首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The alga, Distigma proteus, isolated from industrial wastewater showed tolerance against Cd2+ (8.0 μg/ml), Cr6+ (12 μg/ml), Pb2+ (15 μg/ml) and Cu2+ (10 μg/ml). The metal ions slowed down the growth of the organism after 4–5 days of exposure. The reduction in cell population was 90% for Cu2+, 84% for Cd2+, 71% for Cr6+, and 63% for Pb2+ after 8 days of metal stress. The order of resistance to heavy metal, in terms of reduction in the cellular population, was Cu2+ > Cd2+ > Cr6+ > Pb2+. Chromium- and cadmium-processing capabilities of the alga were worked out for its potential use as a bioremediator of wastewater. The reduction in the amount of Cr6+ after 2, 4, 6 and 8 days of algal culture containing 5.0 μg Cr6+ ml−1 of culture medium was 77, 85, 92 and 97%, respectively. Distigma could also remove 48% Cd2+after 2 days, 68% after 4 days, 80% after 6 days and 90% after 8 days from the medium. The heavy metal uptake ability of Distigma can be exploited for metal detoxification and environmental clean-up operations.  相似文献   

2.
The serum/glucose deprivation (SGD)-induced cell death in cultured PC12 cells represents a useful in vitro model for the study of brain ischemia and neurodegenerative disorders. Nigella sativa L. (family Ranunculaceae) and its active component thymoquinone (TQ) has been known as a source of antioxidants. In the present study, the protective effects of N. sativa and TQ on cell viability and reactive oxygen species (ROS) production in cultured PC12 cells were investigated under SGD conditions. PC12 cells were cultured in DMEM medium containing 10% (v/v) fetal bovine serum, 100 units/ml penicillin, and 100 μg/ml streptomycin. Cells were seeded overnight and then deprived of serum/glucose for 6 and 18 h. Cells were pretreated with different concentrations of N. sativa extract (15.62–250 μg/ml) and TQ (1.17–150 μM) for 2 h. Cell viability was quantitated by MTT assay. Intracellular ROS production was measured by flow cytometry using 2′,7′-dichlorofluorescin diacetate (DCF-DA) as a probe. SGD induced significant cells toxicity after 6, 18, or 24 h (P < 0.001). Pretreatment with N. sativa (15.62–250 μg/ml) and TQ (1.17–37.5 μM) reduced SGD-induced cytotoxicity in PC12 cells after 6 and 18 h. A significant increase in intracellular ROS production was seen following SGD (P < 0.001). N. sativa (250 μg/ml, P < 0.01) and TQ (2.34, 4.68, 9.37 μM, P < 0.01) pretreatment reversed the increased ROS production following ischemic insult. The experimental results suggest that N. sativa extract and TQ protects the PC12 cells against SGD-induced cytotoxicity via antioxidant mechanisms. Our findings might raise the possibility of potential therapeutic application of N. sativa extract and TQ for managing cerebral ischemic and neurodegenerative disorders.  相似文献   

3.
Both α-lipoic acid (LA) and ascorbic acid (vitamin C) have been shown to improve endothelial dysfunction, a precursor of atherosclerosis. Since oxidant stress can cause endothelial dysfunction, we tested the interaction and efficacy of these antioxidants in preventing oxidant damage to lipids due to both intra- and extracellular oxidant stresses in EA.hy926 endothelial cells. LA spared intracellular ascorbate in culture and in response to an intracellular oxidant stress induced by the redox cycling agent menadione. Extracellular oxidant stress generated by incubating cells for 2 h in with 0.2 mg/ml LDL and 5 μM Cu2+ caused a time-dependent increase of the lipid peroxidation product malondialdehyde in both cells and LDL, preceded by rapid disappearance of` α-tocopherol in LDL. α-Lipoic acid at concentrations of 40–80 μM blunted these effects. Similarly, intracellular ascorbate concentrations of 1–2 mM also prevented Cu2+-induced lipid peroxidation in LDL and cells. Cu2+-dependent oxidation of LDL in the presence of ascorbate-loaded cells decreased intracellular ascorbate by 20%, but this decrease was not reversed by LA. Both LA and ascorbate protect endothelial cells and LDL from either intra- or extracellular oxidant stress, but that LA does not spare ascorbate in oxidatively stressed cells.  相似文献   

