首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The technical feasibility of adopting the fixed-film reactor concept for biogas production from screened dairy manure was investigated. The methane production capability of laboratory-scale 4-L anaerobic reactors (conventional and fixed-film) receiving screened dairy manure and operated at 35 degrees C was compared. Dairy manure filtrate with 4.4% total solids (TS) and 3.4% volatile solids (VS) (average value) was prepared from 1:1 manure-water slurry. The feed material was added intermittently at loading rates ranging from 2.34 to 25 and 2.25 to 785 g VS/L d, respectively, for the conventional and fixed-film reactors. Maximum methane production rate (L CH(4)/L d) for the conventional reactor was 0.63 L CH(4)/L d achieved at a 6-day hydraulic retention time (HRT). For the fixed-film reactor the maximum production rate was 3.53 L CH(4)/L d when operated at a loading rate of 262 g VS/L d (3 h HRT). The fixed-film reactor was capable of sustaining a loading of 785 g VS/L d (1 h HRT). The fixed-film reactor performed much better than the conventional reactors. These results indicate that a large reduction of required reactor volume is possible through application of a fixed-film concept combined with a liquid-solid separation pretreatment of dairy manure.  相似文献   

2.
Summary Butyric acid conversion by a mixed methanogenic population in a pilot scale anaerobic downflow fixed-film reactor (DFFR), treating a cheese factory effluent was increased by the addition of nickel (30 mg/l NiCl2. 6H2O). The butyric acid concentration dropped abruptly (2300 to 150 mg/l) when the reactor was fed with Ni (II). Furthermore, when running two lab. scale DFFRs butyric acid utilization and methane production were slightly higher within the reactor supplemented with nickel than in the control reactor (without nickel).  相似文献   

3.
Two different anerobic consortia, one removing phenol and ortho (o-) cresol and other removing para(p-) cresol, were cultivated in serum bottles using whey as cosubstrate substitute for proteose peptone. Phenol and p-cresol removal with the phenol-removing consortium were the same with 0.0125% (w/v) whey as with 0.05% proteose peptone. For the other consortium, 8 days were required to decrease the p-cresol concentration from 35 to 2 mg/L with 0.025% whey, while 35 days were required to achieve a similar removal with 0.5% proteose peptone. The two consortia were mixed and cultivated with 0.025% whey. Phenolic compound removal with the mixed consortia was as good as that achieved by each of the two initial consortia against their respective substrates. This removal activity was maintained after several transfers. In a continuous upflow fixed-film reactor, the mixed consortia removed over 98% of 150 mg/L of phenol and 35 mg/L of each o- and p-cresol in the influent at 29 degrees C, with 0.025% whey as cosubstrate. The hydraulic retention time (HRT) was 0.25 day, corresponding to a phenolic compound volumic loading rate of 880 mg/(L of reactor x day). Once the continuous flow reactor achieved constant phenolic compound removal, no intermediates were found in the effluent, while in serum bottles, m-toluic acid, an o-cresol intermediate, accumulated. Measurements of the specific activity for the uptake of different substrates demonstrated the presence of all trophic groups involved in methanogenic fermentation. These activities were, in mg of substrate/(g of volatile suspended solids x day), as follows: 849 +/- 25 for the acidogens; 554 +/- 15 for the acetogens; 934 +/- 37 for the aceticlastic methanogens; and 135 +/- 15 for the hydrogenophilic methanogens. Electron micrographs of the mixed consortia showed seven different morphological bacterial types, including Methanotrix-like bacteria.  相似文献   

