首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Protein and RNA syntheses were examined during hyphal germ tube emergence from sporangiospores of a dimorphic phycomycete, Mucor racemosus. Both classes of macromolecules were synthesized immediately upon introduction of the dormant sporangiospores into nutrient medium. The specific rates of synthesis of both protein and RNA accelerated during initial germ tube emergence and reached a maximum when the emergence of new germ tubes ended. The specific rates of synthesis later decreased during further hyphal elongation. The distribution of ribosomes between active polysomes and monosomes and inactive subunits was determined by sucrose density gradient centrifugation, and the rate of amino acid addition to nascent polypeptide chains was calculated throughout the developmental sequence. The results showed that both the percentage of ribosomes active in protein synthesis and the velocity of ribosome movement along the mRNA were continuously adjusted throughout hyphal germ tube development. The free intracellular amino acid pools were measured throughout development. Alanine, glutamate, and aspartate were present at very high concentrations in the dormant spores but were rapidly depleted during hyphal germ tube emergence. The results of these studies are discussed in relation to hyphal germ tube development from yeast cells of Mucor and dormant spores of other fungal species.  相似文献   

2.
Summary Increasing age ofRhizoctonia solani cells was accompanied by a decrease in protein synthesis but not by a fall in the number of ribosomes present. There was, however, a shift from predominantly polyribosomes in young cells actively synthesizing protein, to mainly monoribosomes in older less active cells, and it is suggested that protein synthesis is restricted in these older cells by some defect at the initiation step of protein synthesis. The major site of protein synthesis throughout ageing was the free ribosome fraction with little or no contribution from membrane-bound ribosomes. For reasons not understood, the free ribosomes failed to sediment through 2.0 M sucrose, and only by using 1.4 M sucrose were good separations obtained.  相似文献   

3.
J. Sparkuhl  G. Setterfield 《Planta》1977,135(3):267-273
In order to examine the relation of protein synthesis to the onset of growth, changes in ribosome content and activity were compared in aged, metabolically active Jerusalem artichoke (Helianthus tuberosus L.) slices incubated in water or 2,4-dichlorophenoxyacetic acid+kinetin. In water, cells do not grow or divide and rRNA and protein levels remain constant. The percentage membrane-bound (mb) ribosomes drops from 25% to 16% during 24h. At the same time the proportion of ribosomes active in protein synthesis in both free and mb populations declines from about 69% to 54%. In auxin+kinetin, cell expansion occurs and is accompanied by a 3-fold increase in rRNA and a 50% increase in total protein content. The percentage mb ribosomes remains at 25% throughout 48 h of growth. During the first 24h of growth 70% of ribosomes in both free and mb populations are active; this value declines to near water levels at 48 h. Considering the large increase in total ribosomes the number of synthetically active ribosomes is substantially increased during growth. 5-Fluorouracil (5-FU) does not inhibit hormone induced growth but does depress total rRNA content by about one-third. It also reduces [3H]uridine incorporation into ribosomes by 70% and the newly made ribosomes are mostly inactive in protein synthesis. On the other hand, the inhibitor does not significantly affect the proportion of total ribosomes active in protein synthesis and only partially reduces protein accumulation during the second 24 h of growth. It is suggested that while ribosome production is reduced in 5-FU, ribosome turnover is also retarded resulting in retention of near normal capacity for protein synthesis and growth.  相似文献   

4.
Mitotic HeLa cells (M cells) synthesize protein at about 25% of the rate of S phase cells. This decrease in protein synthesis is due to a reduction in the rate of initiation. However, extracts prepared from M cells are almost as active in protein synthesis as S cell extracts. Both cell extracts are quite active in in vitro initiation of protein synthesis. Moreover, two steps in initiation, binding of Met-tRNAf to 40S ribosomal subunits and binding of mRNA to ribosomes, show similar activity in both extracts. The difference in protein synthesizing activity observed in vivo is largely eliminated in the preparation of cell-free systems. The ribosomes of M cells contain small mol wt RNA, which inhibits protein synthesis in vitro. This RNA, which has possibly a nuclear origin, may be a cause of the reduction in the rate of protein synthesis in M cells.  相似文献   