4.
Cadmium (Cd) is a known nephrotoxic element. In this study, the primary cultures of rat proximal tubular (rPT) cells were treated with low doses of cadmium acetate (2.5 and 5 μM) to investigate its cytotoxic mechanism. A progressive loss in cell viability, together with a significant increase in the number of apoptotic and necrotic cells, were seen in the experiment. Simultaneously, elevation of intracellular [Ca2+]i and reactive oxygen species (ROS) levels, significant depletion of mitochondrial membrane potential(Δ Ψ) and cellular glutathione (GSH), intracellular acidification, and inhibition of Na+, K+-ATPase and Ca2+-ATPase activities were revealed in a dose-dependent manner during the exposure, while the cellular death and the apoptosis could be markedly reversed by N-acetyl-l-cysteine (NAC). Also, the calcium overload and GSH depletion were significantly affected by NAC. In conclusion, exposure of rPT cells to low-dose cadmium led to cellular death, mediated by an apoptotic and a necrotic mechanism. The apoptotic death might be the chief mechanism, which may be mediated by oxidative stress. Also, a disorder of intracellular homeostasis induced by oxidative stress and mitochondrial dysfunction is a trigger of apoptosis in rPT cells.  相似文献   

5.
Coelho SM  Brownlee C  Bothwell JH 《Planta》2008,227(5):1037-1046
We report the existence of a tip-high reactive oxygen species (ROS) gradient in growing Fucus serratus zygotes, using both 5-(and 6-) chloromethyl-2′,7′-dichlorodihydrofluorescein and nitroblue tetrazolium staining to report ROS generation. Suppression of the ROS gradient inhibits polarized zygotic growth; conversely, exogenous ROS generation can redirect zygotic polarization following inhibition of endogenous ROS. Confocal imaging of fluo-4 dextran distributions suggests that the ROS gradient is interdependent on the tip-high [Ca2+]cyt gradient which is known to be associated with polarized growth. Our data support a model in which localized production of ROS at the rhizoid tip stimulates formation of a localized tip-high [Ca2+]cyt gradient. Such modulation of intracellular [Ca2+]cyt signals by ROS is a common motif in many plant and algal systems and this study extends this mechanism to embryogenesis.  相似文献   

6.
This study sought to investigate effects of short-chain fatty acids and CO2 on intracellular pH (pHi) and mechanisms that mediate pHi recovery from intracellular acidification in cultured ruminal epithelial cells of sheep. pHi was studied by spectrofluorometry using the pH-sensitive fluorescent indicator 2′,7′-bis (carboxyethyl)-5(6′)-carboxyfluorescein acetoxymethyl ester (BCECF/AM). The resting pHi in N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES)-buffered solution was 7.37 ± 0.03. In HEPES-buffered solution, a NH4 +/NH3-prepulse (20 mM) or addition of butyrate (20 mM) led to a rapid intracellular acidification (P < 0.05). Addition of 5-(N-ethyl-N-isopropyl)-amiloride (EIPA; 10 μM) or HOE-694 (200 μM) inhibited pHi recovery from an NH4 +/NH3-induced acid load by 58% and 70%, respectively. pHi recovery from acidification by butyrate was reduced by 62% and 69% in the presence of EIPA (10 μM) and HOE-694 (200 μM), respectively. Changing from HEPES- (20 mM) to CO2/HCO3 -buffered (5%/20 mM) solution caused a rapid decrease of pHi (P < 0.01), followed by an effective counter-regulation. 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS; 100 μM) blocked the pHi recovery by 88%. The results indicate that intracellular acidification by butyrate and CO2 is effectively counter-regulated by an Na+/H+ exchanger and by DIDS-sensitive, HCO3 -dependent mechanism(s). Considering the large amount of intraruminal weak acids in vivo, both mechanisms are of major importance for maintaining the pHi homeostasis of ruminal epithelial cells. Accepted: 8 March 2000  相似文献   

