首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of nuclear envelope breakdown (NEBD) was investigated in live cells. Early spindle microtubules caused folds and invaginations in the NE up to one hour prior to NEBD, creating mechanical tension in the nuclear lamina. The first gap in the NE appeared before lamin B depolymerization, at the site of maximal tension, by a tearing mechanism. Gap formation relaxed this tension and dramatically accelerated the rate of chromosome condensation. The hole produced in the NE then rapidly expanded over the nuclear surface. NE fragments remaining on chromosomes were removed toward the centrosomes in a microtubule-dependent manner, suggesting a mechanism mediated by a minus-end-directed motor.  相似文献   

2.
Radial organization of nuclei with peripheral gene-poor chromosomes and central gene-rich chromosomes is common and could depend on the nuclear boundary as a scaffold or position marker. To test this, we studied the role of the ubiquitous nuclear envelope (NE) component lamin B1 in NE stability, chromosome territory position, and gene expression. The stability of the lamin B1 lamina is dependent on lamin endoproteolysis (by Rce1) but not carboxymethylation (by Icmt), whereas lamin C lamina stability is not affected by the loss of full-length lamin B1 or its processing. Comparison of wild-type murine fibroblasts with fibroblasts lacking full-length lamin B1, or defective in CAAX processing, identified genes that depend on a stable processed lamin B1 lamina for normal expression. We also demonstrate that the position of mouse chromosome 18 but not 19 is dependent on such a stable nuclear lamina. The results implicate processed lamin B1 in the control of gene expression as well as chromosome position.  相似文献   

3.
The nuclear lamina is part of the nuclear envelope (NE). Lamin filaments provide the nucleus with mechanical stability and are involved in many nuclear activities. The functional importance of these proteins is highlighted by mutations in lamin genes, which cause a variety of human diseases (laminopathies). Here we describe a method that allows one to quantify the contribution of lamin A protein to the mechanical properties of the NE. Lamin A is ectopically expressed in Xenopus oocytes, where it is incorporated into the NE of the oocyte nucleus, giving rise to a prominent lamina layer at the inner nuclear membrane. Nuclei are then isolated and probed by atomic force microscopy. From the resulting force curves, stiffness values are calculated and compared with those of control nuclei. Expression of lamin A significantly increases the stiffness of oocyte nuclei in a concentration-dependent manner. Since chromatin adds negligibly to nuclear mechanics in these giant nuclei, this method allows one to measure the contribution of individual NE components to nuclear mechanics.  相似文献   

4.
Although activated caspase 6 is capable of cleaving both A- and B-type lamins during apoptosis, the higher-order structure of the nuclear lamina may cause a differential breakdown of these two types of lamins. In order to obtain a better understanding of the dynamics and the consequences of the rapid, coordinated breakdown of the lamina complex, we applied the green fluorescent protein (GFP) technology in living cells, in which the fate of individual caspase cleavage fragments of A- and B-type lamins was examined. CHO-K1 cells were stably transfected with cDNA constructs encoding N-terminally GFP-labelled hybrids of lamin A, lamin Adelta10, lamin C or lamin B1. The course of the apoptotic process, induced by the kinase inhibitor staurosporine or by the proteasome inhibitor MG132, was monitored by digital imaging microscopy or confocal microscopy. Time-lapse recordings showed that parallel to DNA condensation N-terminally GFP-tagged A-type lamins became diffusely dispersed throughout the nucleoplasm and rapidly translocated to the cytoplasm. In contrast, the majority of GFP-lamin B1 signal remained localised at the nuclear periphery, even after extensive DNA condensation. Comparison of lamin B1-GFP signal with A-type lamin antibody staining in the same apoptotic cells confirmed the temporal differences between A- and B-type lamina dispersal. Immunoblotting revealed only a partial cleavage of A-type lamins and an almost complete cleavage of lamin B1 during apoptosis. In contrast to lamin B1 in normal cells, this cleaved lamin B1, which is apparently still associated with the nuclear membrane, can be completely extracted by methanol or ethanol. Fluorescence loss of intensity after photobleaching experiments showed that in apoptotic cells A-type lamin-GFP molecules diffuse almost freely in both nucleoplasm and cytoplasm, while the lamin B1-GFP fragments remain more stably associated with the nuclear membrane, which is confirmed by co-localisation immunofluorescence studies with a nucleoporin p62 antibody. Our results therefore clearly show a differential behaviour of A- and B-type lamins during apoptosis, suggesting not only distinct differences in the organisation of the lamina filaments, but also that caspase cleavage of only a small fraction of A-type lamins is needed for its complete disintegration.  相似文献   

