首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spermidine-dependent, sequence-specific endoribonuclease (RNase 65) activities in mammalian cell extracts require both protein and 3' truncated tRNA, species of which direct their substrate sequence specificity. Computer analysis for searching possible base pairing between substrate RNAs and their corresponding 3' truncated tRNA, suggested a unified model for substrate recognition mechanism, in which a four-nucleotide (nt) sequence in the target tRNAs 1 nt upstream of their cleavage site, base pairs with the 5' terminal 4 nt sequence of their corresponding 3' truncated tRNA. This model was supported by experiments with several RNA substrates containing a substituted nucleotide in the target 4 nt sequence. In this model, the tRNA substrates and their corresponding 3' truncated tRNA form a complex resembling a 5' processed tRNA precursor containing a 3' trailer, suggesting that the protein component of RNase 65 is identical to tRNA 3' processing endoribonuclease (3' tRNase). Actually, 3' tRNase purified from pig liver cleaved the target RNAs at the expected sites only in the presence of their corresponding 3' truncated tRNA. These results show that the 3' tRNase can be converted to 4 nt specific RNA cutters using the 3' truncated tRNAs.  相似文献   

2.
M Gurevitz  D Apirion 《Biochemistry》1983,22(17):4000-4005
In order to understand why the first tRNA (tRNAGln) in the T4 tRNA gene cluster is not produced when T4 infects an RNase III- mutant of Escherichia coli, RNA metabolism was analyzed in RNase III- RNase P- (rnc, rnp) cells infected with bacteriophage T4. After such an infection a new dimeric precursor RNA molecule of tRNAGln and tRNALeu has been identified and analyzed. This molecule is structurally very similar to K band RNA that accumulates in rnc+ rnp strains. It is four nucleotides shorter than K RNA at the 5' end. This molecule like K RNA contains two RNase P processing sites at the 5' ends of each tRNA. Both sites are accessible to RNase P. However, while in the K RNA the site at the 5' end of tRNALeu (the site in the middle of the substrate) is more efficiently cleaved than the other site, this differential is even increased in the Ks (K like) molecule. This difference is sufficiently large that in vivo in the RNase III- strain the smaller precursor of tRNAGln is degraded rather than being matured to tRNAGln by RNase P. This information contributes to the elucidation of the key role of RNase III in the processing of T4 tRNA. It shows the dependence of RNase P activity at the 5' end of tRNAGln on a correct and specific cleavage by RNase III at a position six nucleotides proximal to the RNase P site, and it explains why in the absence of RNase III the first tRNA in the T4 tRNA cluster, tRNAGln, does not accumulate.  相似文献   

3.
4.
T Nomura  A Ishihama 《The EMBO journal》1988,7(11):3539-3545
The leuX gene of Escherichia coli codes for a suppressor tRNA and forms a single gene operon containing its own promoter and Q-independent terminator. An analysis of the in vitro processing of leuX precursor revealed that the processing of the 5' end took place in a single-step reaction catalysed by RNase P while the 3' processing involved two successive reactions. The endonucleolytic cleavage activity of the 3' precursor sequence was found to copurify with RNase P. Heat inactivation of thermosensitive RNase P from two independent E. coli mutants abolished the cleavage activity of both the 5' and 3' ends. These results altogether suggest that RNase P carries the activity of 3' end cleavage as well as that of 5' processing. In the presence of Mg2+ alone, the leuX precursor was found to be self-cleaved at a site approximately 13 nt inside from the 5' end of mature tRNA. The self-cleaved precursor tRNA was no longer processed by the 3' endonuclease, suggesting that the 3' endonuclease recognizes a specific conformation of the precursor tRNA for action.  相似文献   

5.
6.
We have constructed a strain (CT1) that expresses RNase P conditionally with the aim to analyze the in vivo tRNA processing pathway and the biological role that RNase P plays in Synechocystis 6803. In this strain, the rnpB gene, coding for the RNA subunit of RNase P, has been placed under the control of the petJ gene promoter (P(petJ)), which is repressed by copper, cell growth, and accumulation of RNase P RNA is inhibited in CT1 after the addition of copper, indicating that the regulation by copper is maintained in the chimerical P(petJ)-rnpB gene and that RNase P is essential for growth in Synechocystis. We have analyzed several RNAs by Northern blot and primer extension in CT1. Upon addition of copper to the culture medium, precursors of the mature tRNAs are detected. Furthermore, our results indicate that there is a preferred order in the action of RNase P when it processes a dimeric tRNA precursor. The precursors detected are 3'-processed, indicating that 3' processing can occur before 5' processing by RNase P. The size of the precursors suggests that the terminal CCA sequence is already present before RNase P processing. We have also analyzed other potential RNase P substrates, such as the precursors of tmRNA and 4.5 S RNA. In both cases, accumulation of larger than mature size RNAs is observed after transferring the cells to a copper-containing medium.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
A specific endonuclease involved in the processing of tRNA precursors was isolated and partially purified from the posterior silk gland of Bombyx mori, and designated as RNase P.Bmo. This enzyme was shown to catalyze the conversion of 4.5 S precursor RNA to 4.1 S RNA by trimming the 5'-additional segment from the precursor RNA. RNase P.Bmo required divalent cations, Mg2+ or Mn2+. In the presence of these divalent cations, K+ or NH4+ activated the RNase P.Bmo reaction. Optimum pH was observed around 8.0. Ribosomal RNA's and mature tRNA from the silk gland were not cleaved by RNase P.Bmo. A 4.5 S precursor RNA fraction containing formycin, an adenosine analog, was less susceptible to RNase P.Bmo than the normal one. These results indicate that RNase P.Bmo has a high substrate specificity. An additional nuclease(s) was isolated. This activity was assumed to remove the extra 3'-segment of the 4.5 S precursor RNA.  相似文献   