7.
The neonicotinoid insecticide imidacloprid is an agonist on insect nicotinic acetylcholine receptors (nAChRs). We utilised fura-2-based calcium imaging to investigate the actions of imidacloprid on cultured GFP-tagged cholinergic neurons from the third instar larvae of the genetic model organism Drosophila melanogaster. We demonstrate dose-dependent increases in intracellular calcium ([Ca2+]i) in cholinergic neurons upon application of imidacloprid (10 nM–100 μM) that are blocked by nAChR antagonists mecamylamine (10 μM) and α-bungarotoxin (α-BTX, 1 μM). When compared to other (untagged) neurons, cholinergic neurons respond to lower concentrations of imidacloprid (10–100 nM) and exhibit larger amplitude responses to higher (1–100 μM) concentrations of imidacloprid. Although imidacloprid acts via nAChRs, increases in [Ca2+]i also involve voltage-gated calcium channels (VGCCs) in both groups of neurons. Thus, we demonstrate that cholinergic neurons express nAChRs that are highly sensitive to imidacloprid, and demonstrate a role for VGCCs in amplifying imidacloprid-induced increases in [Ca2+]i.  相似文献   

8.
(1) Morroniside belongs to an extensive group of natural iridorid glycosides. In the present study, using human neuroblastoma SH-SY5Y cells, we have investigated the protective effects of this compound on modifications in endogenous reduced glutathione (GSH), intracellular oxygen species (ROS) and apoptotic death on H2O2-mediated cytoxicity. (2) Incubation of cells with morroniside led to a significant dose-dependent elevation of cellular GSH accompanied by a marked protection against H2O2-mediated toxicity. Morroniside at 1–100 μM inhibited the formation of ROS and the activation of caspase-3 and 9, and the upregulation of Bcl-2, whereas no significant change occurred in Bax levels. (3) The results indicated that the anti-oxidative and anti-apoptotic properties render this natural compound potentially protective against H2O2-induced cytotoxicity. (4) This study suggested that intracellular GSH appeared to be an important factor in morroniside-mediated cytoprotection against H2O2-toxicity in SH-SY5Y cells.  相似文献   

9.
Demidchik V  Sokolik A  Yurin V 《Planta》2001,212(4):583-590
Effects of Cu2+ on a non-specific conductance and H+-ATPase activity in the plasma membrane of the freshwater alga Nitella flexilis L. Agardh was studied using a conventional microelectrode voltage-clamp technique. We show that a Cu2+-induced increase in the non-specific conductance is related to the formation of pores in the plasma membrane. Pore formation is the result of unidentified chemical reactions, since the Q10 for the rate of increase of conductance over time was about 3. Various oxidants and antioxidants (10 mmol/l H2O2, 10 mmol/l ascorbate, 100 μg/ml superoxide dismutase, and 100 μg/ml catalase) did not alter Cu2+-induced changes in the plasma membrane conductance, suggesting that the effect of Cu2+ was unrelated to peroxidation of plasma-membrane lipids. In contrast, organic and inorganic Ca2+-channel antagonists (nifedipine, Zn2+, Cd2+, Fe2+, Ni2+) inhibited the Cu2+-induced non-specific conductance increase. This suggests that changes in Ca2+ influx underlie this effect of Cu2+. Decreasing the pH or the ionic strength of external solutions also inhibited the Cu2+-induced plasma-membrane conductance increase. Copper was also found to inhibit plasma-membrane H+-ATPase activity with half-maximal inhibition occurring at about 5–20 μmol/l and full inhibition at about 100–300 μmol/l. The Hill coefficient of Cu2+ inhibition of the H+-ATPase was close to two. Received: 8 December 1999 / Accepted: 16 August 2000  相似文献   