4.
Inactivation of laboratory animal RNA-viruses by physicochemical treatment   总被引:1,自引:0,他引:1  
Eight commonly used chemical disinfectants and physical treatments (UV irradiation and heating) were applied to both enveloped RNA viruses (Sendai virus, canine distemper virus) and unenveloped RNA viruses (Theiler's murine encephalomyelitis virus, reo virus type 3) to inactivate infectious virus particles. According to the results, alcohols (70% ethanol, 50% isopropanol), formaldehyde (2% formalin), halogen compounds (52ppm iodophor, 100ppm sodium hypochlorite), quaternary ammonium chloride (0.05% benzalkonium chloride) and 1% saponated cresol showed virucidal effects giving more than 99.95% reduction in the infectivity of virus samples of Sendai virus and canine distemper after 10 minutes exposure. There was no significant difference in the effects on the two enveloped RNA viruses. The susceptibility of unenveloped RNA viruses to chemical disinfectants and physical treatments differed greatly from the enveloped viruses. The two unenveloped viruses showed distinct resistance to 50% isopropanol, 2% formalin, 1% saponated cresol and to physical treatments (heating at 45, 56, 60 degrees C, and UV irradiation). These results indicate that using physicochemical methods to inactivate RNA viruses in laboratory animal facilities should be considered in accordance with the characteristics of the target virus. For practical purposes in disinfecting enveloped RNA viruses, 70% ethanol, 0.05% quaternary ammonium chloride and 1% saponated cresol diluted in hot water (greater than 60 degrees C) are considered as effective as UV irradiation. For unenveloped RNA viruses, halogen compounds, more than 1,000 ppm sodium hypochlorite or 260 ppm iodophor are recommended over a period of 10 minutes for disinfecting particles, although these compounds result in an oxidation problem with many metals.  相似文献   

5.
We developed a pentachlorophenol (PCP)-degrading, methanogenic fixed-film reactor by using broken granular sludge from an upflow anaerobic sludge blanket reactor. This methanogenic consortium was acclimated with increasing concentrations of PCP. After 225 days of acclimation, the reactor was performing at a high level, with a PCP removal rate of 1,173 muM day(-1), a PCP removal efficiency of up to 99%, a degradation efficiency of approximately 60%, and 3-chlorophenol as the main chlorophenol residual intermediate. Analyses by PCR-denaturing gradient gel electrophoresis (DGGE) showed that Bacteria and Archaea in the reactor stabilized in the biofilms after 56 days of operation. Important modifications in the profiles of Bacteria between the original granular sludge and the reactor occurred, as less than one-third of the sludge DGGE bands were still present in the reactor. Fluorescence in situ hybridization experiments with probes for Archaea or Bacteria revealed that the biofilms were composed mostly of Bacteria, which accounted for 70% of the cells. With PCR species-specific primers, the presence of the halorespiring bacterium Desulfitobacterium hafniense in the biofilm was detected very early during the reactor acclimation period. D. hafniense cells were scattered in the biofilm and accounted for 19% of the community. These results suggest that the presence of PCP-dehalogenating D. hafniense in the biofilm was crucial for the performance of the reactor.  相似文献   

6.
The dynamic analysis of a continuous, aerobic, fixed-film bioreactor has been performed. Rigorous mathematical models have been developed for a fluidized-bed fermentor with biofilm growth. The transient performance of the reactor is appraised in terms of outlet penicillin concentration for constant, as well as variable carbon substrate feed rates. The effect of the reactor oxygen transfer capacity is elucidated for those cases employing substrate feeding strategies. The results show that penicillin production in a continuous, fixed-film bioreactor reaches a maximum with processing time, but subsequently decreases as cell mass accumulates and substrate deficiencies occur. The maximum production level can be maintained for increased operating times if the substrate supply is continuously increased. The duration of this prolonged production is a direct function of the rate of increase and the operating time at which the increase is initiated. The oxygen transfer capacity of the reactor was found to be important to the effectiveness of a feeding strategy.  相似文献   