5.
The dimorphic fungus Mucor racemosus was grown at rates between 0.043 and 0.434 doubling/h while maintained as yeasts or at rates between 0.21 and 0.50 doubling/h while maintained as hyphae by altering the composition of the growth medium or the gaseous environment of the cells. Yeasts at the higher growth rates contained many more ribosomes than did yeasts at the lower growth rates. They also had a higher percentage of ribosomes active in protein synthesis and a faster rate of polypeptide-chain elongation than did the slower-growing cells. Hyphal cells at faster growth rates also contained many more ribosomes and showed a faster rate of polypeptide-chain elongation than did slower-growing cells. However, the faster-growing cells had a substantially lower proportion of ribosomes active in protein synthesis than did the slower-growing hyphae. Pulse-chase experiments failed to provide any evidence of protein turnover, which might otherwise invalidate the values calculated for the peptide-chain elongation rates.  相似文献   

6.
Weanling (23-day-old) rats were fed on either a low-protein diet (6% casein) or a diet containing an adequate amount of protein (18% casein) for 28 days. Hepatic cells from animals fed on the deficient diet were characterized by markedly lower concentrations of protein and RNA in all cellular fractions as compared with cells from control rats. The bound rRNA fraction was decreased to the greatest degree, whereas the free ribosomal concentrations were only slightly less than in control animals. A good correlation was observed between the rate of hepatic protein synthesis in vivo and the cellular protein content of the liver. Rates of protein synthesis both in vivo and in vitro were directly correlated with the hepatic concentration of individual free amino acids that are essential for protein synthesis. The decreased protein-synthetic ability of the ribosomes from the liver of protein-deprived rats was related to a decrease in the number of active ribosomes and heavy polyribosomes. The lower ribosomal content of the hepatocytes was correlated with the decreased concentration of essential free amino acids. In the protein-deprived rats, the rate of accumulation of newly synthesized cytoplasmic rRNA was markedly decreased compared with control animals. From these results it was concluded that amino acids regulate protein synthesis (1) by affecting the number of ribosomes that actively synthesize protein and (2) by inhibiting the rate of synthesis of new ribosomes. Both of these processes may involve the synthesis of proteins with a rapid rate of turnover.  相似文献   

7.
Studies of the incorporation of 14C-l-leucine into polypeptides by isolated liver ribosomes from guinea pigs confirmed previous in vivo studies that showed that Trichostrongylus colubriformis infection results in an elevated hepatic protein synthesis.The increased rate of protein synthesis was associated with the membrane-bound ribosomes that synthesize the circulating plasma proteins. Inappetance of infected animals was not resposible for the increased rate of synthesis by the membrane-bound ribosomes, but it was found that undernourishment may stimulate synthesis by free ribosomes.Plasma albumin turnover rate and loss into the intestine were both significantly increased in infected guinea pigs. It was concluded that these changes stimulated protein synthesis by membrane-bound ribosomes.The importance of elevated liver protein synthesis and loss of plasma protein in gastrointestinal nematode infections is discussed.  相似文献   

8.
The ribosome is the macromolecular machine responsible for translating the genetic code into polypeptide chains. Despite impressive structural and kinetic studies of the translation process, a number of challenges remain with respect to understanding the dynamic properties of the translation apparatus. Single-molecule techniques hold the potential of characterizing the structural and mechanical properties of macromolecules during their functional cycles in real time. These techniques often necessitate the specific coupling of biologically active molecules to a surface. Here, we describe a procedure for such coupling of functionally active ribosomes that permits single-molecule studies of protein synthesis. Oxidation with NaIO4 at the 3' end of 23S rRNA and subsequent reaction with a biotin hydrazide produces biotinylated 70S ribosomes, which can be immobilized on a streptavidin-coated surface. The surface-attached ribosomes are fully active in poly(U) translation in vitro, synthesizing poly(Phe) at a rate of 3-6 peptide bonds/s per active ribosome at 37 degrees C. Specificity of binding of biotinylated ribosomes to a streptavidin-coated quartz surface was confirmed by observation of individual fluorescently labeled, biotinylated 70S ribosomes, using total internal reflection fluorescence microscopy. Functional interactions of the immobilized ribosomes with various components of the protein synthesis apparatus are shown by use of surface plasmon resonance.  相似文献   