10.
The effect of a short-time (1 h) oxidative stress on multidrug resistance (MDR) of murine leukemic P388VR cells has been investigated. We studied the production of reactive oxygen species (ROS) in cells depending on the composition of medium and the concentration of cells and hydrogen peroxide, as well as the effect of hydrogen peroxide on MDR of cells. MDR was determined from the transport of calcein acetoxymethyl ester out of the cells and from a change in cell sensitivity to vincristine. The amount of ROS arising in cells was determined using 2′,7′-dichlorodihydrofluorescein diacetate (DCFH2-DA). It was shown that the rate of ROS formation in cells decreases after the addition of serum to the medium and with an increase of the cell number. By the action of hydrogen peroxide, the amount of ROS increases directly with its concentration. Oxidative stress generated by 30–300 μM hydrogen peroxide decreases the MDR of the cells. The effect of hydrogen peroxide increases with the treatment duration and concentration of hydrogen peroxide. MDR determined by the criterion of the efflux of calcein ester from cells is completely suppressed after 1-h exposure to 300 μM hydrogen peroxide. At a concentration of hydrogen peroxide of 60 μM and treatment duration of 1 h, the sensitivity of P388VR cells to vincristine increases to reach the sensitivity of the wild-type P388 cells. Rapid (about 1 h) suppression of MDR is caused by inhibition of the activity of transport proteins. MDR decrease induced by oxidative stress can be used in therapy of tumors resistant to anticancer drugs.  相似文献   

11.
The DR2356 nudix hydrolase gene from Deinococcus radiodurans has been cloned and the product expressed as an 18 kDa histidine-tagged protein. The enzyme hydrolysed adenosine and diadenosine polyphosphates, always generating ATP as one of the initial products. ATP and other (deoxy)nucleoside triphosphates were also substrates, yielding (d)NDP and Pi as products. The DR2356 protein was most active at pH 8.6–9.0 and showed a strong preference for Mn2+ as activating cation. Mg2+ ions at 15 mM supported only 5% of the activity achieved with 2 mM Mn2+. K m and k cat values for diadenosine tetra-, penta- and hexaphosphates were 2.0, 2.4 and 1.1 μM and 11.4, 28.6 and 12.0 s−1, respectively, while for GTP they were 20.3 μM and 1.8 s−1, respectively. The K m for adenosine 5′-pentaphosphate was <1 μM. Expression analysis showed the DR2356 gene to be induced eight- to ninefold in stationary phase and in cells subjected to slow dehydration plus rehydration. Superoxide (but not peroxide) treatment and rapid dehydration caused a two-to threefold induction. The Mn-requirement and induction in stationary phase suggest that DR2356 may have a specific role in maintenance mode metabolism in stationary phase as Mn2+ accumulates.  相似文献   

12.
The isolation, identification and quantification of exometabolites from culture media of the cyanobacterium Nostoc insulare are described. Besides the known exometabolite 4,4′-dihydroxybiphenyl (I), two more compounds, the β-carboline 9H-pyrido(3,4-b)indole (norharmane, II) and N,N′-(4,5-dimethyl-1,2-phenylene)bis-acetamide (III), were discovered. Concentrations of all three compounds in media and biomass of five 250 L cultures of N. insulare were determined. Culture medium values for I ranged between 200 and 1,250 μg L−1 (1.1–6.7 μmol L−1), for III between 115 and 390 μg L−1 (0.5–1.8 μmol L−1), whereas concentrations of II were conspicuously lower (2–16 μg L−1 or 0.014–0.094 μmol L−1). Amounts of III per volume of culture medium were about tenfold higher than in the biomass contained in an equal culture volume. This difference is an indication for an active excretion of III. Amounts of I and II in biomass and media were of no significant difference. In the neutral red uptake assay, I and II were found to be toxic against eukaryotic cells as follows: I was of considerable cytotoxicity in concentrations from 1,000 to 10 mg L−1 and of lower cytotoxicity (causing a 27 % decrease of cell viability) in a concentration of 1,000 μg L−1, whereas II was merely of considerable cytotoxicity in concentrations from 1,000 to 100 mg L−1. Because of the cytotoxicity of I and because of the many known pharmacological effects of II there is a possibility that a certain amount of risk to humans and livestock comes from cultures or even from biomass- free culture media of N. insulare. The natural function of the examined exometabolites is discussed.  相似文献   