7.
《Biomass》1990,21(3):207-218
The anaerobic treatment of baker's yeast wastewater was studied using an anaerobic biological contact reactor (AnRBC) and a fixed-film reactor. The AnRBC had an active biomass developed within the reactor before this study commenced; however, the fixed-film reactor was started without attached biomass in a support structure. The gas production rates obtained for the AnRBC were between 0·55 and 0·61 litre methane per litre reactor per day. However, a gas production rate of only 0·46 litre methane per litre reactor per day was achieved after a four-month operating period for the fixed-film reactor. Higher chemical oxygen demand reduction was also found in the AnRBC. The results indicated that the presence of high sulfate concentration in baker's yeast wastewater affected teh start-up process. The reactor with fully developed active biomass was less susceptible to sulfate inhibition and showed improved anaerobic digestion. Results indicate that the reactor should be innoculated by feeding nutrient-balanced substrate before it was subjected to the digestion of baker's yeast wastewater. The fixed-film reactor was also fed with the substrate contianing sodium molybdate, an inhibitor of sulfate-reducing bacteria. The results indicated that both methanogenic and sulfate-reducing bacteria were inhibited.  相似文献   

8.
We developed a pentachlorophenol (PCP)-degrading, methanogenic fixed-film reactor by using broken granular sludge from an upflow anaerobic sludge blanket reactor. This methanogenic consortium was acclimated with increasing concentrations of PCP. After 225 days of acclimation, the reactor was performing at a high level, with a PCP removal rate of 1,173 μM day−1, a PCP removal efficiency of up to 99%, a degradation efficiency of approximately 60%, and 3-chlorophenol as the main chlorophenol residual intermediate. Analyses by PCR-denaturing gradient gel electrophoresis (DGGE) showed that Bacteria and Archaea in the reactor stabilized in the biofilms after 56 days of operation. Important modifications in the profiles of Bacteria between the original granular sludge and the reactor occurred, as less than one-third of the sludge DGGE bands were still present in the reactor. Fluorescence in situ hybridization experiments with probes for Archaea or Bacteria revealed that the biofilms were composed mostly of Bacteria, which accounted for 70% of the cells. With PCR species-specific primers, the presence of the halorespiring bacterium Desulfitobacterium hafniense in the biofilm was detected very early during the reactor acclimation period. D. hafniense cells were scattered in the biofilm and accounted for 19% of the community. These results suggest that the presence of PCP-dehalogenating D. hafniense in the biofilm was crucial for the performance of the reactor.  相似文献   

9.
Sponza DT  Atalay H 《Anaerobe》2004,10(5):287-293
In this study, the effects of COD to NO(3)-N ratio in the feed on PO(4)-P removal was investigated. Maximum PO(4)-P uptake was obtained in the anoxic reactor when the COD to NO(3)-N ratios were between 2 and 3.75. With the influent COD of 800-1500 mg COD/L a total of the maximum removable PO(4)-P was 56 mg PO(4)-P/L through 20 days of anaerobic/anoxic incubation, indicating 98% P removal in the anoxic reactor. Similarly, for the COD to NO(3)-N ratios varying between 2 and 3.75 maximum denitrification was observed. Through anoxic operation the poly-P bacteria are capable of removing NO(3)-N using VFA, COD as carbon source and NO(3)-N as the electron acceptor after methanogenesis has been completed. High NO(3)-N concentrations stopped significantly the P uptake. A total of 97-99% dinitrotoluene removal efficiencies in the reactors containing COD to NO(3)-N ratio of 2 and 3.75 after 20 days of incubation period. For maximum NO(3)-N and PO(4)-P removals optimal COD to NO(3)-N ratios, COD and NO(3)-N concentrations were 2-3.75, 2000-4000 mg COD/L and, 800-1500 mg NO(3)-N/L, respectively.  相似文献   

10.
During the anaerobic biodegradation of effluent from a dimethyl terephthalate (DMT) manufacturing plant, reduction in chemical oxygen demand (COD) degradation and biogas formation was observed after the waste-water concentration exceeded 25% of added feed COD. This condition reverted back to normal after 25–30 days when the DMT waste-water concentration in the feed was brought down to a non-toxic level. However, the above effects were observed only after the concentration of DMT waste-water reached more than 75% of added feed COD when biomass support particles (BSP) were augmented to the system. In the BSP system, a biomass concentration of up to 7000 mg/l was retained and the sludge retention time increased to > 200 days compared to 2200 mg/l and 8–10 days, respectively, in the system without BSP (control). Formaldehyde in the waste-water was found to be responsible for the observed toxicity. The BSP system was found to resist formaldehyde toxicity of up to 375 mg/l as against 125 mg/l in the control system. Moreover, the BSP system recovered from the toxicity much faster (15 days) than the control (25–30 days). The advantages of the BSP system in anaerobic treatment of DMT waste-water are discussed. Correspondence to: C. Ramakrishna  相似文献   

