its active metabolite, homocysteine thiolactone, stimulates butyrylcholinesterase. Considering the opposing effects on butyrylcholinesterase of homocysteine thiolactone and cholinesterase inhibitors, understanding how these molecules alter this enzyme may provide new insights in the management of dementia. Butyrylcholinesterase does not strictly adhere to Michaelis–Menten parameters since, at higher substrate concentrations, enzyme activation occurs. The substrate activation equation for butyrylcholinesterase does not describe the effects of inhibitors or non-substrate activators. To address this, global data fitting was used to generate a flexible equation based on Michaelis–Menten principles. This methodology was first tested to model complexities encountered in inhibition by imidazole of β-galactosidase, an enzyme that obeys Michaelis–Menten kinetics. The resulting equation was sufficiently flexible to permit expansion for modeling activation or inhibition of butyrylcholinesterase, while accounting for substrate activation of this enzyme. This versatile equation suggests that both the inhibitor and non-substrate activator examined here have little effect on the substrate-activated form of butyrylcholinesterase. Given that butyrylcholinesterase inhibition can antagonize stimulation of this enzyme by homocysteine thiolactone, cholinesterase inhibition may have a role in treating Alzheimer and vascular diseases related to hyperhomocysteinemia.  相似文献   

11.
Acetylcholinesterase (AChE) inhibitors are currently the only approved therapy for the treatment of Alzheimer's disease, only a limited number of drugs are commercially available. A library of non-alkaloidal natural compounds was investigated. To this end, a convenient microtitre plate method for assaying AChE inhibition, which allows a complete kinetic analysis of AChE inhibitors, was developed. Seven active compounds with Ki values in the micromolar range were identified, six of which were xanthones. This is the first report that a promising potential for AChE inhibition exists in such non-nitrogenous natural compounds. Furthermore, four xanthones among these xanthones had already been described as monoamine oxidase (MAO) inhibitors, making then dual AChE/MAO inhibitors of great interest.  相似文献   

12.
Protein kinases are being increasingly targeted in the quest for new therapeutics, and the c-Jun N-terminal kinases (JNKs) are no exception. Protein-kinase inhibitors are generally small molecules that show competitive inhibition with respect to ATP. However, a peptide has been developed that is an ATP-noncompetitive inhibitor of JNK. This article describes the use of this peptide in an increasing number of animal models of disease, including diabetes, stroke, neurotrauma, hearing loss and Alzheimer's disease. The efficacy of this peptide shows that JNK inhibition is an effective strategy for the treatment of these diseases and opens the possibility for testing whether JNK inhibition will be beneficial in other diseases, such as atherosclerosis, arthritis and a range of neurodegenerative diseases.  相似文献   

13.
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory loss and cognitive impairment. It is the most common type of dementia in the ageing population due to a severe loss of cholinergic neurons in selected brain area. At present, acetylcholinesterase inhibitors (AChEI) are the first group of drugs approved by the FDA to treat mild to moderate Alzheimer's disease. Most of these drugs such as huperzine and galanthamine are originally isolated from plants. In this study, the AChE inhibitory activities from extracts of Chinese medicinal herbs that have traditionally been prescribed to treat insomnia and brain function disorders were examined in a 96-well plate assay based on Ellman's method. Both ethanol and aqueous extracts of 26 traditional Chinese medicinal herbs were tested. Inhibitory effects were expressed as the percentage of inhibition. For the herbal extracts that were shown to exert a significant inhibition, dose-dependent inhibitory assays were also performed. Ethanol and aqueous extracts of six herbs were found to have high AChE inhibitory activities in a dose-dependent manner. The IC(50) of these herbal extracts on inhibition of AChE are at around 5-85mum/ml. The results of this study indicate that there is a great potential to search for novel usage of these medicinal herbs for the treatment of AD.  相似文献   

