首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Cellular protein interactions with herpes simplex virus type 1 oriS.   总被引:12,自引:0,他引:12       下载免费PDF全文
The herpes simplex virus type 1 (HSV-1) origin of DNA replication, oriS, contains an AT-rich region and three highly homologous sequences, sites I, II, and III, identified as binding sites for the HSV-1 origin-binding protein (OBP). In the present study, interactions between specific oriS DNA sequences and proteins in uninfected cell extracts were characterized. The formation of one predominant protein-DNA complex, M, was demonstrated in gel shift assays following incubation of uninfected cell extracts with site I DNA. The cellular protein(s) that comprises complex M has been designated origin factor I (OF-I). The OF-I binding site was shown to partially overlap the OBP binding site within site I. Complexes with mobilities indistinguishable from that of complex M also formed with site II and III DNAs in gel shift assays. oriS-containing plasmid DNA mutated in the OF-I binding site exhibited reduced replication efficiency in transient assays, demonstrating a role for this site in oriS function. The OF-I binding site is highly homologous to binding sites for the cellular CCAAT DNA-binding proteins. The binding site for the CCAAT protein CP2 was found to compete for OF-I binding to site I DNA. These studies support a model involving the participation of cellular proteins in the initiation of HSV-1 DNA synthesis at oriS.  相似文献   

5.
The herpes simplex virus type 1 (HSV-1) origin binding protein (OBP), the product of the UL9 gene, is one of seven HSV-encoded proteins required for viral DNA replication. OBP performs multiple functions characteristic of a DNA replication initiator protein, including origin-specific DNA binding and ATPase and helicase activities, as well as the ability to interact with viral and cellular proteins involved in DNA replication. Replication initiator proteins in other systems, including those of other DNA viruses, are known to be regulated by phosphorylation; however, the role of phosphorylation in OBP function has been difficult to assess due to the low level of OBP expression in HSV-infected cells. Using a metabolic labeling and immunoprecipitation approach, we obtained evidence that OBP is phosphorylated during HSV-1 infection. Kinetic analysis of metabolically labeled cells indicated that the levels of OBP expression and phosphorylation increased at approximately 4 h postinfection. Notably, when expressed from a transfected plasmid, a recombinant baculovirus, or a recombinant adenovirus (AdOBP), OBP was phosphorylated minimally, if at all. In contrast, superinfection of AdOBP-infected cells with an OBP-null mutant virus increased the level of OBP phosphorylation approximately threefold, suggesting that HSV-encoded viral or HSV-induced cellular factors enhance the level of OBP phosphorylation. Using HSV mutants inhibited at sequential stages of the viral life cycle, we demonstrated that this increase in OBP phosphorylation is dependent on early protein synthesis and is independent of viral DNA replication. Based on gel mobility shift assays, phosphorylation does not appear to affect the ability of OBP to bind to the HSV origins.  相似文献   

6.
7.
The alphaherpesvirus tegument protein VP22 has been characterized with multiple traits including microtubule reorganization, nuclear localization, and nonclassical intercellular trafficking. However, all these data were derived from studies using herpes simplex virus type 1 (HSV-1) and may not apply to VP22 homologs of other alphaherpesviruses. We compared subcellular attributes of HSV-1 VP22 (HVP22) with bovine herpesvirus 1 (BHV-1) VP22 (BVP22) using green fluorescent protein (GFP)-fused VP22 expression vectors. Fluorescence microscopy of cell lines transfected with these constructs revealed differences as well as similarities between the two VP22 homologs. Compared to that of HVP22, the BVP22 microtubule interaction was much less pronounced. The VP22 nuclear interaction varied, with a marbled or halo appearance for BVP22 and a speckled or nucleolus-bound appearance for HVP22. Both VP22 homologs associated with chromatin at various stages of mitosis and could traffic from expressing cells to the nuclei of nonexpressing cells. However, distinct qualitative differences in microtubule, nuclear, and chromatin association as well as trafficking were observed. The differences in VP22 homolog characteristics revealed in this study will help define VP22 function within HSV-1 and BHV-1 infection.  相似文献   