13.
In vitro and in vivo studies have proven strontium to be an osteoinductive trace element. The effect of strontium ranelate (SR) on H2O2-induced apoptosis of CRL-11372 cells and optimization of its anti-apoptotic dose were the aims of this study. After 1 h of pretreatment with SR 1 μM, 50 μM, 100 μM, 500 μM, and 1,000 μM concentrations, CRL-11372 osteoblasts were exposed to 100 μM H2O2 for periods of 6–12 h. The same experiments were repeated without H2O2. The apoptotic index and viability of cells were assessed quantitatively with a fluorescent dye and qualitatively with agarose gel electrophoresis. Concentrations of 1–100 μM of SR with a 6-h treatment and only 1 μM concentration with a 12-h treatment inhibited the apoptotic effect of H2O2 on cultured osteoblasts significantly (P < 0.05). SR was shown to inhibit H2O2-induced apoptosis of CRL-11372 cells in a dose-dependent manner.  相似文献   

14.
Ali MB  Hahn EJ  Paek KY 《Plant cell reports》2006,25(10):1122-1132
Roots of Panax ginseng exposed to various concentrations of Cu (0.0, 5, 10.0, 25.0, and 50.0 μM) accumulated high amounts of Cu in a concentration-dependent and duration-dependent manner. Roots treated with 50 μM Cu resulted in 52% and 89% growth inhibition after 20 and 40 days, respectively. Saponin synthesis was stimulated at a Cu concentration between 5 and 25 μM but decreased at 50 μM Cu. Malondialdehyde content (MDA), lipoxygenase activity (LOX), superoxide ion (O2 •−) accumulation, and H2O2 content at 5 and 10 μM Cu-treated roots were not increased but strongly increased at 50 μM Cu resulting in the oxidation of ascorbate (ASC) and glutathione (GSH) to dehydroascorbate (DHA) and glutathione disulfide (GSSG), respectively indicating a clear oxidative stress. Seven well-resolved bands of superoxide dismutase (SOD) were detected in the gel and an increase in SOD activity seemed to be mainly due to the induction of Fe-SOD 3. Five to 10 μM Cu slightly induced activity of ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR), guaiacol peroxidase (G-POD) but inhibited monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR) enzyme activities. No changes in catalase (CAT) activity and in activity gel were found up to 25 μM Cu, but both G-POD and CAT activities were inhibited at 50 μM Cu. Glutathione metabolism enzymes such as γ-glutamylcysteine synthetase (γ-GCS), glutathione-S-transferase (GST), and glutathione peroxidase activities (GPx) were activated at 5 and 10 μM Cu but were strongly inhibited at 50 μM Cu due to the Cu accumulation in root tissues. The strong depletion of GSH at 50 μM Cu was associated to the strong induction of γ-glutamyltranspeptidase (γ-GGT) activity. These results indicate that plant could grow under Cu stress (5–25 μM) by modulating the antioxidant defense mechanism for combating Cu induced oxidative stress.  相似文献   