15.
16.
Biosynthesis of transfer RNA requires processing from longer precursors at the 5'- and 3'-ends. In eukaryotes, in archaea, and in those bacteria where the 3'-terminal CCA sequence is not encoded, 3' processing is carried out by the endonuclease RNase Z, which cleaves after the discriminator nucleotide to generate a mature 3'-end ready for the addition of the CCA sequence. We have identified and cloned the gene coding for RNase Z in the cyanobacterium Synechocystis sp. PCC 6803. The gene has been expressed in Escherichia coli, and the recombinant protein was purified. The enzymatic activity of RNase Z from Synechocystis has been studied in vitro with a variety of substrates. The presence of C or CC after the discriminator nucleotide modifies the cleavage site of RNase Z so that it is displaced by one and two nucleotides to the 3'-side, respectively. The presence of the complete 3'-terminal CCA sequence in the precursor of the tRNA completely inhibits RNase Z activity. The inactive CCA-containing precursor binds to Synechocystis RNase Z with similar affinity than the mature tRNA. The properties of the enzyme described here could be related with the mechanism by which CCA is added in this organism, with the participation of two separate nucleotidyl transferases, one specific for the addition of C and another for the addition of A. This work is the first characterization of RNase Z from a cyanobacterium, and the first from an organism with two separate nucleotidyl transferases.  相似文献   

17.
An RNA processing activity capable of cleaving Bacillus subtilis phage SP82 early mRNA has been purified to apparent homogeneity from crude extracts of uninfected B. subtilis. The enzyme, a functional monomer of Mr approximately 27,000, cleaves only at the 5' side of adenosine residues at processing sites and is competitively inhibited by double-stranded synthetic RNA polymers. Processed SP82 mRNAs were translated in an Escherichia coli cell-free system and no qualitative or quantitative effects of processing on the synthesis of polypeptides was observed. The processing enzyme does not cleave T7 mRNA, E. coli precursor rRNA, or double-stranded poly(AU). A recombinant plasmid containing portions of two B. subtilis rRNA gene sets was transcribed in vitro and the resulting RNA was cleaved in the spacer region between the 16 S and 23 S rRNA genes. The ability of the B. subtilis processing enzyme to cleave SP82 mRNA and B. subtilis precursor rRNA and the fact that the enzyme has high affinity for double-stranded RNA suggest that it is the functional analog of E. coli RNase III.  相似文献   

18.
The maturation of ribosomal RNAs (rRNAs) is an important but incompletely understood process required for rRNAs to become functional. In order to determine the enzymes responsible for initiating 3' end maturation of 23S rRNA in Escherichia coli, we analyzed a number of strains lacking different combinations of 3' to 5' exo-RNases. Through these analyses, we identified RNase PH as a key effector of 3' end maturation. Further analysis of the processing reaction revealed that the 23S rRNA precursor contains a CC dinucleotide sequence that prevents maturation from being performed by RNase T instead. Mutation of this dinucleotide resulted in a growth defect, suggesting a strategic significance for this RNase T stalling sequence to prevent premature processing by RNase T. To further explore the roles of RNase PH and RNase T in RNA processing, we identified a subset of transfer RNAs (tRNAs) that contain an RNase T stall sequence, and showed that RNase PH activity is particularly important to process these tRNAs. Overall, the results obtained point to a key role of RNase PH in 23S rRNA processing and to an interplay between this enzyme and RNase T in the processing of different species of RNA molecules in the cell.  相似文献   

19.
A precursor molecule for 10 Sb RNA, the RNA moiety of the RNA processing enzyme RNase P, was purified, characterized for enzymatic activity, and compared to 10 Sb RNA and to RNase P. In these studies the K RNA, a dimeric precursor of tRNAGln-tRNALeu, coded by bacteriophage T4, was used as a substrate. This precursor contains two RNase P cleavage sites, one at each 5' end of the two tRNAs. The precursor 10 Sb and 10 Sb RNAs have the capacity to cleave the precursor tRNA molecule but only at the 5' end of tRNALeu, not at the 5' end of tRNAGln. Even when a substrate was prepared that contained only one site for RNase P (the one next to tRNAGln), this substrate was not cleaved by the RNA alone while the whole enzyme was effective in processing this substrate. The possible function of the protein of RNase P in the enzymatic reaction is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号