5.
Nuclear migration and positioning within cells are critical for many developmental processes and are governed by the cytoskeletal network. Although mechanisms of nuclear-cytoskeletal attachment are unclear, growing evidence links a novel family of nuclear envelope (NE) proteins that share a conserved C-terminal SUN (Sad1/UNC-84 homology) domain. Analysis of Caenorhabditis elegans mutants has implicated UNC-84 in actin-mediated nuclear positioning by regulating NE anchoring of a giant actin-binding protein, ANC-1. Here, we report the identification of SUN1 as a lamin A-binding protein in a yeast two-hybrid screen. We demonstrate that SUN1 is an integral membrane protein located at the inner nuclear membrane. While the N-terminal domain of SUN1 is responsible for detergent-resistant association with the nuclear lamina and lamin A binding, lamin A/C expression is not required for SUN1 NE localization. Furthermore, SUN1 does not interact with type B lamins, suggesting that NE localization is ensured by binding to an additional nuclear component(s), most likely chromatin. Importantly, we find that the luminal C-terminal domain of SUN1 interacts with the mammalian ANC-1 homologs nesprins 1 and 2 via their conserved KASH domain. Our data provide evidence of a physical nuclear-cytoskeletal connection that is likely to be a key mechanism in nuclear-cytoplasmic communication and regulation of nuclear position.  相似文献   

6.
The mammalian nuclear lamina protein lamin B1 is posttranslationally modified by farnesylation, endoproteolysis, and carboxymethylation at a carboxyl-terminal CAAX motif. In this work, we demonstrate that the CAAX endoprotease Rce1 is required for lamin B1 endoproteolysis, demonstrate an independent pool of proteolyzed but nonmethylated lamin B1, as well as fully processed lamin B1, in interphase nuclei, and show a role for methylation in the organization of lamin B1 into domains of the nuclear lamina. Deficiency in the endoproteolysis or methylation of lamin B1 results in loss of integrity and deformity of the nuclear lamina. These data show that the organization of the nuclear envelope and lamina is dependent on a mechanism involving the methylation of lamin B1, and they identify a potential mechanism of laminopathy involving a B-type lamin.  相似文献   

7.
We examined cytoplasmic intermediate filaments (IFs) and the nuclear lamina in cells of the mouse plasmacytoma cell line MPC-11 (lacking both IF proteins and lamins A and C) after induction of vimentin synthesis with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) by means of whole-mount immunogold electron microscopy (IEM). The technique of IEM was modified to allow analysis of the cytoskeleton and nuclear lamina of cells grown in suspension culture employing antibodies against vimentin and lamin B. IEM showed that newly synthesized vimentin assembled into IFs which formed anastomosing networks throughout the cytoplasm, radiating primarily from the nucleus. The filaments decorated by gold-conjugated antibodies appeared to make contact with the lipid-depleted nuclear envelope residue either by directly terminating on it or through an indirect link via short fibers of varying diameter. Some filaments terminated on the subunits of the nuclear pore complexes but they did not pass through the pores. In the absence of lamins A and C, lamin B formed a nuclear lamina consisting of a globular-filamentous network anchoring the nuclear pore complexes.  相似文献   