15.
Organogenic cultures were induced from zygotic embryo and megagametophyte explants of the Central American cycad species, Dioon edule. Plant growth medium consisted of B5 major salts, Murashige and Skoog minor salts and organics, 400 mg l−1 glutamine, 100 mg l−1 arginine, 100 mg l−1 asparagine, 60 g l−1 sucrose, 8 g l−1 Difco Bacto agar and was supplemented with kinetin (0 – 13.94 μM) and 2,4-dichlorophenoxyacetic acid (2,4-D) (0 – 9.05 μM) arranged as a 5×4 factorial in a randomized block design. Callus initiation occurred on a wide range of medium formulations from megagametophyte explants; however, shoot formation occurred only on medium supplemented with 2.26 μM 2,4-D. In comparison, callus initiation from explanted zygotic embryos occurred on fewer medium formulations, and adventitious shoot induction occurred from callus on formulations with 9.29–13.94 μM kinetin + 0.45–9.05 μM 2,4-D. Rooted shoots, derived from megagametophyte and zygotic embryo cultures, have been regenerated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Redox imbalance is a primary cause of endothelial dysfunction (ED). Under oxidant stress, many critical proteins regulating endothelial function undergo oxidative modifications that lead to ED. Cellular levels of glutathione (GSH), the primary reducing source in cells, can significantly regulate cell function via reversible protein thiol modification. N-acetylcysteine (NAC), a precursor for GSH biosynthesis, is beneficial for many vascular diseases; however, the detailed mechanism of these benefits is still not clear. From HPLC analysis, NAC significantly increases both cellular GSH and tetrahydrobiopterin levels. Immunoblotting of endothelial NO synthase (eNOS) and DUSP4, a dual-specificity phosphatase with a cysteine as its active residue, revealed that both enzymes are upregulated by NAC. EPR spin trapping further demonstrated that NAC enhances NO generation from cells. Long-term exposure to Cd2+ contributes to DUSP4 degradation and the uncontrolled activation of p38 and ERK1/2, leading to apoptosis. Treatment with NAC prevents DUSP4 degradation and protects cells against Cd2+-induced apoptosis. Moreover, the increased DUSP4 expression can redox-regulate the p38 and ERK1/2 pathways from hyperactivation, providing a survival mechanism against the toxicity of Cd2+. DUSP4 gene knockdown further supports the hypothesis that DUSP4 is an antioxidant gene, critical in the modulation of eNOS expression, and thus protects against Cd2+-induced stress. Depletion of intracellular GSH by buthionine sulfoximine makes cells more susceptible to Cd2+-induced apoptosis. Pretreatment with NAC prevents p38 overactivation and thus protects the endothelium from this oxidative stress. Therefore, the identification of DUSP4 activation by NAC provides a novel target for future drug design.  相似文献   

17.
Chloris virgata Swartz (C. virgata) is a gramineous wild plant that is found in alkaline soil areas in northeast China and is highly tolerant to carbonate stress. We constructed a cDNA library from C. virgata seedlings treated with NaHCO3, and isolated a type1 metallothionein (MT1) gene (ChlMT1: AB294238) from the library. The amino acid sequence of ChlMT1 contained 12 cysteine residues that constituted the Cys-X-Cys (X = amino acid except Cys) motifs in the N- and C-terminal regions. Northern hybridization showed that expression of ChlMT1 was induced by several abiotic stresses, from salts (NaCl and NaHCO3), a ROS inducer (paraquat), and metals (CuSO4, ZnSO4, and CoCl2). ChlMT1 expression in leaf was induced by 200 mM NaCl and 100 mM NaHCO3. About 5 μM Paraquat, 500 μM Zn2+, and 500 μM Co2+ also induced expression of ChlMT1 in leaf after 6 h, and 100 μM Cu2+ induced it after 24 h. Saccharomyces cerevisiae when transformed with the ChlMT1 gene had dramatically increased tolerances to salts (NaCl and NaHCO3) and ROS.  相似文献   