11.
Aims:  To evaluate disinfectants against Salmonella under conditions relevant for the feed industry.
Materials and Results:  A survey on the use of disinfectants in feed industry showed that a range of different types was used. Nine disinfectants, reflecting the most commonly used active ingredients, were tested for bactericidal activity on Salmonella isolated from the feed industry. All disinfectants were efficient against Salmonella in suspension. The bactericidal effect varied considerably between different types of active compounds on bacteria dried on surfaces or grown as biofilm. Tenside-based disinfectants and hypochlorite were found to have low bactericidal activity and the efficiency was significantly reduced when the ratio of amount disinfectant per cell decreased. It was shown that concentrations of 70–80% ethanol were effective against Salmonella. Among the disinfectants tested a product containing 70% ethanol was most efficient followed by Virkon S.
Conclusions:  Many disinfectants had low bactericidal activity against Salmonella at surfaces while Virkon S and a product containing 70% ethanol were most effective. Another advantage of ethanol-based disinfectants is evaporation of ethanol, resulting in low residual water after use.
Significance and Impact of the Study:  Use of the disinfectants found to be efficient against surface associated Salmonella , may assist the industry in combating Salmonella .  相似文献   

12.
Synthetic wastewater containing 2,4-dichlorophenol (DCP) was biologically treated using a hybrid-loop bioreactor system consisting of a packed column biofilm reactor (PCBR) and an aerated tank with effluent recycle. Effects of the feed DCP concentration on COD, DCP and toxicity removals were investigated. Biomass concentration in the packed column and in the aeration tank decreased with increasing feed DCP content due to toxic effects of DCP on the microorganisms. Low biomass concentrations at high DCP contents resulted in low COD, DCP and toxicity removals. Therefore, percent DCP, COD and toxicity removals decreased with increasing feed DCP content. Nearly 70% COD removal was achieved with a feed DCP content of 380 mg L(-1). The system should be operated with the feed DCP lower than 100 mg L(-1) in order to obtain DCP, COD and toxicity removals above 90%.  相似文献   

13.
Investigations were carried out by using rigid polyurethane foam as a packing material in the anaerobic contact filter (series) to treat distillery spentwash. The effect of hydraulic retention time (HRT) in treatment efficiency of reactor (I) and (II) was evaluated at different initial substrate concentrations ranging from 1500 mg/l to 19,000 mg/l. The effect of toxic parameters such as sulphate present in the distillery spentwash and the corresponding parameters such as total sulphide and un-ionized hydrogen sulphide generated during digestion of wastewater were evaluated to assess the reactor performance. The results showed that at 4 d HRT the overall COD removal percent ranged from 98% to 73% for an influent COD of 1500 mg/l to 19,000 mg/l. The overall performance of COD removal percent in reactor (I) and (II) at 2, 3 and 4 d HRT's were investigated. At 3 d HRT the reactor (II) showed a higher COD removal percent when compared to reactor (I), which clearly shows the role of hydraulic retention time in degradation of the organic matter present in the wastewater above an influent COD concentration of 5000 mg/l.  相似文献   