8.
The ribonucleotide reductase (ribonucleoside-diphosphate reductase; EC 1.17.4.1) induced by herpes simplex virus type 2 infection of serum-starved BHK-21 cells was purified to provide a preparation practically free of both eucaryotic ribonucleotide reductase and contaminating enzymes that could significantly deplete the substrates. Certain key properties of the herpes simplex virus type 2 ribonucleotide reductase were examined to define the extent to which it resembled the herpes simplex virus type 1 ribonucleotide reductase. The herpes simplex virus type 2 ribonucleotide reductase was inhibited by ATP and MgCl2 but only weakly inhibited by the ATP X Mg complex. Deoxynucleoside triphosphates were at best only weak inhibitors of this enzyme. ADP was a competitive inhibitor (K'i, 11 microM) of CDP reduction (K'm, 0.5 microM), and CDP was a competitive inhibitor (K'i, 0.4 microM) of ADP reduction (K'm, 8 microM). These key properties closely resemble those observed for similarly purified herpes simplex virus type 1 ribonucleotide reductase and serve to distinguish these virally induced enzymes from other ribonucleotide reductases.  相似文献   

9.
The region of the herpes simplex virus type 2 (HSV-2) genome which maps colinearly with the HSV-1 glycoprotein C (gC) gene has been cloned, and the DNA sequence of a 2.29-kilobase region has been determined. Contained within this sequence is a major open reading frame of 479 amino acids. The carboxyterminal three-fourths of the derived HSV-2 protein sequence showed a high degree of sequence homology to the HSV-1 gC amino acid sequence reported by Frink et al. (J. Virol. 45:634-647, 1983). The amino-terminal region of the HSV-2 sequence, however, showed very little sequence homology to HSV-1 gC. In addition, the HSV-1 gC sequence contained 27 amino acids in the amino-terminal region which were missing from the HSV-2 protein. Computer-assisted analysis of the hydrophilic and hydrophobic properties of the derived HSV-2 sequence demonstrated that the protein contained structures characteristic of membrane-bound glycoproteins, including an amino-terminal signal sequence and carboxy-terminal hydrophobic transmembrane domain and charged cytoplasmic anchor. The HSV-2 protein sequence also contained seven putative N-linked glycosylation sites. These data, in conjunction with mapping studies of Para et al. (J. Virol. 45:1223-1227, 1983) and Zezulak and Spear (J. Virol. 49:741-747, 1984), suggest that the protein sequence derived from the HSV-2 genome corresponds to gF, the HSV-2 homolog of HSV-1 gC.  相似文献   

10.
We have isolated a new cyclic AMP-independent protein kinase activity induced in HeLa cells by infection with herpes simplex virus type 1. Induction of the enzyme does not occur in cells treated with cycloheximide at the time of infection, or in cells infected with UV-inactivated herpes simplex virus type 1. The amount of enzyme induced in infected cells is dependent upon the multiplicity of infection. An enzyme with identical properties to the appearing in infected HeLa cells is also induced by herpes simplex virus type 1 in BHK cells.  相似文献   

11.
At present, the effect of herpes simplex virus infection on the entire proteomes of infected cells is very poorly documented. Following several studies performed over the past few years, the modifications of a sub-cellular fraction induced by herpes simplex virus type 1 can be documented. These studies were performed in order to characterize the virally-induced modifications of a major component of the translational apparatus, the ribosomes. The very basic nature of most of the ribosomal proteins renders them very difficult to separate using isoelectric focusing (IEF). Therefore these studies were achieved using several different but related two-dimensional electrophoretic systems which allowed several two-dimensional ribosomal protein maps to be built. Comparison of the ribosomal protein maps built from non-infected cells with those built from infected cells demonstrated that infection by herpes simplex virus type 1 (HSV-1) induces important modifications of ribosomes: (i) non-reversible phosphorylation of ribosomal protein S6; (ii) unusual phosphorylation of several proteins of the small and the large subunits; and (iii) association of viral and cellular proteins to the ribosomal fraction. An overview of these published studies is presented in this review.  相似文献   