14.
Presenilin-1 and -2 are molecular targets for gamma-secretase inhibitors   总被引:15,自引:0,他引:15  
Presenilins are integral membrane protein involved in the production of amyloid beta-protein. Mutations of the presenilin-1 and -2 gene are associated with familial Alzheimer's disease and are thought to alter gamma-secretase cleavage of the beta-amyloid precursor protein, leading to increased production of longer and more amyloidogenic forms of A beta, the 4-kDa beta-peptide. Here, we show that radiolabeled gamma-secretase inhibitors bind to mammalian cell membranes, and a benzophenone analog specifically photocross-links three major membrane polypeptides. A positive correlation is observed among these compounds for inhibition of cellular A beta formation, inhibition of membrane binding and cross-linking. Immunological techniques establish N- and C-terminal fragments of presenilin-1 as specifically cross-linked polypeptides. Furthermore, binding of gamma-secretase inhibitors to embryonic membranes derived from presenilin-1 knockout embryos is reduced in a gene dose-dependent manner. In addition, C-terminal fragments of presenilin-2 are specifically cross-linked. Taken together, these results indicate that potent and selective gamma-secretase inhibitors block A beta formation by binding to presenilin-1 and -2.  相似文献   

15.
Proteolytic cleavage of amyloid precursor protein by beta-secretase (BACE-1) and gamma-secretase leads to formation of beta-amyloid (A beta) a key component of amyloid plaques, which are considered the hallmark of Alzheimer's disease. Small molecule inhibitors of BACE-1 may reduce levels of A beta and thus have therapeutic potential for treating Alzheimer's disease. We recently reported the identification of a novel small molecule BACE-1 inhibitor N-[2-(2,5-diphenyl-pyrrol-1-yl)-acetyl]guanidine (3.a.1). We report here the initial hit-to-lead optimization of this hit and the SAR around the aryl groups occupying the S(1) and S(2') pockets leading to submicromolar BACE-1 inhibitors.  相似文献   

16.
Donepezil is a potent acetylcholinesterase inhibitor used for the treatment of Alzheimer's disease. Although acetylcholinesterase inhibitors are thought to be symptomatic treatment of Alzheimer's disease, it is not clear whether they are effective against progressive degeneration of neuronal cells. In this study, we investigated the neuroprotective effects of donepezil against ischemic damage, N-methyl-d-aspartate (NMDA) excitotoxicity, and amyloid-beta (Abeta) toxicity using rat brain primary cultured neurons. Lactate dehydrogenase (LDH) released into the culture medium was measured as a marker of neuronal cell damage. As an ischemic damage model, we used oxygen-glucose deprivation in rat cerebral cortex primary cultured neurons. Pretreatment with donepezil (0.1, 1 and 10muM) significantly decreased LDH release in a concentration-dependent manner. However, other acetylcholinesterase inhibitors (galantamine, tacrine and rivastigmine) did not significantly decrease LDH release. In a NMDA excitotoxicity model, pretreatment with donepezil (0.1, 1 and 10muM) decreased the LDH release in a concentration-dependent manner. In binding assay for glutamate receptors, donepezil at 100muM only slightly inhibited binding to the glycine and polyamine sites on NMDA receptor complex. We further examined the effect of donepezil on Abeta (1-40)- and Abeta (1-42)-induced toxicity in primary cultures of rat septal neurons. Pretreatment with donepezil (0.1, 1 and 10muM) significantly decreased LDH release induced by Abetas in a concentration-dependent manner. However, other acetylcholinesterase inhibitors (galantamine and tacrine) and NMDA receptor antagonists (memantine and dizocilpine (MK801)) did not significantly decrease LDH release. These results demonstrate that donepezil has protective effects against ischemic damage, glutamate excitotoxicity and Abeta toxicity to rat primary cultured neurons and these effects are not dependent on acetylcholinesterase inhibition and antagonism of NMDA receptors. Thus, donepezil is expected to have a protective effect against progressive degeneration of brain neuronal cells in ischemic cerebrovascular disease and Alzheimer's disease.  相似文献   