14.
The application of specialized microorganisms to treat dichloromethane (DM) containing process effluents was studied. An aerobic fluidized bed reactor with a working volume of 801 filled with sand particles as carriers for the bacteria was used. Oxygen was introduced into the recycle stream by an injector device. DM was monitored semi-continuously. A processor controlled the feed volume according to the DM effluent concentration. Mineralization rates of 12 kg DM/mbioreactor 3 · d were reached within about three weeks using synthetic wastewater containing 2000 mg/l DM as single carbon compound. DM from process water of a pharmaceutical plant was reduced from about 2000 mg/l in the feed to below 1 mg/l in the effluent at volumetric loading rates of 3 to 4 kg DM/mbioreactor 3 · d. Degradation of wastewater components like acetone and isopropanol were favoured, thus making the process less attractive for waste streams containing high amounts of DOC other than of DM. DM concentrations of up to 1000 mg/l were tolerated by the immobilized microorganisms and did not influence their DM degradation capacity. The ability to mineralize DM was lost when no DM was fed to the reactor for 10 days.  相似文献   

15.
Expanded granular sludge bed-anaerobic filter (EGSB-AF) bioreactors were operated at 15 degrees C for the treatment of 2,4,6-trichlorophenol (TCP)-containing volatile fatty acid (VFA)-based wastewaters. The seed sludge used as inoculum for the control (no TCP) and test reactor was unexposed to chlorophenols (CPs) prior to the 425-day trial. TCP supplementation to the feed at 50 mg TCPl(-1) partially inhibited the anaerobic degradation of the VFA feed measured as COD removal efficiency. However, the withdrawal and subsequent application of stepwise increments to the TCP loading resulted in steady COD removal. Terminal restriction fragment length polymorphism analysis showed Methanosaeta-like Archaea in the control reactor over the experimental period. Different methanogenic populations were detected in the test reactor and responded to the changes in feed composition. Bacterial community analyses indicated changes in the community structure over time and suggested the presence of Campylobacter-like, Acidimicrobium-like and Heliophilum-like organisms in the samples. TCP mineralisation was by a reductive dechlorination pathway through 2,4-dichlorophenol (DCP) and 4-chlorophenol (4-CP) or 2-chlorophenol (2-CP). CP degradation rates in sludge granules from the lower chamber of the hybrid EGSB-AF reactor was in the order TCP > DCP > 4-CP > 2-CP. However, a biodegradability order of lower CPs > TCP was observed in fixed-film biomass taken from the upper reactor chamber, thus reflecting the role of this reactor section in the metabolism of residual lower CPs from the lower sludge-bed stage of operation.  相似文献   

16.
Copper and chlorine-releasing compounds were the most fungitoxic of 13 compounds tested in water for inhibition of Phytophthora cinnamomi. Mycelium was killed when immersed for 24 h in suspensions containing copper (13–45 mg/1) or a solution containing free residual chlorine (100 mg/1). Sub-lethal concentrations of these compounds reduced the numbers of sporangia. Exposing zoospores of P. cinnamomi for 60 s to water containing 2 mg free residual chlorine/1 reduced subsequent colony production on agar plates by 96–100%.
Prothiocarb, etridiazole ex. and furalaxyl killed mycelium immersed in solutions or suspensions for 3–6 days at 1500, 1000 and 600 mg a.i./l respectively and suppressed sporangium production at 1000, 500 and 300 mg/1.
Mycelium survived 3 days' immersion in ethyl hydrogen phosphonate compounds at 4000 mg a.i./l but 1000 mg a.i./l suppressed sporangium formation.
1-(2-Cyano-2-methoxyiminoacetyl)-3-ethyl urea and drazoxolon did not kill mycelium at 2000 and 1500 mg a.i./l respectively with a 6-day exposure, but reduced numbers of sporangia produced.  相似文献   

17.
The biological removal of phenol was studied in a multi-stage fixed-film reactor at phenol concentrations in the range of 190–900 mg l−1, hydraulic loadings of 0.02–0.22 m3 m−2 day−1 and temperatures of 20–35°C. Phenol removals up to 99.9% were obtained at 20°C but the efficiency decreased as the loading rate or phenol concentration was increased. The reactor coped with organic overloads better than with hydraulic overloads. Removal efficiencies increased as temperature was increased. Reactor performance was stable under extreme loadings and the reactor was capable of handling a ten-fold increase in loading with less than 20% loss in phenol removal efficiency. A large amount of attached biomass was retained in the reactor and was mostly present in the first stage where the majority of organic removal occurred.  相似文献   