18.
In the present work, we showed that a chalcone-enriched fraction (CEF) isolated from the stem bark of a Brazilian medicinal plant, Myracrodruon urundeuva, presents neuroprotective actions on 6-hydroxydopamine (6-OHDA)-induced neuronal cell death, in rat mesencephalic cells. In the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium] assay, which is an index of cell viability, CEF (1–100 μg/ml) reversed in a concentration-dependent manner the 6-OHDA-induced cell death. While cells exposed to 6-OHDA (40 μM) showed an increased concentration of thiobarbituric acid reactive substances (TBARS), the pretreatment with CEF (10–100 μg/ml) significantly decreased the 6-OHDA-induced TBARS formation, indicative of a neuroprotection against lipoperoxidation. Furthermore, the drastic increase of nitrite levels induced by 6-OHDA, indicative of nitric oxide formation and free radicals production, was prevented by CEF. Double staining with acridine orange/ethidium bromide showed that cultures exposed to 6-OHDA (40 and 200 μM) presented an increase of apoptotic and necrotic cell numbers in a concentration-dependent manner. CEF (100 μg/ml) protected cells from apoptosis and necrosis and increased number of cells presenting a normal morphology. The immunohistochemical analysis for tyrosine hydroxylase (TH) positive neurons indicated that 6-OHDA (40 and 200 μM) caused a concentration-dependent loss of TH+ and TH− neurons. CEF protected both cells types from 6-OHDA-induced cell death. All together, our results demonstrated neuroprotective effects of chalcones, which are able to reduce oxidative stress and apoptotic injury caused by 6-OHDA. Our findings suggest that chalcones could provide benefits, along with other therapies, in neurodegenerative injuries, such as Parkinson’s disease.  相似文献   

19.
We have investigated the neuroprotective effect of sesaminol glucosides (SG) in SK-N-SH cells. SG prevented apoptotic cell death induced by Aβ25–35. In parallel, SK-N-SH cells exposed to Aβ25–35 underwent oxidative stress as shown by the elevated level of intracellular ROS, lipid peroxidation, and 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation, which were effectively suppressed by SG treatment. Furthermore, SG reversed the activities of catalase and glutathione peroxidase, and restored intracellular GSH levels in Aβ25–35 challenged SK-N-SH cells. In addition, SG inhibited not only Aβ25–35-induced apoptotic features including cleavage of poly(ADP-ribose) polymerase, activation of caspase-3, and activation of caspase-9, but also elevated Bax/Bcl-2 ratio in SK-N-SH cells treated with Aβ25–35. It was also observed that Aβ25–35 stimulated the phosphorylation of mitogen-activated protein kinases (MAPKs), including extracellular protein regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAP kinase. SG inhibited phosphorylation of the JNK, ERK and p38 MAP kinase. These results suggest that SG has a protective effect against Aβ25–35-induced neuronal apoptosis, possibly through scavenging oxidative stress and regulating MAPKs signaling pathways.  相似文献   

20.
Guanosine exerts neuroprotective effects in the central nervous system. Apoptosis, a morphological form of programmed cell death, is implicated in the pathophysiology of Parkinson’s disease (PD). MPP+, a dopaminergic neurotoxin, produces in vivo and in vitro cellular changes characteristic of PD, such as cytotoxicity, resulting in apoptosis. Undifferentiated human SH-SY5Y neuroblastoma cells had been used as an in vitro model of Parkinson’s disease. We investigated if extracellular guanosine affected MPP+-induced cytotoxicity and examined the molecular mechanisms mediating its effects. Exposure of neuroblastoma cells to MPP+ (10 μM–5 mM for 24–72 h) induced DNA fragmentation in a time-dependent manner (p < 0.05). Administration of guanosine (100 μM) before, concomitantly with or, importantly, after the addition of MPP+ abolished MPP+-induced DNA fragmentation. Addition of MPP+ (500 μM) to cells increased caspase-3 activity over 72 h (p < 0.05), and this was abolished by pre- or co-treatment with guanosine. Exposure of cells to pertussis toxin prior to MPP+ eliminated the anti-apoptotic effect of guanosine, indicating that this effect is dependent on a Gi protein-coupled receptor, most likely the putative guanosine receptor. The protection by guanosine was also abolished by the selective inhibitor of the enzyme PI-3-K/Akt/PKB (LY294002), confirming that this pathway plays a decisive role in this effect of guanosine. Neither MPP+ nor guanosine had any significant effect on α-synuclein expression. Thus, guanosine antagonizes and reverses MPP+-induced cytotoxicity of neuroblastoma cells via activation of the cell survival pathway, PI-3-K/Akt/PKB. Our results suggest that guanosine may be an effective pharmacological intervention in PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号