12.
13.
We have previously shown that the 12-kDa capsid protein (p12) of herpes simplex virus type 1 (HSV-1) is a gamma 2 (true late) gene product encoded by the UL35 open reading frame (D. S. McNabb and R. J. Courtney, J. Virol. 66:2653-2663, 1992). To extend the characterization of p12, we have investigated the posttranslational modifications and intracellular localization of the 12-kDa polypeptide. These studies have demonstrated that p12 is modified by phosphorylation at serine and threonine residues. In addition, analysis of p12 by acid-urea gel electrophoresis has indicated that the protein can be resolved into three components, designated p12a, p12b, and p12c. Using isotopic-labeling and alkaline phosphatase digestion experiments, we have determined that p12a and p12b are phosphorylated forms of the protein, and p12c is likely to represent the unphosphorylated polypeptide. The kinetics of phosphorylation was examined by pulse-chase radiolabeling, and these studies indicated that p12c can be completely converted into p12a and p12b following a 4-h chase. All three species of p12 were found to be associated with purified HSV-1 virions; however, p12b and p12c represented the most abundant forms of the protein within viral particles. We have also examined the intracellular localization of p12 by cell fractionation and indirect immunofluorescence techniques. These results indicated that p12 is predominantly localized in the nucleus of HSV-1-infected cells and appears to be restricted to specific regions within the nucleus.  相似文献   

14.
Components of promyelocytic leukaemia (PML) nuclear bodies (ND10) are recruited to sites associated with herpes simplex virus type 1 (HSV-1) genomes soon after they enter the nucleus. This cellular response is linked to intrinsic antiviral resistance and is counteracted by viral regulatory protein ICP0. We report that the SUMO interaction motifs of PML, Sp100 and hDaxx are required for recruitment of these repressive proteins to HSV-1 induced foci, which also contain SUMO conjugates and PIAS2β, a SUMO E3 ligase. SUMO modification of PML and elements of its tripartite motif (TRIM) are also required for recruitment in cells lacking endogenous PML. Mutants of PML isoform I and hDaxx that are not recruited to virus induced foci are unable to reproduce the repression of ICP0 null mutant HSV-1 infection mediated by their wild type counterparts. We conclude that recruitment of ND10 components to sites associated with HSV-1 genomes reflects a cellular defence against invading pathogen DNA that is regulated through the SUMO modification pathway.  相似文献   

15.
Hand-to-hand transmission of herpes simplex virus type 1   总被引:2,自引:0,他引:2  
D Bardell 《Microbios》1989,59(239):93-100
Droplets of tissue culture fluid containing herpes simplex virus type 1 were placed on the palm of the hand. Each 0.01 ml droplet was taken from a stock virus suspension with a titre of 10(7.5) TCID50/0.1 ml. At 0, 15, 30, 60 and 120 min a droplet was firmly touched with the middle finger of the right hand, after which, attempts were made to recover virus from the finger. At 0 min, when the virus-containing droplet was in a liquid state, there was a 100% rate of virus recovery. By 15 min the droplets had dried out, and after touching dried out droplets there was a 40% virus recovery rate, even though experimental procedures demonstrated that infectious virus was present in the dried out droplets at all test times. If the finger was moistened with tap water or saliva, there was a 100% recovery rate of virus after touching dried out droplets, as well as after touching droplets in a liquid state.  相似文献   

16.
Homologous recombination was examined in cells infected with herpes simplex virus type I. Circular and linear DNA with directly repeated sequences was introduced as recombination substrates into cells. Recombination was measured either by origin-dependent amplification of recombination products or by recombination-dependent expression of luciferase from a disrupted gene. Homologous recombination in baby hamster kidney cells converted linear DNA to circular templates for DNA replication and luciferase expression in the complete absence of virus. The products of homologous recombination were efficiently amplified by the viral replication apparatus. The efficiency of recombination was dependent on the structure of the substrate as well as the cell type. Linear DNA with the direct repeats at internal positions failed to recombine in Balb/c 3T3 cells and induced p53-dependent apoptosis. In contrast, linear DNA with directly repeated sequences precisely at the ends recombined and replicated in 3T3 cells. Homologous recombination in baby hamster kidney cells did not depend on the position of the repeated sequences. We conclude that homologous recombination is independent of viral gene functions and that it is likely to be carried out by cellular proteins. We suggest that homologous recombination between directly repeated sequences in the linear herpes simplex virus type 1 chromosome may help to avoid p53-dependent apoptosis and to promote viral DNA replication.  相似文献   