17.
A comparative study has been carried out on effects of berberine (diisoquinoline alkaloid) and sanguinarine and chelidonine (benzophenanthridine alkaloids( on erythrocyte acetylcholinesterase and serum butyrylcholinesterase from human blood. The studied alkaloids have been shown to be strong reversible inhibitors of the cholinesterase activity. Acetylcholinesterase is more sensitive to their action, than butyrylcholinesterase. The type of reversible inhibition was determined, and inhibitor constants were calculated. It is revealed that the character of inhibition is identical for the both cholinesterases. Berberine and sanguinarine are competitive-noncompetitive inhibitors, whereas chelidonine, a competitive inhibitor.  相似文献   

18.
Continuing our work on tetracyclic tacrine analogues, we synthesized a series of acetylcholinesterase (AChE) inhibitors of 11H-indeno-[1,2-b]-quinolin-10-ylaminic structure. Selected substituents were placed in synthetically accessible positions of the tetracyclic nucleus, in order to explore the structure-activity relationships (SAR) and the mode of action of this class of anticholinesterases. A molecular modeling investigation of the binding interaction of the lead compound (1a) with the AChE active site was performed, from which it resulted that, despite the rather wide and rigid structure of 1a, there may still be the possibility to introduce some small substituent in some positions of the tetracycle. However, from the examination of the experimental IC50 values, it derived that the indenoquinoline nucleus probably represents the maximum allowable molecular size for rigid compounds binding to AChE. In fact, only a fluorine atom in position 2 maintains the AChE inhibitory potency of the parent compound, and, actually, increases the AChE-selectivity with respect to the butyrylcholinesterase inhibition. By studying the kinetics of AChE inhibition for two representative compounds of the series, it resulted that the lead compound (1a) shows an inhibition of mixed type, binding to both the active and the peripheral sites, while the more sterically hindered analogue 2n seems to interact only at the external binding site of the enzyme. This finding seems particularly important in the context of Alzheimer's disease research in the light of recent observations showing that peripheral AChE inhibitors might decrease the aggregating effects of the enzyme on the beta-amyloid peptide (betaA).  相似文献   

19.
In the course of studies directed toward the discovery of novel acetyl- and butyrylcholinesterase (AChE and BChE) inhibitors for the treatment of Alzheimer's disease, we focused on beta-carbolines (BCs). 6-Oxygenated beta-carboline and beta-carbolinium derivatives based on the serotonin template were synthesized and tested in vitro for their ability to inhibit AChE and BChE, respectively. Particularly the carbolinium salts, which can be formed by intracerebral methylation out of the tertiary-BC prodrugs, show inhibitory activity levels reaching those of galantamine, physostigmine, and rivastigmine.  相似文献   

20.
E2020 (R,S)-1-benzyl-4-[(5,6-dimethoxy-1-indanon)-2-yl]methyl)piperidine hydrochloride is a piperidine-based acetylcholinesterase (AChE) inhibitor that was approved for the treatment of Alzheimer's disease in the United States. Structure-activity studies of this class of inhibitors have indicated that both the benzoyl containing functionality and the N-benzylpiperidine moiety are the key features for binding and inhibition of AChE. In the present study, the interaction of E2020 with cholinesterases (ChEs) with known sequence differences, was examined in more detail by measuring the inhibition constants with Torpedo AChE, fetal bovine serum AChE, human butyrylcholinesterase (BChE), and equine BChE. The basis for particular residues conferring selectivity was then confirmed by using site-specific mutants of the implicated residue in two template enzymes. Differences in the reactivity of E2020 toward AChE and BChE (200- to 400-fold) show that residues at the peripheral anionic site such as Asp74(72), Tyr72(70), Tyr124(121), and Trp286(279) in mammalian AChE may be important in the binding of E2020 to AChE. Site-directed mutagenesis studies using mouse AChE showed that these residues contribute to the stabilization energy for the AChE-E2020 complex. However, replacement of Ala277(Trp279) with Trp in human BChE does not affect the binding of E2020 to BChE. Molecular modeling studies suggest that E2020 interacts with the active-site and the peripheral anionic site in AChE, but in the case of BChE, as the gorge is larger, E2020 cannot simultaneously interact at both sites. The observation that the KI value for mutant AChE in which Ala replaced Trp286 is similar to that for wild-type BChE, further confirms our hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号