9.
In vitro protein synthesis in Vibrio costicola [poly(U)-directed incorporation of phenylalanine] was studied. The extent of protein synthesis was limited by the number of ribosomes present. Density gradient centrifugation experiments suggested that, after runoff of ribosomes from the artificial messenger, the 50S subunit was unable to attach to the 30S-messenger complex. As shown previously (M. Kamekura and D. J. Kushner, J. Bacteriol. 160:385-390, 1984), Cl- ions inhibited protein synthesis; indeed, the highest rate of synthesis took place in the lowest attainable Cl- concentration (37 mM). The inhibitory effects were partly reversed by glutamate and betaine, both of which are concentrated within cells of V. costicola. The strongest reversal was seen when both glutamate and betaine were present. Cl- ions can prevent binding of ribosomes to poly(U) and displace ribosomes already bound to this artificial messenger. The effects of Cl- ions on binding were also reversed by glutamate and betaine. Cl- ions did not affect accuracy of translation; they were shown previously (Kamekura and Kushner, J. Bacteriol. 160:385-390, 1984) not to affect phenylalanyl-tRNA synthetase. It was also found that washing ribosomes with inhibitory NaCl concentrations did not interfere with their ability to carry out protein synthesis later in optimal (low) salt concentrations. On the contrary, these ribosomes were more active than before they were washed. We conclude that the main site of action of Cl- in the system studied is on the binding of ribosomes to the mRNA.  相似文献   

10.
RIBOSOMAL ACTIVITY IN PRENATAL MOUSE BRAIN   总被引:5,自引:5,他引:0  
Abstract— Regulation of protein synthesis is important for the proper growth and development of the brain. Our previous work on the regulation of protein synthetic activity in fetal mouse brain cell suspensions showed that the rate of protein synthesis decreased during the prenatal period. In the present study, ribosomal activity of cell-free homogenates and purified ribosomes obtained from fetal neural tissue was measured. The post-mitochondrial supernatant (PMS) fraction actively incorporated amino acids into polypeptides using either endogenous mRNA or polyuridylic acid as template. The protein synthetic activity was dependent upon the age of the fetus. Ribosomes purified from this fraction were also active in protein synthesis. Incorporation of phenylalanine was linear for 20 min, and dependent upon the concentration of ribosomes and the pH 5 enzyme fraction. The age dependent decrease in protein synthetic activity observed with the post-mitochondrial supernatant fractions was not found when these purified ribosomes were employed. Ribosomes obtained from fetal, newborn or adult neural tissue were compared and found equally active in their protein synthetic capacity.  相似文献   

11.
The energy source shift-down described in the preceding paper (Molin et al., J. Bacteriol. 131: 7-17, 1977) was used to study the effects of shift-down on protein synthesis. The overall rate of protein synthesis was reduced immediately, and to the same extent, in stringent and relaxed strains. The primary effect of the shift was a slowing down of the polypeptide chain growth rate, a finding not previously reported. In stringent strains the normal, preshift rate was reestablished within 2 to 3 min, whereas in relaxed strains the chain growth rate remained low for about 20 min before slowly returning to the normal value, which was reestablished some 50 to 60 min after the shift. Throughout this transition, the stability of messenger ribonucleic acid (mRNA) remained unchanged in both strains. We interpret these findings as evidence of the more rapid reduction of the mRNA pool in the stringent strain after shift-down: we believe that very soon after the shift, the stringent strain reduces its pool of mRNA and with it the number of ribosomes engaged in protein synthesis. In this manner the number of active ribosomes is adjusted to the availability of energy and carbon. The relaxed strain cannot rapidly reduce its mRNA pool, which thus remains large enough to engage a near-preshift number of ribosomes during a prolonged period; as a consequence its ribosomes must work at a reduced rate. The possibility that ppGpp is involved in the control of mRNA production is discussed. After shift-down, the initial part of beta-galactosidase (the auto-alpha fragment) was produced at a higher rate than complete beta-galactosidase in the relaxed strain, as expected when translation is impeded.  相似文献   

12.
The rate of protein synthesis by lymphocytes increases linearly from 3 h after the addition of phytohemagglutinin (PHA). There is a linear increase in the percentage of active ribosomes between 3 and 12 h of lymphocyte culture with PHA. Thus, an important early event during the activation of lymphocytes by mitogen is a stimulation in the rate of initiation of protein synthesis.  相似文献   