18.
Recovery of 97.5% of the pentachlorophenol (PCP) in contaminated wood powder was obtained after extraction with 0.1% KOH solution at 60 degrees C for 75 min. Extraction with NaOH and Na2CO3 was less effective than KOH. The neutralized extract was treated using a methanogenic consortium in an upflow anaerobic fixed-film reactor. The reactor was operated at 29 degrees C for over 600 d. The best performance of the reactor was observed when the PCP liquor was supplemented with glucose and formate. Complete dechlorination of PCP and phenol removal was obtained for a PCP loading rate of 13.3-18.0 mg l(-1) of reactor volume d(-1) with recirculation of the effluent and a hydraulic retention time (HRT) of 0.5-0.6 d.  相似文献   

19.
The hypothesis that the extracellular concentration of sugars helps regulate the acclimation of plant cells to cold was tested in this work. Suspension cultures were used to control the concentration of sugars in the medium supplied to barley cell cultures (Hordeum vulgare L. cv. Igri), replacing the medium daily to help maintain the concentration. Freezing tolerance and the levels of mRNA expression of the stress-response genes blt4.9 (coding for a non- specific lipid transfer protein) and dhn1 (coding for a dehydrin) were measured. Similar levels of freezing-tolerance and gene expression were obtained in the experiments as occur during cold-acclimation in the crown of the whole plant. In the cell cultures, cold (6/2 degrees C) did not induce an increase in freezing tolerance or in the expression of detectable levels of blt4.9 or dhn1 mRNAs when only 1 g l-1 sucrose was supplied. However, the cells in this low sucrose medium in the cold were not sugar-starved, indicating that this did not explain the failure of the cells to acclimate when grown in the cold environment. Ten g l-1 sucrose supplied to cells grown in the warm (25 degrees C) induced acclimation to freezing and up-regulation of expression of blt4.9 and dhn1 mRNAs. Osmolality of the medium did not explain this. Thirty g l-1 sucrose induced yet higher levels of freezing tolerance and of blt4.9 and dhn1 mRNAs in cultures grown in either the cold or the warm environment. The results implicate sugars in the regulation of cold acclimation  相似文献   

20.
Three disinfectants commonly used in poultry farms (formalin, TH4+, and Virkon-S) were chosen for the present study. The effect of disinfectant concentration and the duration of exposure to these disinfectants on the survival of Escherichia coli serotypes (O114:K-, O86, O55:K39, and O86:K60) were investigated. Formalin (0.6%), TH4+ (0.06%), and Virkon (0.5%) all killed the four serotypes within 5 min of exposure. As the disinfectant concentration decreases, the length of exposure time to kill serotype increases. At 0.03%, 0.007%, and 0.03% of formalin, TH4+ and Virkon-S concentrations failed to kill the four E. coli serotypes within 360 min, respectively. An improvement of the inhibitory effect of these disinfectants occurred when added together with the inoculum instead of an established population. The influence of formalin, TH4+, and Virkon-S on the cell morphology of E. coli O55:K39 was investigated by using transmission electron microscopy. Formalin-treated cells exhibited normal cell morphology, with the exception that the treated cell was less fimbriated, and more destruction of pili increased when formalin concentrations were doubled. Cells treated with TH4+ (0.03%) showed destruction of the cell wall and cell surface membrane after 5 min. Cell filamentation occurred at 0.015% and increased with the increase of exposure time to this drug. Spheroplasts were observed only when cells were treated with 0.125% Virkon-S for 60 min, and cell lysis started to occur when 0.25% Virkon-S was applied for 15 min. Scanning electron microscope study revealed that Virkon-S at 0.03% and TH4+ at 0.007% completely prevented the adherence of E. coli O55:K39 serotype to chicken tracheal organ, whereas formalin (0.03%) disinfection minimized the adherence of E. coli cells to tracheal explants after 360 min of incubation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号