17.
The herpes virus-encoded DNA replication protein, infected cell protein 8 (ICP8), binds specifically to single-stranded DNA with a stoichiometry of one ICP8 molecule/12 nucleotides. In the absence of single-stranded DNA, it assembles into long filamentous structures. Binding of ICP8 inhibits DNA synthesis by the herpes-induced DNA polymerase on singly primed single-stranded DNA circles. In contrast, ICP8 greatly stimulates replication of circular duplex DNA by the polymerase. Stimulation occurs only in the presence of a nuclear extract from herpes-infected cells. Appearance of the stimulatory activity in nuclear extracts coincides closely with the time of appearance of herpes-induced DNA replication proteins including ICP8 and DNA polymerase. A viral factor(s) may therefore be required to mediate ICP8 function in DNA replication.  相似文献   

18.
Burch AD  Weller SK 《Journal of virology》2004,78(13):7175-7185
Herpes simplex virus type 1 (HSV-1) encodes a portal protein that forms a large oligomeric structure believed to provide the conduit for DNA entry and exit from the capsid. Chaperone proteins often facilitate the folding and multimerization of such complex structures. In this report, we show that cellular chaperone proteins, components of the 26S proteasome, and ubiquitin-conjugated proteins are sequestered in discrete foci in the nucleus of the infected cell. The immediate-early viral protein ICP0 was shown to be necessary to establish these foci at early times during infection and sufficient to redistribute chaperone molecules in transfected cells. Furthermore, we found that not only is the portal protein, UL6, localized to these sites during infection, but it is also a substrate for ubiquitin modification. Our results suggest that HSV-1 has evolved an elegant mechanism for facilitating protein quality control at specialized foci within the nucleus.  相似文献   

19.
Herpes simplex virus type 1 regulatory protein ICP0 contains a zinc-binding RING finger and has been shown to induce the proteasome-dependent degradation of a number of cellular proteins in a RING finger-dependent manner during infection. This domain of ICP0 is also required to induce the formation of unanchored polyubiquitin chains in vitro in the presence of ubiquitin-conjugating enzymes UbcH5a and UbcH6. These data indicate that ICP0 has the potential to act as a RING finger ubiquitin ubiquitin-protein isopeptide ligase (E3) and to induce the degradation of certain cellular proteins through ubiquitination and proteasome-mediated degradation. Here we demonstrate that ICP0 is a genuine RING finger ubiquitin E3 ligase that can interact with and mediate the ubiquitination of the major oncoprotein p53 both in vitro and in vivo. Ubiquitination of p53 requires ICP0 to have an intact RING finger domain and occurs independently of its ability to bind to the ubiquitin-specific protease USP7.  相似文献   

20.
The aim of this study was to elucidate protein-protein interactions between tegument proteins of herpes simplex virus type 1 (HSV-1). To do so, we have cloned and expressed in the LexA yeast (Saccharomyces cerevisiae) two-hybrid system, 13 of the 21 currently known tegument proteins of HSV-1. These included the tegument proteins essential for replication in cell lines, UL17, UL36, UL37, UL48, and UL49, and the nonessential tegument proteins US11, UL11, UL14, UL16, UL21, UL41, UL46, and UL47. A total of 104 combinations were screened in the yeast two-hybrid assay, with 9 interactions identified. These included: UL11-UL16, UL36-UL37, UL36-UL48, UL46-UL48, UL47-UL48, and UL48-UL49. The remaining interactions consisted of self-associations that were observed for US11, UL37, and UL49. The interactions UL36-UL37, UL36-UL48, UL37-UL37, UL46-UL48, and UL47-UL48 have not been previously reported for HSV-1. The interaction of UL46-UL48 was verified using an in vitro pull-down assay. The interactions of UL36-UL37 and UL37-UL37 were verified with a coimmunoprecipitation assay. Knowledge of HSV-1 tegument protein-protein interactions will provide insights into the pathways of tegument assembly, and the identified interactions are potential targets for new antiviral drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号