13.
Free and membrane-bound ribosomes were isolated from neuronal perikarya of the immature rat brain-cortex. The two topographic forms of ribosomes were essentially free of contaminating organelles as shown by RNA, protein and marker enzyme analysis. Membrane-bound ribosomes amount to about a quarter of the total ribosomal population in neuronal perikarya. Both forms of ribosomes efficiently carried out cell-free protein synthesis but the membrane-bound fraction was more active than the free ribosomes.  相似文献   

14.
The functional distinction of membrane-bound and free polyribosomes for the synthesis of exportable and non-exportable proteins respectively is not so strict as was initially thought, and it was therefore decided to investigate their relative contribution to the elaboration of an internal protein integrated into a cell structure. Cytochrome c was chosen as an example of a soluble mitochondrial protein, and the incorporation of [(14)C]leucine and delta-amino[(14)C]laevulinate into the molecule was studied by using different ribosomal preparations from regenerating rat liver. A new procedure was devised for the purification of cytochrome c, based on ion-exchange chromatography combined with sodium dodecyl sulphate-polyacrylamide-gel electrophoresis. In spite of cytochrome c being a non-exportable protein, the membrane-bound polyribosomes were at least as active as the free ribosomes in the synthesis in vitro of the apoprotein and the haem moiety. The detergent-treated ribosomes could also effect the synthesis of cytochrome c, although at a lower rate. Since in liver more than two-thirds of the ribosomes are bound to the endoplasmic-reticulum membranes, it is considered that in vivo they are responsible for the synthesis of most of the cytochrome c content of the cell. This suggests that in secretory tissues the endoplasmic reticulum plays a predominant role in mitochondrial biogenesis, although free ribosomes may participate in the partial turnover of some parts of the organelle. The hypothesis on the functional specialization of the different kinds of ribosomes was therefore modified to account for their parallel intervention in the synthesis of proteins associated with membranous structures.  相似文献   

15.
Affinity chromatography of wheat germ extracts on a chitin column increased the rate and extent of protein synthesis, programmed by rabbit globin mRNA. Addition of purified wheat germ agglutinin to the chitin-treated extract reduced the rate of protein synthesis to about the levels seen in the untreated extracts. Experiments where the ratio of messenger to extract and the ratio of supernatant to ribosomes were varied, indicated that addition of wheat germ agglutinin reduced the amount of available ribosomes. Reduced and carboxymethylated wheat germ agglutinin failed to inhibit protein synthesis and was unable to bind to the ribosomes. However, labelled intact agglutinin was found to be bound to ribosomes. The bound agglutinin was not released by acid treatment. The inhibiting effect of wheat germ, agglutinin on protein synthesis could not be counteracted by addition of N-acetyl-D-glucosamine or sialic acid, whereas thiols partially diminished the inhibition. The data indicate that wheat germ agglutinin binds reversibly to ribosomes, probably through mixed disulfide formation, and that chitin treatment increases the ability of wheat germ extracts to support protein synthesis, at least in part, by removing the wheat germ agglutinin. The possibility that chitin treatment also removed other inhibitors of protein synthesis cannot be excluded.  相似文献   

16.
Peripheral hyphae were separated from the remaining thallus of Rhizoctonia solani in exponential and stationary phases of growth. The QO(2) in whole cells of peripheral hyphae from young fungal colonies was on the average 2.6 times and the protein content 1.6 times greater than in peripheral hyphae from old fungal colonies. The overall rate of amino acid uptake was less in old than in young fungal colonies. In a polyuridylic acid-polyphenylalanine incorporating system, the two kinds of peripheral hyphae required ribosomes, supernatant fraction, polyuridylic acid, soluble ribonucleic acid, adenosine triphosphate, and pyruvate kinase. The rate of polyphenylalanine synthesis in old fungal colonies was slower than in the young fungal colonies. The ribosomes and supernatant fraction of the young and old fungal colonies were interchangeable and active. The factor responsible for deficient protein synthesis in old fungal colonies appears to be in the soluble fraction of the mycelium.  相似文献   