8.
A comparative study of the susceptibility of vimentin and nuclear lamins from cultured Ehrlich ascites tumor (EAT) cells to degradation by Ca2+ -activated neutral thiol proteinase (calpain) has been undertaken. While pure vimentin was degraded very quickly at physiological ionic strength by purified calpain, isolated lamin B was digested comparatively slowly and purified lamins A/C were fairly resistant to proteolytic degradation. Similar digestion patterns were obtained from vimentin and lamin B with intermediary breakdown products close in size to the corresponding alpha-helical rod domains. To exclude the possibility that the low susceptibility of isolated lamins to Ca2+-dependent proteolytic degradation was due to irreversible denaturation during their isolation and purification, Triton cytoskeletons were prepared and their nuclear lamina as well as vimentin filaments were exposed to relatively large quantities of purified calpain. Under these conditions, not only vimentin filaments but also lamins A and B were digested while lamin C remained intact to a high degree. The major breakdown products of vimentin and lamins were identified as polypeptides which were 35 to 45 amino acids longer than the corresponding alpha-helical rod domains. Most of the vimentin-derived material and all high molecular weight polypeptides originating from lamins remained associated with the Triton cytoskeletons as demonstrated by sodium dodecyl sulfate polyacrylamide gel electrophoresis in conjunction with immunoblotting. Indirect immunofluorescence and electron microscope analysis of the calpain-digested Triton cytoskeletons revealed that they still contained a laminalike structure around the nuclear chromatin and numerous structurally altered intermediate filaments in the cytoplasmic remnant, although all vimentin had been degraded with the formation of 40/41 kDa polypeptides as major digestion products. In untreated Triton cytoskeletons, the vimentin filaments seemed to be in direct physical contact with the nuclear lamina, whereas in digested Triton cytoskeletons there was a distinct gap between structurally altered filaments and the nuclear surface. This shows that vimentin filaments and the nuclear lamina are differentially susceptible to degradation by calpain under certain ionic conditions and suggests that both filamentous structures are intimately associated with each other.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The nuclear lamina is a key structural element of the metazoan nucleus. However, the structural organization of the major proteins composing the lamina is poorly defined. Using three-dimensional structured illumination microscopy and computational image analysis, we characterized the supramolecular structures of lamin A, C, B1, and B2 in mouse embryo fibroblast nuclei. Each isoform forms a distinct fiber meshwork, with comparable physical characteristics with respect to mesh edge length, mesh face area and shape, and edge connectivity to form faces. Some differences were found in face areas among isoforms due to variation in the edge lengths and number of edges per face, suggesting that each meshwork has somewhat unique assembly characteristics. In fibroblasts null for the expression of either lamins A/C or lamin B1, the remaining lamin meshworks are altered compared with the lamin meshworks in wild-type nuclei or nuclei lacking lamin B2. Nuclei lacking LA/C exhibit slightly enlarged meshwork faces and some shape changes, whereas LB1-deficient nuclei exhibit primarily a substantial increase in face area. These studies demonstrate that individual lamin isoforms assemble into complex networks within the nuclear lamina and that A- and B-type lamins have distinct roles in maintaining the organization of the nuclear lamina.  相似文献   

10.
The nuclear envelope (NE) LINC complex, in mammals comprised of SUN domain and nesprin proteins, provides a direct connection between the nuclear lamina and the cytoskeleton, which contributes to nuclear positioning and cellular rigidity. SUN1 and SUN2 interact with lamin A, but lamin A is only required for NE localization of SUN2, and it remains unclear how SUN1 is anchored. Here, we identify emerin and short nesprin-2 isoforms as novel nucleoplasmic binding partners of SUN1/2. These have overlapping binding sites distinct from the lamin A binding site. However, we demonstrate that tight association of SUN1 with the nuclear lamina depends upon a short motif within residues 209–228, a region that does not interact significantly with known SUN1 binding partners. Moreover, SUN1 localizes correctly in cells lacking emerin. Importantly then, the major determinant of SUN1 NE localization has yet to be identified. We further find that a subset of lamin A mutations, associated with laminopathies Emery-Dreifuss muscular dystrophy (EDMD) and Hutchinson-Gilford progeria syndrome (HGPS), disrupt lamin A interaction with SUN1 and SUN2. Despite this, NE localization of SUN1 and SUN2 is not impaired in cell lines from either class of patients. Intriguingly, SUN1 expression at the NE is instead enhanced in a significant proportion of HGPS but not EDMD cells and strongly correlates with pre-lamin A accumulation due to preferential interaction of SUN1 with pre-lamin A. We propose that these different perturbations in lamin A-SUN protein interactions may underlie the opposing effects of EDMD and HGPS mutations on nuclear and cellular mechanics.  相似文献   

11.
Nuclear pore complexes (NPCs) are embedded in the nuclear envelope (NE) and mediate bidirectional nucleocytoplasmic transport. Their spatial distribution in the NE is organized by the nuclear lamina, a meshwork of nuclear intermediate filament proteins. Major constituents of the nuclear lamina are A- and B-type lamins. In this work we show that the nuclear pore protein Nup88 binds lamin A in vitro and in vivo. The interaction is mediated by the N-terminus of Nup88, and Nup88 specifically binds the tail domain of lamin A but not of lamins B1 and B2. Expression of green fluorescent protein-tagged lamin A in cells causes a masking of binding sites for Nup88 antibodies in immunofluorescence assays, supporting the interaction of lamin A with Nup88 in a cellular context. The epitope masking disappears in cells expressing mutants of lamin A that are associated with laminopathic diseases. Consistently, an interaction of Nup88 with these mutants is disrupted in vitro. Immunoelectron microscopy using Xenopus laevis oocyte nuclei further revealed that Nup88 localizes to the cytoplasmic and nuclear face of the NPC. Together our data suggest that a pool of Nup88 on the nuclear side of the NPC provides a novel, unexpected binding site for nuclear lamin A.  相似文献   