17.
The synthesis of a major heat shock protein (HSP 70) was measured in HeLa cells incubated at 42.5 degrees C and then transferred to 37 degrees C or 30 degrees C. After 90 min, synthesis of HSP 70 decreased by 54 and 85%, respectively, whereas HSP 70 mRNA was reduced at most by 20%. Therefore, the reduced synthesis of HSP 70 could not be accounted for by mRNA turnover. HSP 70 was associated with large polyribosomes (6-10 ribosomes) in cells kept at 42.5 degrees C, but with medium or small polyribosomes in cells transferred to 37 degrees C or 30 degrees C (5-6 or 2-3 ribosomes, respectively). Addition of puromycin to these cells resulted in the release of all ribosomes from HSP 70 mRNA, indicating that they were translationally active. The regulation of HSP 70 synthesis was investigated in cell-free systems prepared from heat-shocked or control cells and incubated at 30 degrees C and 42 degrees C. After 5 min at 42 degrees C, the cell-free system from heat-shocked cells synthesized protein at 3 times the rate of the control cell-free system. This difference was in large part due to synthesis of HSP 70. Addition of HSP mRNA to the control cell-free system stimulated protein synthesis at 42 degrees C, but not at 30 degrees C. These findings suggest that translation of HSP 70 mRNA is specifically promoted at high temperature and repressed during recovery from heat shock by regulatory mechanisms active at the level of initiation.  相似文献   

18.
We have found Chinese Hamster Ovary cells, cultured in suspension, are subject to growth control by serum. When suspended in medium containing 0.5% serum the cells become reversibly arrested in the beginning of the G1 phase of the cell cycle and can be maintained in this viable, nonproliferating state for several days. This system was used to examine the regulation of protein synthesis with growth rate. In particular, the experiments addressed the question whether mRNA content is the principal controlling factor determining the rate of protein synthesis. The rate of leucine incorporation in resting cells in low serum is 2- to 2.5-fold lower than that of cells growing in 10% serum. The steady-state number of cytoplasmic poly A (+) RNA molecules shows a proportional decrease, consistent with it being a determining factor controlling the rate of protein synthesis. Furthermore, the rate of production of poly A (+) and poly A (?) RNA appears to be regulated coordinately. Regulation of the rate of initiation of translation would result in fewer ribosomes bound per active message and/or a lower proportion of total mRNA's being active. Our measurements indicate that the fraction of cytoplasmic poly A (+) mRNA in polyribosomes and the relative degree of loading of each active poly A(+) mRNA with ribosomes is the same in resting and growing cells. Thus these cells resemble 3T6 and translational control does not appear to be an important part of the change in protein synthetic rate with the state of growth.  相似文献   

19.
Ribosomes and polyribosomes from Clostridium pasteurianum were isolated and their activities were compared with those of ribosomes from Escherichia coli in protein synthesis in vitro. C. pasteurianum ribosomes exhibited a high level of activity due to endogenous messenger ribonucleic acid (RNA). For translation of polyuridylic acid [poly(U)], C. pasteurianum ribosomes required a higher concentration of Mg(2+) and a much higher level of poly(U) than did E. coli ribosomes. Phage f2 RNA added to the system with C. pasteurianum ribosomes gave no significant stimulation of protein synthesis in a homologous system or with E. coli initiation factors. The 30S and 50S subunits prepared from C. pasteurianum ribosomes reassociated less readily than subunits from E. coli. The ability of the C. pasteurianum subunits to reassociated was found to be dependent upon the presence of a reducing agent during preparation and during analysis of the reassociation products. In heterologous combinations, E. coli 30S subunits associated readily with C. pasteurianum 50S subunits to form 70S particles, but C. pasteurianum 30S subunits and E. coli 50S subunits did not associate. In poly(U) translation, E. coli 30S subunits were active in combination with 50S subunits from either E. coli or C. pasteurianum, but C. pasteurianum 30S subunits were not active in combination with either type of 50S subunits. Polyribosomes prepared from C. pasteurianum were very active in protein synthesis, and well-defined ribosomal aggregates as large as heptamers could be seen on sucrose gradients. An attempt was made to demonstrate synthesis in vitro of ferredoxin.  相似文献   

20.
The dimorphic fungus Mucor racemosus was grown as a yeast in a chemostat. Cellular growth rates were varied over a fourfold range under an atmosphere of N2 and over an eightfold range under CO2. Under either atmosphere, an increase in the cellular growth rate resulted in increases in (i) the cellular ribosome concentration, (ii) the percentage of ribosomes active in protein synthesis, and (iii) the rate of polypeptide chain elongation. The rate of protein synthesis in this organism can therefore be regulated by adjustment of all of these mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号