12.
Lamins are members of a multigene family of structural nuclear envelope (NE) proteins. Differentiated mammalian somatic cells express lamins A, C, B1, and B2. The composition and organization of the nuclear lamina of mammalian spermatogenic cells differ significantly from that of somatic cells as they express lamin B1 as well as two short germ line-specific isoforms, namely lamins B3 and C2. Here we describe in detail the expression pattern and localization of lamin B3 during mouse spermatogenesis. By combining RT-PCR, immunoblotting, and immunofluorescence microscopy, we show that lamin B3 is selectively expressed during spermiogenesis (i.e., postmeiotic stages of spermatogenesis). In round spermatids, lamin B3 is distributed in the nuclear periphery and, notably, also in the nucleoplasm. In the course of spermiogenesis, lamin B3 becomes redistributed as it concentrates progressively to the posterior pole of spermatid nuclei. Our results show that during mammalian spermiogenesis the nuclear lamina is composed of B-type isoforms only, namely the ubiquitous lamin B1 and the germline-specific lamin B3. Lamin B3 is the first example of a mammalian lamin that is selectively expressed during postmeiotic stages of spermatogenesis.  相似文献   

13.
Human promyelocytic leukemia (HL60) cells were irradiated with 10 or 50 Gy of X rays and studied for up to 72 h postirradiation to determine the mode of death and assess changes in the nuclear matrix. After 50 Gy irradiation, cells were found to die early, primarily by apoptosis, while cells irradiated with 10 Gy died predominantly by necrosis. Disassembly of the nuclear lamina and degradation of the nuclear matrix protein lamin B occurred in cells undergoing radiation-induced apoptosis or necrosis. However, using Western blotting and a recently developed flow cytometry assay to detect changes in nuclear matrix protein content, we found that the kinetics and mechanisms of disassembly of the nuclear lamina are different for each mode of cell death. During radiation-induced apoptosis, cleavage and degradation of lamin B to a approximately 28-kDa fragment was detected in most cells within 4-12 h after irradiation. Measurements of dual-labeled apoptotic cells revealed that nonrandom DNA fragmentation was evident prior to or concomitant with breakdown of the nuclear lamina. Disassembly of the nuclear lamina during radiation-induced necrosis occurred much later (between 30-60 h after irradiation), and a different cleavage pattern of lamin B was observed. Degradation of the nuclear lamina was also inhibited in apoptosis-resistant BCL2-overexpressing HL60 cells exposed to 50 Gy until approximately 48 h after irradiation. These data indicate that breakdown of the nuclear matrix may be a common element in radiation-induced apoptosis and necrosis, but that the mechanisms and temporal patterns of breakdown of the nuclear lamina during apoptosis are distinct from those of necrosis.  相似文献   

14.
We found that urea extraction of turkey erythrocyte nuclear envelopes abolished their ability to bind exogenous 125I-vimentin, while, at the same time, it removed the nuclear lamins from the membranes. After purification of the lamins from such urea extracts, a specific binding between isolated vimentin and lamin B, or a lamin A + B hetero- oligomer, was detected by affinity chromatography. Similar analysis revealed that the 6.6-kD vimentin tail piece was involved in this interaction. By other approaches (quantitative immunoprecipitation, rate zonal sedimentation, turbidometric assays) a substoichiometric lamin B-vimentin binding was determined under in vitro conditions. It was also observed that anti-lamin B antibodies but not other sera (anti- lamin A, anti-ankyrin, preimmune) were able to block 70% of the binding of 125I-vimentin to native, vimentin-depleted, nuclear envelopes. These data, which were confirmed by using rat liver nuclear lamins, indicate that intermediate filaments may be anchored directly to the nuclear lamina, providing a continuous network connecting the plasma membrane skeleton with the karyoskeleton of eukaryotic cells.  相似文献   

15.
After fertilization, the dormant sperm nucleus undergoes morphological and biochemical transformations leading to the development of a functional nucleus, the male pronucleus. We have investigated the formation of the male pronucleus in a cell-free system consisting of permeabilized sea urchin sperm nuclei incubated in fertilized sea urchin egg extract containing membrane vesicles. The first sperm nuclear alteration in vitro is the disassembly of the sperm nuclear lamina as a result of lamin phosphorylation mediated by egg protein kinase C. The conical sperm nucleus decondenses into a spherical pronucleus in an ATP-dependent manner. The new nuclear envelope (NE) forms by ATP-dependent binding of vesicles to chromatin and GTP-dependent fusion of vesicles to each other. Three cytoplasmic membrane vesicle fractions with distinct biochemical, chromatin-binding and fusion properties, are required for pronuclear envelope assembly. Binding of each fraction to chromatin requires two detergent-resistant lipophilic structures at each pole of the sperm nucleus, which are incorporated into the NE by membrane fusion. Targeting of the bulk of NE vesicles to chromatin is mediated by a lamin B receptor (LBR)-like integral membrane protein. The last step of male pronuclear formation involves nuclear swelling. Nuclear swelling is associated with import of soluble lamin B into the nucleus and growth of the nuclear envelope by fusion of additional vesicles. In the nucleus, lamin B associates with LBR, which apparently tethers the NE to the lamina. Thus male pronuclear envelope assembly in vitro involves a highly ordered series of events. These events are similar to those characterizing the remodeling of somatic and embryonic nuclei transplanted into oocytes. The relationship between sperm nuclear remodeling at fertilization and nuclear remodeling after nuclear transplantation is discussed.  相似文献   

16.
17.
Nuclear matrix of the most primitive eukaryote Archezoa   总被引:5,自引:0,他引:5  
Nuclearmatrixisaresidualframeworkofnucleusafterremovalofthenuclearmembranes,chromatinsandsolublesubstancesbysequentialextraction.Itisatripartitestructure,containingthefollowingthreeparts:(i)theresidualelementsofthenuclearenvelope,theporecomplexlamina;(ii)…  相似文献   

18.
We have developed a simple and rapid method for isolation of purified nuclear lamina from Ehrlich ascites tumor cells. The procedure employs chromatin structures prepared from whole cells at low ionic strength and is carried out under conditions that minimize the formation of artifactual protein-DNA complexes. When the isolation is performed in the presence of EDTA, nuclear lamina without distinct pore complexes is obtained. In the absence of EDTA, intact pore complexes and a large amount of vimentin 100 A filaments are seen associated with nuclear lamina. The main nuclear lamina proteins are characterized using gel electrophoresis, immunoblotting, and two-dimensional peptide mapping. An extensive structural homology is found between lamin A and lamin C, whose peptide maps differ by only one major spot, whereas lamin B has apparently unrelated pattern.  相似文献   

19.
The skeletal framework of cells at the various stages of mitosis are prepared by extraction with nonionic detergent and examined by stereoscopic whole mount electron microscopy. The insoluble filament network remaining after the detergent-extraction and the depolymerization of microtubules is shown. The nonchromatin filament network of the nucleus, or nuclear matrix, becomes visible as the chromatin condenses at prophase. Filaments are associated with the chromosomes throughout mitosis. Parts of the chromosomes are associated with or are near the nuclear lamina at early stages. The nuclear lamina disappears at metaphase while chromosomes remain associated with filaments now continuous with the cytoplasmic network. Microtubules appear to be unnecessary for maintaining the chromosome position in these preparations since comparison of cells with and without microtubules shows no gross change in chromosome arrangement. The cellular filament network at metaphase and anaphase appears continuous from the plasma lamina to the chromosomes. The filament networks visualized here may be responsible for the prometaphase chromosome movement and participate in the formation of the midbody.  相似文献   

20.
In the cytosol, actin polymers, intermediate filaments and microtubules can anchor to cell surface adhesions and interlink to form intricate networks. This cytoskeleton is anchored to the nucleus through LINC (links the nucleoskeleton and cytoskeleton) complexes that span the nuclear envelope and in turn anchor to networks of filaments in the nucleus. The metazoan nucleoskeleton includes nuclear pore-linked filaments, A-type and B-type lamin intermediate filaments, nuclear mitotic apparatus (NuMA) networks, spectrins, titin, 'unconventional' polymers of actin and at least ten different myosin and kinesin motors. These elements constitute a poorly understood 'network of networks' that dynamically reorganizes during mitosis and is responsible for genome organization and integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号